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Abstract The support vector machine (SVM) is one of the most popular classifi-
cation methods in the machine learning literature. Binary SVM methods have been
extensively studied, and have achieved many successes in various disciplines. How-
ever, generalization tomulticategory SVM (MSVM)methods can be very challenging.
Many existing methods estimate k functions for k classes with an explicit sum-to-zero
constraint. It was shown recently that such a formulation can be suboptimal. More-
over, many existing MSVMs are not Fisher consistent, or do not take into account the
effect of outliers. In this paper, we focus on classification in the angle-based frame-
work, which is free of the explicit sum-to-zero constraint, hence more efficient, and
propose two robust MSVM methods using truncated hinge loss functions. We show
that our new classifiers can enjoy Fisher consistency, and simultaneously alleviate the
impact of outliers to achieve more stable classification performance. To implement
our proposed classifiers, we employ the difference convex algorithm for efficient com-
putation. Theoretical and numerical results obtained indicate that for problems with
potential outliers, our robust angle-based MSVMs can be very competitive among
existing methods.
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1 Introduction

Classification is an important type of supervised learning problems in machine learn-
ing. Given a training dataset with both inputs and class labels available for all subjects,
one important goal of classification is to build a classification model, also known as
a classifier, to predict the class label accurately for new subjects with inputs only.
There are many existing classifiers in the literature [14]. Among various classifiers,
the Support Vector Machine (SVM, [6,8]) is a popular method that was first intro-
duced in the machine learning literature. As a typical margin-based classifier, the
SVM has achieved many successes in various scientific disciplines, such as artificial
intelligence, cancer research, and econometrics. Theoretical properties of standard
SVMs have been well established, including the Fisher consistency (more details are
given in Sect. 2.2; see also, [29,30]), and generalization error bounds [5,40]. For a
comprehensive introduction of SVMs, we refer the readers to [10,14], among others.

Binary SVM methods have been extensively studied in the literature. In particular,
the original binary SVM searches for a hyperplane in the feature space that can maxi-
mally separate the two classes, and uses a single classification function for prediction.
The signed distance between an observation and the separating boundary is called
the functional margin. One can verify that the corresponding optimization problem is
equivalent to using the hinge loss function on functional margins of training observa-
tions. Many useful results for binary SVMs, including the feature selection properties
for high dimensional learning [24,45], have been obtained. Empirical studies in the
literature have confirmed the usefulness of binary SVMs (see, for example, [1,7,16]).

Despite the success, how to extend binary SVM methods to address multicategory
problems is a challenging problem. In the simultaneous margin-based classification
framework, a common approach to handle problems with k different labels is to use k
classification functions, and the corresponding prediction rule is based on which func-
tion is the largest. To reduce the parameter space and to ensure theoretical properties
of the classifier, a sum-to-zero constraint is often imposed on these k functions. In
the literature, many existing Multicategory SVM (MSVM) methods follow this pro-
cedure, including [9,13,26,31,32,43]. Recently, [49] suggested that this procedure
can be inefficient and suboptimal, and proposed angle-based classification as a new
margin-based classification framework. Zhang and Liu [49] showed that angle-based
classifiers can enjoy better prediction accuracies and faster computational speeds,
hence are very competitive.

For the extension from binary SVM to MSVM methods in the angle-based frame-
work, there are still many open problems. For example, [49] showed that the naive
SVM generalization is not Fisher consistent. To overcome this drawback, [49] pro-
posed to use a large-margin unified machine loss function with appropriate parameters
to approximate the hinge loss for consistency (more details of the large-margin uni-
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fied machine can be found in [33]). Moreover, [50] proposed a new reinforcedMSVM
classifier in the angle-based framework that can enjoy Fisher consistency. Another
open problem is that existing angle-based MSVMmethods may not be robust against
outliers. In particular, consider the feature space of the predictors, and assume that a
training observation with label 2 is deeply buried in the group of observations with
label 1. In this case, the fitted functional margin of this outlier, whether using the
classifier in [49] or [50], would be negative with a large absolute value. This leads to a
very large loss value for this single observation. Consequently, the fitted angle-based
MSVM classifier can be unstable and suboptimal. A similar phenomenon was also
observed by [48]. In particular, [48] proposed to employ truncated hinge loss functions
for MSVMs using k classification functions and the sum-to-zero constraint. Because
the angle-based framework can enjoy better efficiency and accuracy, it is desirable to
explore how to develop angle-based MSVM classifiers that can achieve both Fisher
consistency and robustness against potential outliers simultaneously. To fill this gap,
in this paper, we propose two MSVM methods in the angle-based framework using
truncated hinge loss functions. We show that both classifiers can enjoy Fisher con-
sistency and other attractive theoretical properties. Our numerical results demonstrate
that the new robust MSVM classifiers are very competitive among existing methods.

Because the truncated hinge loss functions we employ in this paper are non-convex,
the corresponding optimization problems aremore involved than the original quadratic
programming or linear programming for MSVM methods. To overcome this diffi-
culty, we notice that the nonconvex objective function can have a difference of convex
functions decomposition (DC), and propose to apply the difference of convex func-
tions algorithm, i.e., difference convex algorithm (DCA) [20]. The DCA decomposes
the original non-convex problems into a sequence of convex subproblems, and each
subproblem can be solved efficiently. We propose several robust SVM formulations
combining truncatedhinge loss functions and avariety of regularizers.We further apply
efficient algorithms to solve the corresponding convex subproblems. Through numeri-
cal examples, we demonstrate that the DCA canwork very well for our new classifiers.

The rest of this article is organized as follows. In Sect. 2, we first give a review
of some existing MSVM classifiers, then introduce our robust angle-based MSVM
methods. In Sect. 3, we show how to implement the DCA to solve the corresponding
optimization problems, and provide convergence results to our solutionmethods. Some
statistical learning theory, includingFisher consistencyof our newmethods, is obtained
in Sect. 4. We perform numerical studies to demonstrate the effectiveness of our new
methods in Sect. 5. All proofs are collected in the “Appendix”.

2 Methodology

In this section, we first give a brief review of somemargin-based classificationmethods
in Sect. 2.1, then propose our new classifiers in Sect. 2.2.
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2.1 Review of some margin-based classifiers

Denote by P(X, Y ) the underlying joint distribution of (X, Y ), where X is the vec-
tor of predictors, and Y is the label. The learning goal is to find a classifier with
the prediction rule ŷ(·), such that for any future observations, the misclassifica-
tion rate E[I {Y ̸= ŷ(X)}] is minimized. Here I is the indicator function, and the
expectation is taken with respect to the distribution P . Given a set of training obser-
vations {(x1, y1), . . . , (xn, yn)} from P , an intuitive approach is to find a classifier by
minimizing the empirical prediction error 1

n

∑n
i=1 I {yi ̸= ŷ(xi )}. However, because

the indicator function is discontinuous, such an optimization can be very difficult.
To circumvent this difficulty, it is common to use a surrogate loss function in place

of the indicator function. For binary classifiers with Y ∈ {+1,−1}, one uses a single
function f (·) for classification, and the prediction rule is ŷ(x) = sign{ f (x)}. In this
case, the indicator function I {y ̸= ŷ(x)} is equivalent to I {y f (x) < 0}, and the
term y f (x) is referred to as the functional margin. Binary margin-based classifiers
use surrogate loss functions to encourage large functional margins. In particular, the
corresponding optimization problem is typically

min
f ∈F

1
n

n∑

i=1

ℓ{y f (x)} + λJ ( f ),

whereF is the functional space, ℓ(·) is the surrogate loss function, J ( f ) is a penalty
to prevent overfitting, and λ is a tuning parameter to balance the loss and penalty
terms. Different binary margin-based classifiers use different surrogate loss functions.
For example, the standard SVM uses the hinge loss ℓ(u) = [1 − u]+, where [u]+ =
max(u, 0), logistic regression [27] uses the deviance loss ℓ(u) = log{1 + exp(−u)},
and AdaBoost in boosting [12] is shown to be approximately equivalent to using the
exponential loss ℓ(u) = exp(−u).

For multicategory problems, how to define the prediction rule and functional
margins becomes more involved. The details of angle-based classification are as
follows. For a problem with k classes, consider a centered simplex with k vertices
W = {W1, . . . ,Wk} in Rk−1 with

W j =
{
(k − 1)−1/21 j = 1,
−(1+ k1/2)/{(k − 1)3/2}1+ {k/(k − 1)}1/2e j−1 2 ≤ j ≤ k,

where 1 is a vector of 1, and e j is a vector with its j th element 1 and 0 else-
where. One can verify that the matrix W introduces a symmetric simplex in Rk−1.
Without loss of generality, assume that class j is assigned to W j . The angle-based
classifiers map x into Rk−1 using k − 1 functions f = ( f1, . . . , fk−1). This classifi-
cation function vector f (x) defines k angles with respect to {W1, . . . ,Wk}, namely,
̸ (W j , f ); j = 1, . . . , k. The prediction rule is based on which angle is the smallest,
i.e., ŷ(x) = argmin j∈{1,...,k} ̸ (W j , f ). Note that the smaller ̸ (W j , f ) is, the larger
the corresponding inner product ⟨W j , f ⟩ would be. Thus, it is equivalent to maximiz-
ing ⟨Wy, f (x)⟩ in the optimization, where ⟨W j , f (x)⟩ can be regarded as functional
margins for angle-based methods. Zhang and Liu [49] proposed to use the following
optimization problem for angle-based classification
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min
f∈F

1
n

n∑

i=1

ℓ{⟨Wyi , f (xi )⟩} + λJ ( f ), (1)

where ℓ is a binary margin-based loss function. For angle-based classifiers, we note
that the functional margins sum to zero implicitly. Zhang and Liu [49] showed that,
without an explicit sum-to-zero constraint as that used by other existing methods, the
angle-based classifier can achieve a faster computational speed, and better classifica-
tion performance.

