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a b s t r a c t

Linear discriminant analysis (LDA) is a well-known classification technique that en-
joyed great success in practical applications. Despite its effectiveness for traditional
low-dimensional problems, extensions of LDA are necessary in order to classify high-
dimensional data. Many variants of LDA have been proposed in the literature. However,
most of thesemethods do not fully incorporate the structure information among predictors
when such information is available. In this paper, we introduce a new high-dimensional
LDA technique, namely graph-based sparse LDA (GSLDA), that utilizes the graph structure
among the features. In particular, we use the regularized regression formulation for
penalized LDA techniques, and propose to impose a structure-based sparse penalty on
the discriminant vector β. The graph structure can be either given or estimated from the
training data. Moreover, we explore the relationship between the within-class feature
structure and the overall feature structure. Based on this relationship, we further propose a
variant of our proposed GSLDA to utilize effectively unlabeled data, which can be abundant
in the semi-supervised learning setting. With the new regularization, we can obtain a
sparse estimate of β and more accurate and interpretable classifiers than many existing
methods. Both the selection consistency of β estimation and the convergence rate of the
classifier are established, and the resulting classifier has an asymptotic Bayes error rate.
Finally, we demonstrate the competitive performance of the proposed GSLDA on both
simulated and real data studies.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Classification problems are commonly seen in practice. There aremany existing classification techniques in the literature;
see [2,17] for a comprehensive review. Among various existingmethods, linear discriminant analysis (LDA) has a long history
and remains an important tool in the standard classification toolbox. LDA can be viewed as a rule for a classification problem
of two Gaussian populations with a common covariance matrix. Despite its seemingly strong assumptions, LDA often works
well in practice, especially for low-dimensional problems [15]. It mimics Bayes’ rule and has a simple closed formwhich only
involves the within-class sample covariance matrix and group averages. Given these estimates, the original formulation for
the discriminant vector of LDA is computed as the product of the inverse within-class sample covariance matrix and the

∗ Correspondence to: Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, and Carolina Center for
Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA.

E-mail address: yfliu@email.unc.edu (Y. Liu).

https://doi.org/10.1016/j.jmva.2018.12.007
0047-259X/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmva.2018.12.007
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2018.12.007&domain=pdf
mailto:yfliu@email.unc.edu
https://doi.org/10.1016/j.jmva.2018.12.007


J. Liu, G. Yu and Y. Liu / Journal of Multivariate Analysis 171 (2019) 250–269 251

mean difference vector. Thus, standard LDA can be computed and implemented easily in the traditional low-dimensional
setting. LDA also has interpretations beyond the Gaussian model. In particular, the same formulation can be obtained from
Fisher’s discriminant analysis problem [13], the optimal scoring problem [16], and linear regression [17].

Despite the usefulness of LDA, it needs to be adapted when the dimension of features is high. For example, the form of
standard LDA is only valid when the sample covariance matrix is invertible. Moreover, as the dimension grows, the errors
in the sample covariance and group means accumulate and consequently LDA can become increasingly unstable [11,35]. To
address this problem, a number of LDA extensions have been proposed for high-dimensional scenarios.

The existing high-dimensional LDA methods in the literature can be roughly divided into two categories, plug-in
approaches and direct approaches. A plug-in approach tackles high-dimensional problems by using regularized estimates for
the within-class covariance matrix and groupmeans. For example, the naive Bayes method, or the independence rule, treats
the covariancematrix as diagonal. Bickel and Levina [1] showed that it outperforms LDAwithMoore–Penrose pseudoinverse
covariancematrix when the dimension grows faster than the sample size. To further reduce the instability of LDA, Tibshirani
et al. [36] additionally used shrunken estimates of groupmeans. Fan and Fan [11] showed that, even under the independence
feature assumption, naive Bayes can be as bad as random guessing due to error accumulation in groupmeans. They resolved
this issue by reducing the dimension via feature screening. In contrast to these independence rules, Shao et al. [35] assumed
sparsity of the covariance matrix and the mean difference vector, and used thresholded estimates to construct a sparse
LDA classifier. It was shown to be asymptotically optimal under certain conditions. All of these methods adopt the original
formulation of LDA by calculating some improved estimates of the covariance matrix and group means. Thus, some strong
assumptions on the covariance matrix and the group means need to be imposed for the resulting LDA rule.