2.2 Robust angle-based support vector machines

A direct generalization of the SVM method in the angle-based framework is to use
ℓ(u) = [1 − u]+ in (1). However, [49] proved that this naive MSVM is not Fisher
consistent, and proposed to use a loss function in the large-margin unified machine
family to approximate the hinge loss to achieve Fisher consistency. In particular,
Fisher consistency is defined as follows. Consider an observation with fixed X = x,
and denote by Pj (x) = pr(Y = j | X = x) the class conditional probability of
class j ∈ {1, . . . , k}. One can verify that the best prediction rule, namely, the Bayes
rule, which minimizes the misclassification rate, is ŷBayes(x) = argmax j Pj (x). For
a classifier, denote by φ{ f (x), y} its surrogate loss function for classification using
f as the classification function, and ŷ f the corresponding prediction rule. Define the
conditional loss S(x) = E[φ{ f (X), Y } | X = x], where the expectation is taken
with respect to the marginal distribution of Y | X = x. We call f ∗(x) = arginf f S(x)
the theoretical minimizer of the conditional loss. Fisher consistency requires that
ŷ f ∗(x) = ŷBayes(x). In other words, Fisher consistency means that if we are using
infinitely many training observations and an appropriate functional spaceF , then the
obtained classifier can achieve the best prediction performance,which is a fundamental
requirement for a classification method. Zhang et al. [50] proposed the following
reinforced MSVM loss function in the angle-based framework,

φ{ f (x), y} = γ [(k − 1) − ⟨ f (x),Wy⟩]+ + (1 − γ )
∑

j ̸=y

[1+ ⟨ f (x),W j ⟩]+, (2)

where γ ∈ [0, 1] is the convex combination parameter. Note that the first term of
(2) explicitly encourages ⟨ f (x),Wy⟩ to be large. The second term of (2) encourages
⟨ f (x),W j ⟩ to be small for j ̸= y. This implicitly encourages ⟨ f (x),Wy⟩ to be large,
because

∑k
j=1⟨ f (x),W j ⟩ = 0. [50] showed that their reinforced MSVM method

using this convex combination of hinge loss functions with γ ∈ [0, 0.5] enjoys Fisher
consistency.

Despite the progress, neither [49] nor [50] addressed the problem of potential out-
liers in practical problems. Consequently, the fitted classifiers may be suboptimal. In
Fig. 1, we demonstrate the effect of outliers on the performance of the angle-based
MSVM proposed by [49], using a simulated example. In particular, we first generalize
a training dataset that has no outliers, and find the best angle-based MSVM classifier.
We plot the corresponding classification boundaries on the left panel of Fig. 1. Next,
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Fig. 1 The training dataset on the left panel has no potential outliers, whereas the training set on the right
panel has three (black) potential outliers in the green group of observations. The blue dashed lines are the
fitted classification boundaries (color figure online)

the class labels of some observations in one group are changed to another randomly.
In practical problems, this type of unobserved mislabeling can be common, such as
recording errors, a misdiagnosis of a patient in clinical trials. We then train a new
angle-based MSVM classifier, and plot the corresponding classification boundaries
on the right panel of Fig. 1. For both classifiers, we use L2 penalized linear learning,
and the best tuning parameters are selected via 5-fold cross validation. One can see that
for the data without outliers, the angle-based method works well. In contrast, for the
second classifier, the existence of outliers has a significant effect on the classification
boundary estimation, and the prediction accuracy deteriorates.

To better understand the effect of outliers on classification performance,we consider
the reinforced MSVM loss (2) as an illustrating example. The first loss function term,
[k − 1 − u]+, increases linearly when u < k − 1 decreases, and the second loss term
[1+u]+ increases linearlywhen u > −1 increases. For a potential outlier such as those
in Fig. 1, it is often to have ⟨ f (x),Wy⟩ being negative with a large absolute value.
Moreover, because of the implicit sum-to-zero property

∑k
j=1⟨ f (x),W j ⟩ = 0, some

of ⟨ f (x),W j ⟩, j ̸= y can be positive with a large absolute value. This can result in a
largeφ{ f (x), y} for this single observation, which, consequently, has a great influence
on the final solution. For the angle-based MSVM using the approximate hinge loss,
one can verify that a similar issue exists. Therefore, it is desirable to decrease the
loss φ{ f (x), y} for such outliers in MSVM methods. To this end, we propose to
use truncated hinge loss functions in the angle-based classification framework. In
particular, in this paper, we propose two such MSVM methods. We first explore how
to implement the truncated hinge loss function for the reinforced MSVM by [50].
Then we propose a novel MSVM method in the angle-based framework, and show
how to employ the truncated hinge loss function for this new classifier to alleviate the
effect of potential outliers.

To begin with, define Hs(u) = [s − u]+, and Gs(u) = [s + u]+. One can rewrite
(2) as
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Fig. 2 Plots of the loss functions Ts (left) and Rs (right)

φ{ f (x), y} = γ Hk−1{⟨ f (x),Wy⟩} + (1 − γ )
∑

j ̸=y

G1{⟨ f (x),W j ⟩}.

To reduce the effect of outliers, we consider the truncated hinge losses Ts(u) =
Hk−1(u) − Hs(u) and Rs(u) = G1(u) − Gs(u). Here s is a parameter that con-
trols the location of truncation. In this paper we assume that k is a fixed constant, thus
in the notation of Ts we suppress the dependency on k. When s > 0, Ts(u) and Rs(u)
are constant within [−s, s]. In this case, one can verify that the loss for some correctly
classified observations is the same as that of those misclassified ones, which is not
desirable. Hence, we set s ≤ 0. For real applications, one can perform a data adaptive
tuning method to select the best s ≤ 0. In our numerical experience, the choice of
s = −1/(k − 1) works well. We plot Ts(u) and Rs(u) in Fig. 2.

With Ts(u) and Rs(u) defined as above, we propose the following loss function for
our first robust angle-based MSVM

φ1{ f (x), y} = γ T(k−1)s{⟨ f (x),Wy⟩} + (1 − γ )
∑

j ̸=y

Rs{⟨ f (x),W j ⟩}, (3)

where k is the number of classes. Note that T(k−1)s = Hk−1(u) − H(k−1)s(u), and
we choose T(k−1)s such that the locations of truncation in (3) sum to zero, which is
consistent with the implicit sum-to-zero property

∑k
j=1⟨ f ,W j ⟩ = 0 of angle-based

classifiers. One can see that for any potential outlier (x, y)with a large ⟨ f (x),Wy⟩ <
0, its loss φ1{ f (x), y} is upper bounded by a constant for any f . Thus, the impact of
outliers can be alleviated by our new method using the loss in (3).

Our second robust MSVM loss function is motivated by the following observa-
tion. An instance (x, y) is correctly classified using f if and only if ⟨ f (x),Wy⟩ >

⟨ f (x),W j ⟩ for all j ̸= y. This is equivalent to ⟨ f (x),Wy − W j ⟩ > 0 for all j ̸= y,
or min j ̸=y{⟨ f (x),Wy − W j ⟩} > 0. Therefore, the theoretical misclassification error
rate can be written as
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E(I [min
j ̸=Y

{⟨ f (X),WY − W j ⟩} ≤ 0]). (4)

To employ the SVM method in this framework, one can use a surrogate hinge loss
function in place of the indicator function in (4)

φ{ f (x), y} = H1[min
j ̸=y

{⟨ f (x), (Wy − W j )⟩}]. (5)

However, for outliers with ⟨ f (x),Wy⟩ < 0 and |⟨ f (x),Wy⟩| ≫ 1, we have the
correspondingmin j ̸=y{⟨ f (x), (Wy−W j )⟩} being negativewith a large absolute value.
To reduce the loss for such observations, we propose to use the following loss function
for our second robust angle-based MSVM,

φ2{ f (x), y} = Ts[min
j ̸=y

{⟨ f (x), (Wy − W j )⟩}], (6)

where Ts = H1(u)− Hs(u)with s ≤ 0. One can verify that for any instance with very
small ⟨ f (x),Wy⟩, its lossφ2{ f (x), y} is upper bounded by 1−s. Therefore, compared
to (5), the influence of outliers can be alleviated in our new robust angle-based SVM.