In contrast to the plug-in methods, direct approaches aim at estimating the discriminant vector β directly. Since LDA
can also be obtained from some risk minimization problems, it can be extended to high-dimensional scenarios via these
formulations with regularization on β. For example, Wu et al. [40] considered Fisher’s discriminant analysis and proposed
an ℓ1-penalized version for dimension reduction. The corresponding problem has a piece-wise linear solution path which
can be computed efficiently. Witten and Tibshirani [39] also used Fisher’s discriminant analysis formulation for a general
K -class problem with a general regularization. Clemmensen et al. [10] proposed the optimal scoring formulation with the
ℓ1 penalty. Following the idea of minimizing the misclassification rates, Fan et al. [12] proposed a method closely related to
the method byWu et al. [40] and directly computed the misclassification rate of the classifier. Mai et al. [26] took advantage
of the regression formulation and estimated the discriminant vector of LDA by solving a Lasso-type problem, which was
shown to have the same solution path as the method of Wu et al. [40] and the method of Clemmensen et al. [10] when
K = 2; see [25]. Using a different idea of direct estimation, Cai and Liu [6] formed a linear programming problem to estimate
β and showed that the error rate of the estimated classifier is close to the Bayes rule under certain conditions. Compared to
plug-in approaches, these methods estimate LDA directly and the assumptions can be less stringent since only the sparsity
of the discriminant vector of LDA is assumed [6].

Both plug-in and direct methods can work well for certain practical problems. However, these methods do not utilize the
feature structure information when available. In practice, features are often correlated with some structure. Such structure
can usually be represented by an undirected graph G. Connected features may work together and thus be effective or not
effective simultaneously for classification. For instance, in the diagnosis of a disease using genetic information, genes are
naturally grouped by their functions or gene pathways. Relevant genes tend to contribute or not contribute to the disease
together. Moreover, when the population in consideration is Gaussian, the conditional independence graph, or Gaussian
graphical model, often represents a natural structure. By considering such structure information, we are likely to be able
to construct a better classifier. For regression problems, there are some methods that utilize the graph structure in the
literature; see, e.g., [3,18,33,53]. For example, Li and Li [19] proposed a penalty on the coefficient difference of each pair of
connected features. Yang et al. [42] used pairwise ℓ∞ penalties on relevant features to encourage simultaneous inclusion and
exclusion. Based on the decomposition of the regression coefficient vector, Yu and Liu [44] proposed a node-wise penalty. In
particular, the regularization term is the summation of penalties over all nodes rather than all edges. Compared to pairwise
penalties, the node-wise penalty is better motivated and computationally efficient. More recently, Zhao and Shojaie [50]
proposed new inference methods for such graph-constrained estimation.

Despite great progress for regression problems, much less research has been done for classification problems. Structured
penalties such as group Lasso and fused Lasso have been employed in classification methods [27,39], but they are not
applicable to a general sparse graph structure among predictors. Zhang et al. [49] considered logistic regression with a
combination of ℓ1 penalty and pairwise ℓ2 difference penalty. Min et al. [29] generalized the regularization and provided
a unified algorithm. However, both methods may also suffer from toomuch computational burden in high dimensions. Very
recently, Wu et al. [41] proposed an unsupervised graph-based variable screening method for general problems.

In this paper, we propose a newmethod, called graph-based sparse LDA (GSLDA), that exploits the graphical structure of
features. GSLDA estimates LDA in high dimensions directly by solving a convex optimization problem. Similar to the sparse
regressionmethod in [44], we incorporate the graph structure through a node-wise penalty. In the presence of an underlying
feature structure, the newmethodoutperforms existing high-dimensional LDAmethods byutilizing the structure directly. As
a key component, the graphical structure can be either given or estimated from the training data. In addition, we investigate
the relationship between the within-class inverse covariance matrix and overall inverse covariance matrix. Based on these
findings, we propose a variant of GSLDA that can utilize unlabeled data, which are often much more accessible than labeled
data. We name this variant as the semi-supervised GSLDA. Selection consistency is shown for the estimated discriminant
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vector. Moreover, we show that the misclassification rate of our classifier converges to the Bayes error rate at a fast rate
under certain conditions. Numerical studies are used to demonstrate the performance of this method. In particular, the
semi-supervised GSLDA enjoys higher classification accuracy than the original GSLDA method in most cases. This reveals
the potential advantages of using unlabeled data in classification problems.

The rest of the paper is organized as follows. In Section 2, we review some existing high-dimensional LDA methods,
and introduce our motivations and formulations of our proposed methods. Section 3 focuses on graph estimation and
the implementation of GSLDA. In particular, graph estimation methods are discussed for both GSLDA and its variant. In
Section 4, theoretical justification is provided for our method. Sections 5 and 6 demonstrate the performance of GSLDA by
simulated examples and real data studies respectively. We conclude this paper with some discussion in Section 7. Proofs of
the theoretical results are provided in the Appendix.

2. Methodology

In this section, we first review LDA and construct a relationship between β and the graph structure of features in
Section 2.1, based on which GSLDA is proposed. We also explain how to estimate the graph structure when it is not
directly available and discuss the connections of ourmethods with several existing classificationmethods. In Section 2.2, we
investigate the overall graph structure of the features and consider a variant of GSLDAwhich can efficiently utilize unlabeled
data.

2.1. Motivation and formulation of GSLDA

We first discuss the problem setting and introduce some notations. Given the training dataset {(x1, g1), . . . , (xn, gn)}
where for each i ∈ {1, . . . , n}, xi ∈ Rp is the feature vector and gi ∈ {1, 2} is the class label. A linear classifier gβ0,β is defined
as follows. For any x ∈ Rp, gβ0,β(x) = 1 if β0 + x⊤β > 0 and 2 otherwise. In particular, we consider the standard setting of
the two-class LDA. That is, the binary label G takes 1 with probability π1 and 2 with probability π2 = 1− π1 and the feature
vector X has a conditional Gaussian distribution, i.e., X|(G = k) ∼ N (µ(k),Σ) for k ∈ {1, 2}. Under this setting, the Bayes
classifier gβ∗

0 ,β
∗ is specified by

β∗
= Σ−1δ and β∗

0 = −(µ(1)
+ µ(2))⊤β∗/2 + ln(π1/π2), (1)

where δ = µ(1)
− µ(2). By replacing Σ and δ in (1) with their sample estimates, we have the LDA classifier with β̂ = Σ̂−1δ̂.

Typically, we take Σ̂ = (n1S(1) +n2S(2))/(n−2) and δ̂ = x̄(1) − x̄(2), where nk, x̄(k) and S(k) denote respectively the sample size,
mean and covariance matrix for group k. Note that this formulation is valid only when n > p. In high-dimensional problems
or when n ≤ p, there are various extensions of LDA that either use the formulation with shrunken estimates of Σ and δ or
find a direct estimation of β; see [7,12,26,35,36]. Here we focus on the direct estimation approach.

Inspired by the regression formulation of LDA [17],Mai et al. [26] proposed the direct sparse discriminant analysis (DSDA)
method to estimate β by solving the Lasso problem

β̂ = argmin
β

1
n

n∑
i=1

(yi − β0 − x⊤

i β)2 + λ∥β∥1,

where yi = n/n1 if gi = 1 and −n/n2 if gi = 2. It was shown that DSDA gives the same solution path as the method
in [25,40]. Compared to plug-in approaches, the DSDA estimates β directly in high dimensions and the assumptions are less
stringent. However, it is unclear how we can utilize any structure information among features with the method or other
high-dimensional LDA methods.

Assume that there is some structure among the features. In particular, we consider the case where the structure can be
represented by a graph, denoted as G. There are methods that effectively use the graph structure in regression problems. For
example, Li and Li [19] used the penalty∑

(j,ℓ)∈G

(
βj/
√
dj − βℓ/

√
dℓ
)2
,

where dj denotes the neighborhood size of feature j, to encourage close coefficients for connected features. Yang et al. [42]
employed pairwise ℓ∞ penalty for connected features, i.e.,

∑
(j,ℓ)∈G max{|βj|, |βℓ|}, so their coefficients can be estimated zero

or nonzero simultaneously. Recently, Yu and Liu [44] proposed a node-wise penalty