Note that for regular MSVM methods that use k functions for a k-class problem,
[9,31,48] considered pairwise comparisons of the k functions for classification. To
our knowledge, in the angle-based classification literature, there is no existing work
that has considered pairwise comparisons of functional margins such as in (4), or the
corresponding surrogate loss functions for the indicator function in (6). Hence, our
second robust angle-based MSVM method is different from the methods mentioned
above. We will examine the performance of these two robust methods in Sect. 5.

In the next section, we discuss how to implement the proposed classifiers using
DCA.

3 Computational implementation using difference convex algorithm

In this section, we discuss how to implement our robust angle-based MSVMmethods
using DCA. DCA was introduced by Pham Dinh Tao in 1985 and further developed
by Le Thi Hoai An and Pham Dinh Tao. More details about DCA and some of its
recent developments can be found in [21–23,25]. We provide detailed algorithms for
the two proposed MSVMs in Sects. 3.1 and 3.2. In this section, we focus on linear
learning with L2, L1, and mixed L1 + L2 penalties.

3.1 Algorithm for robust angle-based MSVM 1

We consider the DC formulation of (3)

min
β

G(β) − H(β),
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where

G(β) =
n∑

i=1

⎡

⎣γ Hk−1{⟨ f (xi ),Wyi ⟩} + (1 − γ )
∑

j ̸=yi

G1{⟨ f (xi ),W j ⟩}

⎤

⎦ + λJ ( f ),

and

H(β) =
n∑

i=1

⎡

⎣γ Hs{⟨ f (xi ),Wyi ⟩ } + (1 − γ )
∑

j ̸=yi

Gs{⟨ f (xi ),W j ⟩}

⎤

⎦ .

For linear learning, we assume fq(x) = xTβq , where βq ∈ Rp (q = 1, . . . , k − 1)
are the vectors of parameters that we are interested in. For brevity, we denote f (x)
by Bx, where B = (β1, . . . ,βk−1)

T is a (k − 1) × p parameter matrix, and β =
(βT

1 , . . . ,β
T
k−1)

T is the vectorization of B. For various choices for the penalty term
J (·), we use different methods to solve the convex subproblems in DCA. First, we
consider J ( f ) = 1

2
∑k−1

q=1⟨βq ,βq⟩. In this case, we have that the DC components G
and H as

G(β) =
n∑

i=1

⎡

⎣γ Hk−1{⟨Bxi ,Wyi ⟩} + (1 − γ )
∑

j ̸=yi

G1{⟨Bxi ,W j ⟩}

⎤

⎦ + λ

2

k−1∑

q=1

⟨βq ,βq⟩,

H(β) =
n∑

i=1

⎡

⎣γ Hs{⟨Bxi ,Wyi ⟩ } + (1 − γ )
∑

j ̸=yi

Gs{⟨Bxi ,W j ⟩}

⎤

⎦ .

For DCA, note that the DC component H is a convex polyhedral function, thus for a
point βm , a subgradient gm ∈ ∂H(βm)(gm ∈ R(k−1)p) can be computed efficiently.
Define gmq to be the qth sub-vector in gm that corresponds to βq . In particular, for the
m-th iteration, we solve the following convex optimization

min
β

n∑

i=1

⎡

⎣γ Hk−1{⟨Bxi ,Wyi ⟩} + (1 − γ )
∑

j ̸=yi

G1{⟨Bxi ,W j ⟩}

⎤

⎦ + λ

2

k−1∑

q=1

⟨βq ,βq⟩

−
k−1∑

q=1

⟨gmq ,βq⟩. (7)

We first introduce nonnegative slack variables ξ = (ξ11, ξ12, . . . , ξ1k, . . . , ξn1, ξn2,

. . . , ξnk)
T, and rewrite (7) as

min
β,ξ

n∑

i=1

⎧
⎨

⎩γ ξiyi + (1 − γ )
∑

j ̸=yi

ξi j

⎫
⎬

⎭ + λ

2

k−1∑

q=1

⟨βq ,βq⟩ −
k−1∑

q=1

⟨gmq ,βq⟩,

s.t. ξiyi ≥ k − 1 − ⟨Bxi ,Wyi ⟩; i = 1, . . . , n,

ξi j ≥ 1+ ⟨Bxi ,W j ⟩; i = 1, . . . , n, j ̸= yi ,
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ξi j ≥ 0; i = 1, . . . , n, j = 1, . . . , k.

Next, we introduce dual variables µi j ≥ 0 and αi j ≥ 0; i = 1, . . . , n, j = 1, . . . , k,
and the corresponding Lagrangian becomes

L(β, ξ ,µ,α) =
n∑

i=1

⎧
⎨

⎩γ ξiyi + (1 − γ )
∑

j ̸=yi

ξi j

⎫
⎬

⎭ + λ

2

k−1∑

q=1

⟨βq ,βq⟩ −
k−1∑

q=1

⟨gmq ,βq⟩

+
n∑

i=1

µiyi (k − 1 − ⟨Bxi ,Wyi ⟩ − ξiyi )

+
n∑

i=1

∑

j ̸=yi

µi j (1+ ⟨Bxi ,W j ⟩ − ξi j )+
n∑

i=1

k∑

j=1

αi j (−ξi j ), (8)

where µ = (µ11, µ12, . . . , µ1k, . . . , µn1, µn2, . . . , µnk)
T. After some calculation,

one can show that 0 ≤ µiyi ≤ γ ; i = 1, . . . , n and 0 ≤ µi j ≤ 1 − γ ; i =
1, . . . , n, j = 1, . . . , k, j ̸= yi . Furthermore, we have that

βq = 1
λ

⎛

⎝gmq +
n∑

i=1

µiyi W
q
yi xi −

n∑

i=1

∑

j ̸=yi

µi jW
q
j xi

⎞

⎠ , (9)

where Wq
yi and Wq

j are the qth elements of Wyi and W j , respectively. To simplify
notation, we introduce (k−1)matrices Xq; q = 1, . . . , k−1, each with size kn× p.
For Xq , its (i j)th row is defined to beWq

j x
T
i if j ̸= yi and−Wq

j x
T
i otherwise, for i =

1, . . . , n, j = 1, . . . , k. One can verify that (9) can bewritten asβq = 1
λ (g

m
q −µTXq),

where gmq is the sub-vector in gm that corresponds to βq . Substituting this into (8), we
obtain the dual problem

min
µ

1
2
µT

k−1∑

q=1

Xq(Xq)Tµ − λ⟨δ,µ⟩ −
〈
k−1∑

q=1

Xq(gmq )
T,µ

〉

,

s.t. 0 ≤ µiyi ≤ γ ; i = 1, . . . , n,

0 ≤ µi j ≤ 1 − γ ; j ̸= yi , i = 1, . . . , n, j = 1, . . . , k,

where δ = (δ11, δ12, · · · , δ1km · · · , δn1, δn2, · · · , δnk)T, and δiyi = k − 1, δi j, j ̸=yi =
1. This dual problem is a quadratic programming problemwith a positive semi-definite
Hessian matrix and box-constraints. Due to the separability of the constraints, one can
use the very efficient coordinate descent method to solve the optimization [15,41].

In order to perform variable selection, we consider the L1 penalization with J =∑k−1
q=1 ∥βq∥1. In this case, one can derive the following optimization problem in an

analogous manner as (7),
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min
β

n∑

i=1

⎡

⎣γ Hk−1{⟨Bxi ,Wyi ⟩} + (1 − γ )
∑

j ̸=yi

G1{⟨Bxi ,W j ⟩}

⎤

⎦ + λ

k−1∑

q=1

∥βq∥1

(10)

−
k−1∑

q=1

⟨gmq ,βq⟩.