PG,τ(β) = min∑p
j=1 v(j)=β, supp(v(j))⊆N (j)

p∑
j=1

τj∥v(j)∥2

based on the decomposition of regression coefficient vector β = var(X)−1cov(X, Y ). In contrast to these developments for
regression problems, little work has been done for classification problems.
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We propose our method formulation based on a decomposition of β∗, the discriminant vector of Bayes’ rule. Denote
Ω = Σ−1 the within-class precision matrix and δ = µ(1)

− µ(2) the group mean difference. We can decompose the
discriminant vector β∗ in (1) as

β∗
= Ωδ =

p∑
j=1

δjωj, (2)

where ωj is the jth column of Ω. Recall that the support of Ω in fact forms a conditional correlation graph of features X . In
this way, the optimal discriminant vector is linked to the Gaussian graph structure of the features. We use a toy example for
demonstration. In a 3-dimensional LDA setting, assume ω23 = ω32 = 0, then β∗

= Ωδ = (δ1ω11 + δ2ω21 + δ3ω31, δ1ω12 +

δ2ω22, δ1ω13 + δ3ω33)⊤. See Fig. A.1 in the Appendix for a graphical demonstration of the decomposition.
Denote the graph corresponding to Ω as G, and the neighborhood of feature j ∈ {1, . . . , p} as N (j). Replacing δjωj by

v(j), then β∗
= v(1) + · · · + v(p), where v(j) is either 0 (when δj = 0) or with a support supp(v(j)) = N (j) when δj ̸= 0.

Instead of estimating β∗ itself, we can estimate v(j)’s. Moreover, the decomposition (2) motivates a natural regularization on
{v(1), . . . , v(p)}, viz.

p∑
j=1

τj ∥v(j)∥2,

in which supp(v(j)) ⊆ N (j)
= supp(ωj) and the τjs are positive weights. Note that the group ℓ2 penalty on v(j) encourages a

group sparsity effect, i.e., v(j) is estimated as 0 or a sparse vector with supportN (j), which matches the decomposition (2). In
the formulations, the τjs areweights for the group regularization. In particular, the larger τj is, themore likely v(j) is estimated
as 0. Similar to the group Lasso [45], we can take

τj =

√
|N (j)|/|δ̂j|,

where δ̂j = x̄(1)j − x̄(2)j .
We need to apply this regularization to a risk minimization framework of LDA to formulate our method. The regression

formulation is an appropriate one due to its simplicity and convenience for theoretical analysis. By combining the formula-
tion with the group regularization, we can estimate {v1, . . . , vp} by

(β̂0, v̂1, . . . , v̂p) = argmin
β0, v1,...,vp

1
n

n∑
i=1

⎛⎝yi − β0 − x⊤

i

p∑
j=1

v(j)

⎞⎠2

+ λ

p∑
j=1

τj∥v(j)∥2, (3)

where supp(v(j)) ⊆ N (j) for all j ∈ {1, . . . , p}. Then β is estimated as v̂1 + · · · + v̂p. Furthermore, from the perspective of β
estimation, the formulation is equivalent to

(β̂0, β̂) = argmin
β0,β

1
n

n∑
i=1

(yi − β0 − x⊤

i β)2 + λ∥β∥G,τ, (4)

where

∥β∥G,τ = min∑p
j=1 v(j)=β, supp(v(j))⊆N (j)

p∑
j=1

τj∥v(j)∥2 (5)

can be viewed as a structured regularization on β; see [31]. Since the regularization is specified by the graph G, we call the
method graph-based sparse LDA (GSLDA). Although we use the same squared loss function as in [26], our method focuses
on utilizing the graph structure of features in β∗ estimation. We use the estimator β̂ from (4) for the discriminant vector
β. With respect to β0, the estimator from (4) may not be a good choice for the classification problem due to the regression
formulation. To solve this problem, we adopt a similar approach by [26] and estimate it by

β̂0 = −(x̄(1) + x̄(2))⊤β̂/2 + ln(n1/n2)β̂
⊤

Σ̂β̂/(δ̂
⊤

β̂).