To solve (10), we introduce nonnegative slack variables ξi j ; i = 1, . . . , n, j =
1, . . . , k and β+. Then (10) becomes a linear programming problem as follows:

min
ξ ,β,β+

n∑

i=1

γ ξiyi + (1 − γ )

n∑

i=1

∑

j ̸=yi

ξi j + λ⟨1,β+⟩ −
k−1∑

q=1

⟨gmq ,βq⟩,

s.t. ξiyi ≥ k − 1 − ⟨Bxi ,Wyi ⟩; i = 1, . . . , n,

ξi j ≥ 1+ ⟨Bxi ,W j ⟩; i = 1, . . . , n, j = 1, . . . , k, j ̸= yi ,

β+ − β ≥ 0, β+ + β ≥ 0, β+ ≥ 0,

which can be solved efficiently using existing linear programming software.
Lastly, we consider the mixed L1 and L2 penalty λJ ( f ) = λ1

∑k−1
q=1 ∥βq∥1 +

λ2
2

∑k−1
q=1⟨βq ,βq⟩. In this case, the optimization problem becomes

min
β

⎛

⎝
n∑

i=1

⎡

⎣γ Hk−1{⟨Bxi ,Wyi ⟩} + (1 − γ )
∑

j ̸=yi

G1{⟨Bxi ,W j ⟩}

⎤

⎦

+ λ1

k−1∑

q=1

∥βq∥1 +
λ2

2

k−1∑

q=1

⟨βq ,βq⟩ −
k−1∑

q=1

⟨gmq ,βq⟩

⎞

⎠ . (11)

To solve (11), we employ the Alternating Linearization (AL, [17,28]) algorithm. In
particular, we consider the following decomposition of (11),

min
β

F(β) = F1(β)+ F2(β),

where F is the objective function in (11), F1 corresponds to the robust MSVM loss
term, and F2 = λ2

2
∑k−1

q=1⟨βq ,βq⟩ − ∑k−1
q=1⟨gmq ,βq⟩ + λ1

∑k−1
q=1 ∥βq∥1. The idea of

our AL algorithm is that, at each iteration, we solve two sub-problems, each consisting
of one component, linearizations of the other components, and a proximal term. From
these two sub-problems,we obtain two candidate updates for the original optimization.
We then evaluate the objective function (11) at these two candidate updates, and if
a candidate solution delivers an improvement, we update it for the original objective
function.
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The details of our AL method for (11) can be summarized as follows:
Alternating linearization algorithm

Initialization: β̄ ∈ R(k−1)p is the current solution vector, β ∈ R(k−1)p is the
vector of unknown variables, and introduce z1, z2, d1, d2 ∈ R(k−1)p initialized to
zero vectors, and ρ > 0. In our description, we use βq , β̄q , d1,q , d2,q to denote the
qth sub-vector of the corresponding vectors respectively, where q = 1, 2, . . . , k − 1.

Repeat
Sub-problem 1

z1 = argmin
β

n∑

i=1

γ Hk−1{⟨Bxi ,Wyi ⟩} + (1 − γ )
∑

j ̸=yi

G1{⟨Bxi ,W j ⟩}

+
k−1∑

q=1

⟨d2,q ,βq⟩ +
ρ

2

k−1∑

q=1

∥βq − β̄q∥22,

d1 = −d2 − ρ(z1 − β̄).

If z1 improves the objective function, set β̄ = z1.
Sub-problem 2

z2 = argmin
β

λ2

2

k−1∑

q=1

⟨βq ,βq⟩ −
k−1∑

q=1

⟨gmq ,βq⟩ + λ1

k−1∑

q=1

∥βq∥1

+
k−1∑

q=1

⟨d1,q ,βq⟩ +
ρ

2

k−1∑

q=1

∥βq − β̄q∥22,

d2 = −d1 − ρ(z2 − β̄).

If z2 improves the objective function, set β̄ = z2.
Until convergence.

Note that one can choose any ρ > 0 in the above algorithm. In our paper, we set
ρ = 1. As a remark, we would like to point out that sub-problem 1 can be solved
in an analogous manner as (7), using the coordinate descent algorithm. To make
the algorithm more efficient, the solution of the previous iteration can be used as
the starting point for the next iteration. Moreover, note that the L1 and L2 penalties
are separable, therefore the sub-problem 2 has closed form solutions. This greatly
enhances the computational speed of our method.

3.2 Algorithm for robust angle-based MSVM 2

For our second MSVM formulation (6), we can choose the DC components as

G(β) =
n∑

i=1

H1[min
j ̸=yi

{⟨ f (xi ), (Wyi − W j )⟩}] + λJ ( f ),
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and

H(β) =
n∑

i=1

Hs[min
j ̸=yi

{⟨ f (xi ), (Wyi − W j )⟩}].

As in Sect. 3.1, we first consider the case when J ( f ) = 1
2

∑k−1
q=1⟨βq ,βq⟩. In the mth

iteration of DCA, we solve the following optimization problem

min
β

⎛

⎝
n∑

i=1

H1[min
j ̸=yi

{⟨Bxi , (Wyi − W j )⟩}] +
λ

2

k−1∑

q=1

⟨βq ,βq⟩ −
k−1∑

q=1

⟨gmq ,βq⟩

⎞

⎠ . (12)

Using nonnegative slack variables ξi , i = 1, . . . , n, (12) is equivalent to

min
β,ξ

n∑

i=1

ξi +
λ

2

k−1∑

q=1

⟨βq ,βq⟩ −
k−1∑

q=1

⟨gmq ,βq⟩,

s.t. ξi ≥ 1 − min
j ̸=yi

⟨Bxi , (Wyi − W j )⟩; i = 1, . . . , n,

ξi ≥ 0; i = 1, . . . , n.

Next, by introducing nonnegative dual variables µ ∈ R(k−1)n and α ∈ Rn , we have
the corresponding Lagrangian

L(β, ξ ,µ,α) =
n∑

i=1

ξi +
λ

2

k−1∑

q=1

⟨βq ,βq⟩ −
k−1∑

q=1

⟨gmq ,βq⟩

+
n∑

i=1

∑

j ̸=yi

µi j (1 − ⟨Bxi ,Wyi − W j ⟩ − ξi )+
n∑

i=1

αi (−ξi ). (13)

With some calculation, one can show that for a fixed i ,
∑

j ̸=yi µi j ≤ 1. Furthermore,
we have that

βq = 1
λ

⎛

⎝gmq +
n∑

i=1

∑

j ̸=yi

µi j (W
q
yi − Wq

j )xi

⎞

⎠ , (14)

where βq; q = 1, . . . , k−1, is the parameter vector of the qth classification function,
and Wq

j is the q-th entry of W j .
Similar to Sect. 3.1, we define k − 1 matrices X1, . . . , Xk−1 with dimension (k −

1)n × p to simplify notation. In particular, for each q, and let the i j th row of Xq be
(Wq

j − Wq
yi )x

T
i ; i = 1, . . . , n, j = 1, . . . , k, j ̸= yi . One can verify that (14) can

be written as βq = 1
λ (g

m
q −µTXq). By substituting this into (13), we obtain the dual

problem
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min
µ

1
2
µT

k−1∑

q=1

Xq(Xq)Tµ − λ⟨1,µ⟩ −
〈
k−1∑

q=1

Xq(gmq )
T,µ

〉

,

s.t.
∑

j ̸=yi

µi j ≤ 1; i = 1, . . . , n,

µ ≥ 0. (15)

The optimization problem (15) is a quadratic programming problem with box con-
straints and linear inequalities. Due to the block separability structure of the linear
inequality constraints, we can solve this problem by iterating through each block
[36,41]. In particular, for a fixed i , let Q = ∑k−1

q=1 X
q(Xq)T, and let Qi be the sub-

matrix corresponding to µi j , j ̸= yi . One can verify that the sub-problem is a small
scale positive semi-definite quadratic programming problem with box constraints and
a single inequality constraint

min
1
2
µT
i, j ̸=yi Qiµi, j ̸=yi + vTµi, j ̸=yi ,

s.t.
∑

j ̸=yi

µi j ≤ 1, µi j ≥ 0; j = 1, . . . , k, j ̸= yi ,

where v is a vector that depends only on λ, Xq and gm . When k = 3, the problem is a
simple quadratic function with two variables and the solutions can be easily obtained.
For k > 3, the sub-problem can be solved efficiently using the coordinate descent
algorithm [38].

In the cases of L1 and mixed L1 + L2 penalties, one can employ similar strategies
as in Sect. 3.1, and we omit the details here.

4 Statistical properties

In this section, we explore some statistical properties of our proposed classifiers using
loss functions (3) and (6). In particular, we first establish the Fisher consistency of (3)
and (6), then show how to estimate the future prediction error rate using the training
dataset.

Fisher consistency was introduced in Sect. 2.2. The next theorem shows that the
proposed robust angle-based MSVM can enjoy Fisher consistency with appropriately
selected parameters s and γ .

Theorem 1 Our first robust angle-based MSVM (3) is Fisher consistent with γ ∈
[0, 1/2] and s ≤ 0, and our second robust angle-based MSVM (6) is Fisher consistent
with s ∈ [− 1

k−1 , 0].

According to Theorem4,with infinitelymany training observations and an appropriate
F , our robust angle-based MSVMs can achieve the best classification accuracy.

In practice, it is desirable to study the prediction performance of the obtained
classifier on future testing data, in terms of E[I {Y ̸= ŷ f̂ (X)}]. To this end, one
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possible approach is to use the empirical prediction error rate on the training dataset,
1
n

∑n
i=1 I {yi ̸= ŷ f̂ (xi )}, to estimate the future error rate. However, it is well known

that the empirical error rate often underestimates E[I {Y ̸= ŷ f̂ (X)}]. The next theorem
shows that for our new classifiers, the future error rate exceeds the empirical rate by a
small amount that can converge to zero at a fast rate. Here we use linear learning with
L1 or L2 penalties, and reproducing kernel Hilbert space learning [44] as examples.
With a little abuse of notation, we denote by f̂ the solution to our newMSVMmethods
(3) or (6).

Theorem 2 The solution f̂ to (3) or (6) satisfies that, with probability at least 1− δ,

E[I {Y ̸= ŷ f̂ (X)}] ≤
[
1
n

n∑

i=1

I {yi ̸= ŷ f̂ (xi )} + 3{log(2/δ)/n}1/2 + Z

]

, (16)

where

Z =

⎧
⎪⎪⎨

⎪⎪⎩

C1
λ

√
log(p)

n for linear learning withL1penalty,
C2
λ1/2

√
p

n1/2 for linear learning withL2penalty,
C3

λ
√
n

for RKHS learning with a separable kernel,

and C1,C2,C3 are constants (specified in the “Appendix”) that do not depend on n
or p.

Theorem 2 shows that for our robust MSVM classifiers, one can obtain an upper
bound for the future prediction error rate using the empirical error rate, and the cor-
responding difference can converge to zero at a fast rate. For example, as n → ∞,
we can let λ → 0 (as is typical for general machine learning problems) at the rate
of O{log(n)−1/2}. In this case, we have that Z = OP {

√
log(p) log(n)/n} for L1

learning, Z = OP {
√
p log(n)1/2/n1/2} for L2 learning, and Z = OP {

√
log(n)/n}

for kernel learning.
As a remark, wewould like to point out that Theorem2 also reveals the effectiveness

of L1 penalized methods over the L2 ones on practical problems where the underlying
signal is sparse. To see this, consider a problemwhere the classification signal depends
only on a handful predictors, and the remaining predictors are noise variables. In this
case, it is well known that L1 penalized methods can deliver parsimonious classifiers
that can fit the data well [45]. On the other hand, L2 penalized classifiers cannot deliver
sparse classification models. Because we can typically expect a small empirical error
rate on training datasets, Theorem 2 shows that when the dimension p is ultrahigh, the
corresponding convergence rate of the difference term Z can be much faster in the L1
case. In other words, the L1 penalized classifiers can perform much better in terms of
future prediction accuracy. This is consistent with many existing experiments in the
literature.
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5 Numerical results

In this section, we investigate the performance of our proposed robust angle-based
SVMs using simulated and real datasets.

5.1 Simulated experiments

In this section, we conduct a simulation example to demonstrate the numerical per-
formance of our new classifiers. We use 100 observations for training, and select the
best regularization parameters via a grid search on a separate tuning dataset with 1000
observations. Then, we evaluate the prediction performance of the obtained classifiers
on a testing dataset with size 10,000. We compare the performance of RMSVM by
[32], MSVM by [31], and our proposed RSVMs (3) and (6).

We generate the simulated datasets as follows. We choose k = 3 with pr(Y =
j) = 1/3 for j = 1, 2, 3. Among the observations in the training and tuning sets, we
generate 5 and 10% outliers (denoted by perc = 5% and perc = 10%) to contaminate
the data. The classification signal depends only on two predictors X1 and X2. For
the uncontaminated observations, the marginal distribution of (X1, X2)

T for Y = j
is N (µ j , 0.16I2), where I2 is the identity matrix, and µ j ’s are equally distributed
on the unit circle with µ1 = (1, 0)T. For the contaminated observations, the marginal
distribution of (X1, X2)

T is N ((3, 0)T, 0.16I2) forY = 1, 2, 3.Moreover, we generate
noise variables to make the dimension p higher. In particular, the noise predictors are
generated independently from a uniform distribution on [−1, 1]. We report the results
of p = 2, 20, 200.

We compare the performance of our two robust angle-based SVMs (RSVMs 1–2)
(3) and (6), with truncation at s = 0 (denoted by T0) and s = −1/(k − 1) (denoted
by TK ). For the regularization terms, we employ three different penalty functions,
namely, the L2, L1, and L1 + L2 penalties. In particular, the candidate sets of L1 and
L2 tuning parameters consist of 30 candidates each, and the candidate sets of L1+ L2
tuning parameters consist of 30 × 30 = 900 different values. For each setting of the
simulation, we run the experiments 100 times. We report some of the classification
results in Fig. 3. Full numerical results of the simulated studies are reported in Tables 1,
2 and 3. From Fig. 3 and the tables, one can see that our proposed RSVMs perform
better than the original SVMs. Furthermore, our methods with truncation at s = 0 and
s = −1/(k − 1) perform similarly. To avoid intensive tuning of s and to obtain more
stable results, we recommend to use s = −1/(k − 1) in practice.

Note that only the first 2 predictors contain useful classification signals, and the
remaining are noise variables. In Table 4, we report the average numbers of selected
variables for different classifiers and penalties with p = 200. The L2 regularization
chooses all variables in the resulting classifiers, while the L1 and L1 + L2 penalties
lead to more parsimonious classifiers. Note that all methods with L1 and L1 + L2
penalties are able to identify the underlying two predictors. In terms of classification
error rates, the two sparse penalties perform better than the pure L2 method, with
L1 + L2 slightly better than L1.
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Fig. 3 Boxplots of misclassification rates for RMSVM (denoted by H1 on the top panels), our RSVM 1
with truncation at s = −1/(k − 1) (TK on the top panels) and at s = 0 (T0 on the top panels), MSVM
(denoted by H1 on the bottom panels), and our RSVM 2 with truncation at s = −1/(k − 1) (TK on the
bottom panels) and at s = 0 (T0 on the bottom panels) on the simulated example

Table 1 Classification error rates for RMSVM, MSVM and our RSVMs 1–2 on the simulated data with
k = 3, p = 2

Penalty L2 L1 L1 + L2

Perc Loss Error Error Error

5% RMSVM 3.3600(0.0062) 3.5575(0.0063) 3.3990(0.0069)
T0 RSVM 1 3.1159(0.0034) 3.3125(0.0057) 3.0756(0.0030)
Tk RSVM 1 3.1148(0.0043) 3.2874(0.0045) 3.0968(0.0028)
MSVM 3.2572(0.0032) 3.4097(0.0049) 3.2130(0.0031)
T0 RSVM 2 3.0654(0.0023) 3.2780(0.0036) 3.0446(0.0027)
Tk RSVM 2 3.0766(0.0021) 3.2346(0.0031) 3.0123(0.0023)

10% RMSVM 4.6710(0.0237) 5.0689(0.0202) 4.6662(0.0250)
T0 RSVM 1 4.7892(0.0649) 3.8702(0.0241) 3.3646(0.0180)
Tk RSVM 1 3.4628(0.0098) 3.7674(0.0174) 3.4748(0.0180)
MSVM 4.3474(0.0214) 4.1759(0.0135) 4.5220(0.0209)
T0 RSVM 2 3.2404(0.0194) 3.2075(0.0031) 2.9990(0.0023)
Tk RSVM 2 3.2451(0.0170) 3.1844(0.0029) 2.9890(0.0022)

Here Perc stands for the percentage of data that are contaminated

As a measurement of computational speeds, for the simulated example with p =
200, we report the average running time of one replication for the compared methods
in Table 5. One can see that since the optimization problems are more involved, our
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Table 2 Classification error rates for RMSVM, MSVM and our RSVMs 1–2 on the simulated data with
k = 3, p = 20

Penalty L2 L1 L1 + L2

Perc Loss Error Error Error

5% RMSVM 4.0991(0.0089) 3.4977(0.0072) 3.4074(0.0047)
T0 RSVM 1 3.4220(0.0103) 3.4978(0.0055) 3.1792(0.0032)
Tk RSVM 1 3.6043(0.0050) 3.3798(0.0047) 3.2436(0.0037)
MSVM 3.9090(0.0063) 3.3828(0.0046) 3.3400(0.0052)
T0 RSVM 2 3.4982(0.0041) 3.3873(0.0043) 3.1500(0.0025)
Tk RSVM 2 3.4442(0.0037) 3.3396(0.0035) 3.0922(0.0021)

10% RMSVM 4.0991(0.0140) 4.6318(0.0172) 5.0172(0.0257)
T0 RSVM 1 3.5752(0.0055) 3.4000(0.0051) 3.3710(0.0116)
Tk RSVM 1 3.4733(0.0044) 3.3798(0.0049) 3.4596(0.0084)
MSVM 5.5827(0.0194) 4.6140(0.0252) 4.1241(0.0149)
T0 RSVM 2 3.5240(0.0041) 3.3520(0.0042) 3.1598(0.0031)
Tk RSVM 2 3.5147(0.0039) 3.4888(0.0204) 3.4147(0.0034)

Here Perc stands for the percentage of data that are contaminated

Table 3 Classification error rates for RMSVM, MSVM and our RSVMs 1–2 on the simulated data with
k = 3, p = 200

Penalty L2 L1 L1 + L2

Perc Loss Error Error Error

5% RMSVM 6.3898(0.0121) 3.4861(0.0098) 3.5316(0.0077)
T0 RSVM 1 5.5830(0.0093) 3.5360(0.0063) 3.3142(0.0039)
Tk RSVM 1 5.7684(0.0085) 3.3287(0.0045) 3.2944(0.0040)
MSVM 7.8186(0.0250) 3.4781(0.0081) 3.5385(0.0131)
T0 RSVM 2 5.9862(0.0093) 3.3206(0.0073) 3.3900(0.0061)
Tk RSVM 2 6.3608(0.0183) 3.4235(0.0040) 3.2542(0.0051)

10% RMSVM 9.1100(0.0410) 5.1094(0.0309) 5.2558(0.0292)
T0 RSVM 1 5.7400(0.0241) 3.48940.0052) 3.5366(0.0127)
Tk RSVM 1 6.6500(0.0362) 3.9901(0.0247) 3.4498(0.0100)
MSVM 12.0516(0.0364) 5.3859(0.0346) 4.1383(0.0103)
T0 RSVM 2 6.5674(0.0300) 3.8189(0.0275) 3.1750(0.0026)
Tk RSVM 2 10.1318(0.0467) 4.0308(0.0334) 2.9816(0.0013)

Here Perc stands for the percentage of data that are contaminated

RSVMs with the DCA take longer to compute, compared with RMSVM and MSVM
without truncation. However, they are still relatively efficient to implement. Note that
the candidate set of tuning parameters for the L1 + L2 penalty is much larger than
that of L1 or L2 penalties, hence the running time of the methods with the L1 + L2
penalty is longer.
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Table 4 The number of
predictors selected by RMSVM,
MSVM and our RSVMs 1–2 on
the simulated example with
p = 200 and data contamination
percentage 10%

Penalty L2 L1 L1 + L2

RMSVM 200.0000 3.9800 8.4000

T0 RSVM 1 200.0000 6.0200 27.8000

TK RSVM 1 200.0000 6.1400 6.8000

MSVM 200.0000 6.9200 3

T0 RSVM 2 200.0000 5.4000 3

TK RSVM 2 200.0000 5.1600 3

Table 5 Running time of one replication for various classifiers and penalty functions in the simulated
example with p = 200

Penalty L2 L1 L1 + L2
Running time (s) Running time (s) Running time (s)

RMSVM 0.3736 12.9099 152.0332

T0 RSVM 1 4.1636 31.7880 717.1089

Tk RSVM 1 3.8809 26.6204 674.5778

MSVM 2.2035 11.4896 1347.3421

T0 RSVM 2 8.5175 22.9063 4208.3969

Tk RSVM 2 6.4516 16.9095 2599.3510

5.2 Real data analysis

In this section, we investigate the performance of our proposed classifiers using a
real application dataset Small Round Blue Cell Tumors (SRBCT, [11]), which can be
found on the UCI Machine Learning Repository [2]. The SRBCT dataset consists of
4 different types of children brain tumors, including Ewing sarcoma (EWS), neurob-
lastoma (NB), rhabdomyosarcoma (RMS), and Burkitt’s Lymphoma (BL). Because
treatment options and responses to therapy vary widely depending on the diagnosis,
accurate prediction of the SRBCT subtype is highly desirable. However, these cancer
subtypes are similar in routine histology and are difficult to differentiate using reg-
ular clinical results. The dataset contains gene expression levels of 2308 genes, and
there are 83 patients in total. In particular, we have 29 EWSs, 18 NBs, 25 RMSs, and
11 BLs. In our analysis, we split the data into 3 equal parts for training, tuning, and
testing. We first compare the performance of RMSVM [32], MSVM by [31], and our
proposed RSVMs (3) and (6). Here, we choose the truncation locations in the same
way as in Sect. 5.1. We also contaminate the dataset with outliers. In particular, we
choose 10% of the observations, randomly relabel them into another class, and add a
constant 2 to each of the corresponding predictors. Then we run the examples again
using RMSVM, MSVM and our proposed RSVMs 1–2 to demonstrate the effect of
outliers on classification accuracy.

We report the average misclassification error rates over 50 replicates for various
methods in Table 6. We also report the running time in seconds for each method in
Table 7. The running time for the method with L1 + L2 penalty is higher since the
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Table 6 Classification error rates for RMSVM, MSVM and our RSVMs 1–2 on the SRBCT dataset

Penalty L2 L1 L1 + L2
Perc Loss Error Error Error

0% RMSVM 3.6000(0.0542) 6.1333(0.0795) 4.3859(0.0705)
T0 RSVM 1 3.8666(0.0540) 6.2666(0.0801) 3.2894(0.0638)
Tk RSVM 1 3.3333(0.0526) 6.0000(0.0800) 4.3859(0.0705)
MSVM 5.3333(0.0602) 7.2000(0.0850) 3.4736(0.0482)
T0 RSVM 2 5.3333(0.0602) 7.2000(0.0850) 3.0526(0.0464)
Tk RSVM 2 5.3333(0.0602) 7.2000(0.0850) 3.4736(0.0482)

10% RMSVM 6.9333(0.0830) 11.0666(0.1171) 6.0000(0.0728)
T0 RSVM 1 4.8000(0.0539) 8.5333(0.0852) 4.8000(0.0539)
Tk RSVM 1 6.1333(0.0671) 9.0666(0.0891) 5.3333(0.0571)
MSVM 8.8000(0.0743) 10.4000(0.0843) 5.1714(0.0670)
T0 RSVM 2 7.4666(0.0695) 9.2000(0.0840) 3.7838(0.0559)
Tk RSVM 2 8.4000(0.0748) 10.4000(0.0821) 4.0390(0.0545)

Here Perc stands for the percentage of data that are contaminated

Table 7 Running time in seconds for RMSVM, MSVM and our RSVMs 1–2 on the SRBCT dataset

Penalty L2 L1 L1 + L2
Perc Loss Running time(s) Running time(s) Running time (s)

0% RMSVM 0.7095 78.7449 474.5619

T0 RSVM 1 4.2161 88.7830 2770.0465

Tk RSVM 1 4.0069 86.0682 2833.6601

MSVM 0.5916 1292.2680 716.5681

T0 RSVM 2 1.8748 3409.9990 3348.6898

Tk RSVM 2 3.6891 3497.6771 3260.9417

10% RMSVM 3.6029 84.5760 596.2820

T0 RSVM 1 14.7556 111.6447 3053.0931

Tk RSVM 1 14.7022 104.4469 3198.6766

MSVM 0.5898 1639.3733 685.2144

T0 RSVM 2 3.8194 5383.0758 2730.4939

Tk RSVM 2 4.6654 5169.2126 2663.3808

Here Perc stands for the percentage of data that are contaminated

number of tuning parameters is much bigger. Note that when Perc = 0%, the results
of MSVM and RSVMs 1–2 using L1 or L2 penalties are the same. This is because
all these methods have perfect prediction on the training set, therefore no truncation
is needed. From the results, we can see that our proposed methods with truncations
are very competitive in terms of classification accuracy, especially when the data are
contaminatedwith outliers. For this dataset, among 3 types of penalties, L1+L2 works
the best. This can be due to the grouping effects of this penalty which allows highly
correlated input variables, commonly in genetic data, to have similar fitted coefficients
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and simultaneously allow automatic variable selection and shrinkage [46]. Between
two choices of truncated location, s = −1/(k − 1) works slightly better than s = 0.

In terms of variable selection, even when 10% of the data are contaminated, our
proposed methods with the L1 + L2 penalty are able to identify important signature
genes that can be used to predict SRBCT subtypes. In particular, we identify genes
with ID 770394 and 1435862 that are known to be associatedwith EWS, genes 812105
and 325182 associated with NB, gene 796258 associated with RMS, and gene 183337
associated with BL [11]. Here, genes 770394 and 1435862 appear in the final classifier
for all the repetitions, whereas gene 183337 is selected 47 times out of 50 repetitions
(94%), partly because the number of samples of this tumor subtype is small.

6 Discussion

In this paper, we consider how to alleviate the effect of outliers in the angle-based
classification framework. The existing angle-based methods impose heavy loss values
on outliers, hence the resulting classifiers can be unstable and suboptimal. To overcome
this difficulty, we employ truncated hinge loss functions, and propose two robust
angle-based MSVM methods. Because the corresponding optimization problems are
non-convex, we use the DCA to solve the corresponding optimization, and develop
the algorithms for our RSVMs using various penalty functions. Theoretical results,
including Fisher consistency and prediction error bounds are obtained. Numerical
results with both simulated and real data demonstrate that our new classifiers are very
competitive, especially at the presence of outliers in the data. One interesting future
research direction is to further understand the solutions obtained by DCA for our two
proposed robust angle-based MSVMs, along the line of the recent work by [37].
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Appendix

Proof of Theorem 4 To prove the theorem, we need the following lemma, of which
the proof can be found in [49].

Lemma 1 ([49], Lemma 1) Suppose we have an arbitrary f ∈ Rk−1. For any u, v ∈
{1, . . . , k} such that u ̸= v, define Tu,v = Wu − Wv . For any scalar z ∈ R, ⟨( f +
zTu,v),Ww⟩ = ⟨ f ,Ww⟩, where w ∈ {1, . . . , k} and w ̸= u, v. Furthermore, we have
that ⟨( f + zTu,v),Wu⟩ − ⟨ f ,Wu⟩ = −⟨( f + zTv,u),Wv⟩ + ⟨ f ,Wv⟩.

We first prove that the loss function (3) is Fisher consistent with γ ≤ 1/2 and
s ≤ 0. Assume that, without loss of generality, P1 > P2 ≥ · · · ≥ Pk . The goal is to
show that ⟨ f ∗,W1⟩ > ⟨ f ∗,W j ⟩ for any j ̸= 1. Inspired by the proof in [32,47], we
complete our proof with four steps.

123



298 C. Zhang et al.

The first step is to show that there exists a theoretical minimizer f ∗ such that
⟨ f ∗,W j ⟩ ≤ k − 1 for all j . Otherwise, suppose ⟨ f ∗,Wi ⟩ > k − 1 for some i ,
there must exist q ∈ {1, . . . , k}, q ̸= i , such that ⟨ f ∗,Wq⟩ < −1, by the sum-
to-zero property of the inner products

∑k
j=1⟨ f ∗,W j ⟩ = 0. Now one can decrease

⟨ f ∗,Wi ⟩ by a small amount, and increase ⟨ f ∗,Wq⟩ by the same amount (Lemma 1),
and the variation of the conditional loss depends on s. Specifically, if s < − 1

k−1 ,
the conditional loss is decreased, which is a contradiction to the definition of f ∗.
If − 1

k−1 ≤ s ≤ 0, the conditional loss remains the same. However, one can keep
doing this till all ⟨ f ∗,W j ⟩ ≤ k − 1, which is a contradiction to the assumption
⟨ f ∗,Wi ⟩ > k − 1.

The second step is to show that ⟨ f ∗,W1⟩ ≥ ⟨ f ∗,W j ⟩ for any j ̸= 1 using
contradiction. Suppose ⟨ f ∗,W1⟩ < ⟨ f ∗,Wi ⟩ for some i . By the definition of
S(x) = E[φ1{ f (X), Y } | X = x], we can simplify it as

S(x) !
k∑

j=1

Pjhγ (⟨ f , W j ⟩)+ (1 − γ )

k∑

j=1

Rs(⟨ f , W j ⟩).

where hγ (u) = γ T(k−1)s(u) − (1 − γ )Rs(u). Because hγ (u) is monotone decreas-
ing for any 0 ≤ γ ≤ 1, we have hγ (⟨ f ∗, W1⟩) ≥ hγ (⟨ f ∗, Wi ⟩). We claim
that hγ (⟨ f ∗, W1⟩) ≤ hγ (⟨ f ∗, W j ⟩) for all j ̸= 1. If it is not true, there must
exist hγ (⟨ f ∗, W1⟩) > hγ (⟨ f ∗, W j ⟩) for some j . Then we can define f ′(x) ∈
Rk−1 such that ⟨ f ∗,W1⟩ = ⟨ f ′,W j ⟩ and ⟨ f ∗,W j ⟩ = ⟨ f ′,W1⟩ (the existence
of such f ′ is guaranteed by Lemma 1). One can verify that f ′ is the minimizer
of S(x), not f ∗. This contradicts with the definition of f ∗. Therefore, we obtain
hγ (⟨ f ∗, W1⟩) = hγ (⟨ f ∗, Wi ⟩). Because hγ (·) is flat in (−∞, min(−1, (k − 1)s)]
and [max(k − 1,−s), + ∞), ⟨ f ∗, W1⟩ and ⟨ f ∗, Wi ⟩ lie in the same inter-
val simultaneously. If ⟨ f ∗, W1⟩, ⟨ f ∗, Wi ⟩ ∈ (−∞, min(−1, (k − 1)s)] < 0,
then all ⟨ f ∗, W j ⟩ < 0, which is a contradiction to the sum-to-zero property.
Thus ⟨ f ∗, W1⟩, ⟨ f ∗, Wi ⟩ ∈ [max(k − 1,−s), + ∞). If s < −(k − 1), then
−s ≤ ⟨ f ∗, W1⟩ ≤ k − 1, which is a contradiction. If 0 ≥ s ≥ −(k − 1), based on
the fact that ⟨ f ∗, W j ⟩ ≤ k − 1 for all j , then ⟨ f ∗, W1⟩ = ⟨ f ∗, Wi ⟩ = k − 1, which
contradicts with the assumption. Hence, we must have that ⟨ f ∗,W1⟩ ≥ ⟨ f ∗,W j ⟩ for
all j ̸= 1.

The third step is to show that when γ ≤ 1/2, ⟨ f ∗,W j ⟩ ≥ −1 for all j . Suppose this
is not true, and ⟨ f ∗,Wi ⟩ < −1 for some i ̸= 1. There must exist q ∈ {1, . . . , k}, q ̸=
1, i , such that −1 < ⟨ f ∗,Wq⟩ ≤ k − 1. In this case, we can decrease ⟨ f ∗,Wq⟩ by
a small amount and increase ⟨ f ∗,Wi ⟩ by the same amount, such that the conditional
loss S(x) is decreased, which contradicts with the optimality of f ∗.

The last step is to show that ⟨ f ∗,W j ⟩ ≤ 0 for any j ̸= 1. If ⟨ f ∗,Wi ⟩ > 0 for
some i , then ⟨ f ∗,W1⟩ < k − 1. Otherwise, ⟨ f ∗,W1⟩ = k − 1. According to third
part, we have ⟨ f ∗,W j ⟩ = −1, j ̸= 1. Especially, ⟨ f ∗,Wi ⟩ = −1 < 0, which is
a contradiction to the assumption ⟨ f ∗,Wi ⟩ > 0. Then ⟨ f ∗,W1⟩ < k − 1. Now we
can decrease ⟨ f ∗,Wi ⟩ by a small amount, and increase ⟨ f ∗,W1⟩ by the same amount
(Lemma 1), and the conditional loss is decreased. It indicates that the current f ∗ is
not optimal, which is a contradiction. Based on the sum-to-zero property, we show
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the fact ⟨ f ∗,W1⟩ > 0 ≥ ⟨ f ∗,W j ⟩ for any j ̸= 1. This completes the first part of the
proof, that (3) is Fisher consistent when γ ≤ 1/2 and s ≤ 0.

We proceed to show the Fisher consistency of (6) when s ∈ [−1/(k−1), 0]. Again,
without loss of generality, P1 > P2 ≥ · · · ≥ Pk . By similar arguments as above, one
can verify that ⟨ f ∗,W1⟩ ≥ 0, and ⟨ f ∗,Wi ⟩ ≥ ⟨ f ∗,W j ⟩ if i < j . Therefore, it
remains to show that 0 is not the minimizer for the choice of s. To this end, notice that
for s ∈ [− 1

k−1 , 0], we have 1
−s ≥ k − 1. Consequently, there exists t ∈ (0, 1] such

that t
−s ≥ k − 1. Consider a f such that ⟨ f ,W1⟩ = t (k−1)

k and ⟨ f ,W j ⟩ = − t
k for

j ̸= 1. One can verify that f yields a smaller conditional loss, compared to 0. Thus,
the robust SVM (6) is Fisher consistent. ⊓1

Proof of Theorem 2 We can prove the theorem using a recent technique in the statis-
tical machine learning literature, namely, the Rademacher complexity [3,4,18,19,35,
39]. To begin with, let σ = {σi ; i = 1, . . . , n} be independent and identically dis-
tributed random variables, that take 1 and−1 with probability 1/2 each. Denote by S a
sample of observations (xi , yi ); i = 1, . . . , n, independent and identically distributed
from the underlying distribution P(X, Y ). For a function class F = { f : f (x, y)}
and given S, we define the empirical Rademacher complexity of F to be

R̂n(F ) = Eσ

{

sup
f ∈F

1
n

n∑

i=1

σi f (xi , yi )

}

.

Here Eσ means taking expectation with respect to the distribution of σ . Furthermore,
define the Rademacher complexity of F to be

Rn(F ) = Eσ,S

{

sup
f ∈F

1
n

n∑

i=1

σi f (xi , yi )

}

.

Another key step in the proof is to notice that the indicator function in (16) is
discontinuous, thus it is difficult to bound the corresponding Rademacher complexity
directly. To overcome this challenge, we can consider a continuous upper bound of
the indicator function. In particular, for any f̂ , let Iκ be defined as follows

Iκ { f̂ (x), y} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if y ̸= ŷ f̂ (x),

1 − 1
κ min j ̸=y⟨ f̂ (x),Wy − W j ⟩ if y = ŷ f̂ (x) and

min j ̸=y⟨ f̂ (x),Wy − W j ⟩ ≤ κ,

0 otherwise,

where κ is a small positive number to be determined later. One can verify that Iκ is a
continuous upper bound of the indicator function in (16). In the following proof, we
focus on bounding the Rademacher complexity of Iκ , where f̂ is obtained from the
optimization problems (3) and (6).

Our goal is to show that with probability at least 1−δ (0 < δ < 1), E[Iκ { f̂ (X), Y }]
is bounded by the summation of its empirical evaluation, the Rademacher complexity
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of the function classF , and a penalty term on δ. The proof of Theorem 2 consists of
two major steps. In particular, we have the following two lemmas.

Lemma 2 Let Rn(F ) and R̂n(F ) be defined with respect to the Iκ function. Then,
with probability at least 1 − δ,

E[Iκ { f̂ (X), Y }] ≤ 1
n

n∑

i=1

Iκ { f̂ (xi ), yi } + 2Rn(F )+ Tn(δ), (17)

where Tn(δ) = {log(1/δ)/n}1/2.
Moreover, with probability at least 1 − δ,

E[Iκ { f̂ (X), Y }] ≤ 1
n

n∑

i=1

Iκ { f̂ (xi ), yi } + 2R̂n(F )+ 3Tn(δ/2).

Lemma 3 Let s = 1/λ. In linear learning, when we use the L1 penalty, the empir-

ical Rademacher complexity R̂n(F ) ≤ s
κ

√
2 log(2pk−2p)

n , and when we use the L2

penalty, R̂n(F ) ≤ {2(k − 1)(ps)1/2}/(κn1/4) + {2(ps)1/2}
(
log[e + e{2p(k −

1)}]/(n1/2)
)1/2

/(κn1/4). For kernel learning with separable kernel functions, the

empirical Rademacher complexity R̂n(F ) ≤ s(k−1)
κ
√
n
.

Proof of Lemma 2 The proof consists of three parts. For the first part, we use the
McDiarmid inequality [34] to bound the left hand side of (17), in terms of its empirical
estimation, plus the expectation of their supremum difference, E(φ), which is to be
defined below. For the second part, we show that E(φ) is bounded by the Rademacher
complexity using symmetrization inequalities [42]. For the third part,we prove that one
can bound the Rademacher complexity using the empirical Rademacher complexity.

For a given sample S, we define

φ(S) = sup
f∈F

(

E[Iκ { f̂ (X), Y }] − 1
n

n∑

i=1

Iκ { f̂ (xi ), yi }
)

.

Let S(i,x) = {(x1, y1), . . . , (x′
i , yi ), . . . , (xn, yn)} be another sample from P(X, Y ),

where the difference between S and S(i,x) is only on the x value of their i th pair. By
definition, we have

|φ(S) − φ(S(i,x))| =
∣∣∣∣∣ supf∈F

(

E[Iκ { f̂ (X), Y }] − 1
n

∑

S

Iκ { f̂ (xi ), yi }
)

− sup
f∈F

⎛

⎝E[Iκ { f̂ (X), Y }] − 1
n

∑

S(i,x)

Iκ { f̂ (xi ), yi }

⎞

⎠

∣∣∣∣∣∣
.
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For simplicity, suppose that f S is the function that achieves the supremumofφ(S).We
note that the case of no function achieving the supremum can be treated analogously,
with only additional discussions on the arbitrarily small difference between φ( f ) and
its supremum. Thus, we omit the details here. We have that,

|φ(S) − φ(S(i,x))| ≤
∣∣∣∣∣E[Iκ { f

S(X), Y }] − 1
n

∑

S

Iκ { f S(xi ), yi }

− E[Iκ { f S(X), Y }] + 1
n

∑

S(i,x)

Iκ { f S(xi ), yi }

∣∣∣∣∣∣
.

= 1
n

∣∣∣∣∣∣

∑

S

Iκ { f S(xi ), yi } −
∑

S(i,x)

Iκ { f S(xi ), yi }

∣∣∣∣∣∣

≤ 1
n
.

Next, by the McDiarmid inequality, we have that for any t > 0, pr[φ(S)− E{φ(S)} ≥
t] ≤ exp[−(2t2)/{2n(1/n)2}], or equivalently, with probability at least 1 − δ,
φ(S)− E{φ(S)} ≤ Tn(δ). Consequently, we have that with probability at least 1− δ,
E[Iκ { f S(X), Y }] ≤ n−1 ∑n

i=1 Iκ { f̂ (xi ), yi }+ E{φ(S)}+ Tn(δ). This completes the
first part of the proof.

For the second part, we bound E{φ(S)} by the corresponding Rademacher com-
plexity. To this end, define S′ = {(x′

i , y
′
i ); i = 1, . . . , n} as an independent duplicate

sample of size n with the identical distribution as S. Denote by ES the action of
taking expectation with respect to the distribution of S, and define ES′ analogously.
By definition, we have that ES′

[
n−1 ∑

S′ Iκ { f̂ (x′
i ), y

′
i } | S

]
= E[Iκ { f̂ (X), Y }], and

ES′
[
n−1 ∑

S Iκ { f̂ (xi ), yi } | S
]
= n−1 ∑

S Iκ { f̂ (xi ), yi }. Then, by Jensen’s inequal-
ity and the property of σ , we have that

E{φ(S)} = ES

(

sup
f∈F

ES′

[
1
n

∑

S′
Iκ { f̂ (x′

i ), y
′
i } − 1

n

∑

S

Iκ { f̂ (xi ), yi }
]

| S
)

≤ ES,S′

[

sup
f∈F

1
n

∑

S′
Iκ { f̂ (x′

i ), y
′
i } − 1

n

∑

S

Iκ { f̂ (xi ), yi }
]

= ES,S′,σ
[
sup
f∈F

1
n

∑

S′
σi Iκ { f̂ (x′

i ), y
′
i } − 1

n

∑

S

σi Iκ { f̂ (xi ), yi }
]

≤ 2Rn{F (p, k, s)}.

Hence the second part is proved.
In the third step, we need to bound Rn(F ) using R̂n(F ). This step is analogous

to the first part, and we omit the details here. Briefly speaking, one can apply the
McDiarmid inequality on R̂n(F ) and the corresponding expectation Rn(F ). Similar
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to the first part of this proof, we can show that with probability at least 1−δ, Rn(F ) ≤
R̂n(F )+ 2Tn(δ).

The final results of Lemma 2 can be obtained by choosing the confidence 1 − δ/2
in the first and third steps, and combining the inequalities of the three steps. "

Proof of Lemma 3 First, we prove that for the obtained f̂ , J ( f̂ ) ≤ s. To see this,
notice that for β j = 0 and β j,0 = 0, we have

1
n

n∑

i=1

Iκ { f (xi ), yi } ≤ 1.

On the other hand, f̂ is the solution to the optimization problems in (3) or (6), hence

λJ ( f̂ ) ≤ 1
n

n∑

i=1

Iκ { f̂ (xi ), yi } + λJ ( f̂ ) ≤ 1
n

n∑

i=1

Iκ { f (xi ), yi },

which yields J ( f̂ ) ≤ s.

For the L1 penalized learning, one can bound the corresponding Rademacher com-
plexity R̂n(F ) in the following way. In particular, by Lemma 4.2 in [35], we have that
R̂n(F ) is upper bounded by

1
κ
R̂∗
n(F ) = 1

κ
Eσ

⎧
⎨

⎩ sup
∑k−1

j=1 ∥β j∥1<s

1
n

n∑

i=1

σi

⎧
⎨

⎩

k−1∑

j=1

xTi β j

⎫
⎬

⎭

⎫
⎬

⎭ , (18)

because the continuous indicator function is Lipschitz with constant 1/κ , and elements
inW j are bounded by 1.Without loss of generality, we can rewrite (18) as the following

1
κ
R̂∗
n{F (p, k, s)} = 1

κ
Eσ

{

sup
∥γ ∥1<s

1
n

n∑

i=1

σiγ
Tx∗

i

}

,

where γ can be treated as a vector that contains all the elements in β j for j =
1, . . . , k − 1, and x∗

i is defined accordingly. Next, by Theorem 10.10 in [35], we have

that R̂∗
n{F (p, k, s)} ≤ s

√
2 log(2pk−2p)

n . Thus, R̂n{F (p, k, s)} ≤ s
κ

√
2 log(2pk−2p)

n
for L1 penalized linear learning.

For L2 penalized learning, the proof is analogous to that of Lemma 8 in [49], and
we omit the details here.

For kernel learning, notice that one can include the intercept in the original predictor
space (i.e., augment x to include a constant 1 before the other predictors), and define a
newkernel function accordingly. This new kernel is also positive definite and separable
with a bounded kernel function. By Mercer’s Theorem, this introduces a new RKHS
H. Next, by a similar argument as for (18), we have that the original Rademacher
complexity is upper bounded by
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1
κ
R̂∗
n(F ) = 1

κ
Eσ

⎡

⎣ sup∑
j ∥ f j∥2H≤s

1
n

n∑

i=1

σi

⎧
⎨

⎩

k−1∑

j=1

f j (xi )

⎫
⎬

⎭

⎤

⎦ ,

≤ k − 1
κ

Eσ

⎡

⎣ sup
∥ f ∥2H≤s

1
n

n∑

i=1

σi f (xi )

⎤

⎦ ,

≤ k − 1
κ

s√
n
,

where the last inequality follows from Theorem 5.5 in [35]. Hence, we have that for
kernel learning, R̂n(F ) ≤ s(k−1)

κ
√
n
. "

The proof of Theorem 2 is thus finished by combining Lemmas 2 and 3, and the fact
that the continuous indicator function Iκ is an upper bound of the indicator function
for any κ . ⊓1
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