While the GSLDA method is motivated from the discriminant vector decomposition (2), the decomposition of β∗ is
not restricted to this form only. Therefore, the graph structure G used in our method is not restricted to the conditional
independence graph. We will present another decomposition of β∗ in Section 2.2. In fact, any graph structure of features
satisfying our assumptions in Section 4.1 can be possibly used. When the structure information is available, e.g., the gene
pathways in genetic studies, we can construct a graph G using the gene pathway information. If the graph is not available, we
can estimate it based on the training data. There are many methods for estimation of Gaussian graphical models, including
the neighborhood selection [28], the graphical Lasso [14,46], and the CLIME [7]. We will discuss them further in Section 3.
In summary, GSLDA can be implemented in two steps: (i) graph construction and (ii) direct estimation of β via solving
formulation (4).
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The formulation (4) is closely related to the regression method proposed in [44]. However, both the problem setting and
the motivation of our paper are different. In our problem, the response y is a binary variable and the features are from a
mixed population. Although our formulation also uses the squared loss as in regression, the ‘‘error’’ yi − x⊤

i β has a very
different interpretation and distribution. In particular, the distribution of yi − x⊤

i β depends on xi. These issues bring unique
challenges for the theoretical analysis of GSLDA. Although there are some classification methods that also utilize predictor
structure, such as logistic regression with group Lasso penalty [27] and LDA with fused Lasso penalty [39], these methods
do not utilize a general graph structure.

Depending on the feature structure, there are special cases in which GSLDA is closely connected with existing sparse LDA
methods. For example, if we use an empty graph G with no edge at all, the regularization (5) simplifies to τ1|β1|+· · ·+τp|βp|.
Then, formulation (4) becomes an adaptive Lasso type problem, viz.

argmin
β0, β

1
n

n∑
i=1

(yi − β0 − x⊤

i β)2 + λ

p∑
j=1

τj|βj|.

When all penaltyweights τj take value 1, the GSLDA is equivalent to the DSDAmethod in [26].When the graph G consists of K
disjoint complete subgraphs, denoted asG(1), . . . , G(K ), then the regularization (5) simplifies to τ (1)∥βG(1)∥2+· · ·+τ (K )∥βG(K )∥2
where τ (k) = minj∈G(k) τj and G(k) is the index set of predictors involved in the subgraph G(k). In this case, GSLDA becomes a
variant of DSDA with the group Lasso penalty, i.e.,

argmin
β0, β

1
n

n∑
i=1

(yi − β0 − x⊤

i β)2 + λ

K∑
k=1

τ (k)∥βG(k)∥2.

For a general graph G, our method is different from the existing ones.

Remark 1.While we are mainly concerned with binary classification in this paper, there are many scenarios with more than
two classes [21,47,48]. Our GSLDAmethod can also be extended to themulti-class case. For example, consider a formulation
of K -class sparse LDA proposed in [24], viz.

(θ̂2, . . . , θ̂K ) = argmin
θ2,...,θK

K∑
k=2

{θ⊤

k Σ̂θk/2 − (x̄(k) − x̄(1))⊤θk} + λ

p∑
j=1

∥θ·j∥2,

where θ2, . . . , θK are discriminant vectors and θ·j = (θ2j, . . . , θKj)⊤ for j ∈ {1, . . . , p}. The resulting discriminant rule is
ĝ = argmaxk{θ̂

⊤

k (x− x̄(k)/2)+ ln π̂k} where θ̂1 = 0 and π̂k is the proportion of class k in the sample. We can take advantage
of a similar formulation with the graph-based regularization λ ∥θ2, . . . , θK∥G,τ,grouped, where

∥θ2, . . . , θK∥G,τ,grouped = argmin∑p
j=1 v(j)k =θk,supp(v

(j)
k )⊆N (j)

p∑
j=1

τj ∥(v
(j)⊤
2 , . . . , v(j)⊤K )⊤∥2.

This formulation can be solved in a way similar to the binary GSLDA. Nevertheless, we do not pursue this direction in the
paper so we can focus on core ideas of the GSLDA.

2.2. Semi-supervised GSLDA

With recent advances in graphical estimation [7,28,46], we can estimate G for the GSLDA based on the training data
when the graph structure is unknown. However, as the dimension p increases, we expect the selection error to accumulate.
When the dimension is much larger than the sample size, the graph estimate of GSLDA can be almost random. We use a toy
example in Fig. 1 to illustrate this phenomenon. In the setting of standard LDA, we set weights π1 = π2 = 0.5, and group
meansµ(1)

= (0.5, . . . , 0.5, 0, . . . , 0)⊤ andµ(2)
= (−0.5, . . . ,−0.5, 0, . . . , 0)⊤, which only differ in the first 10 features. To

specify the graph structure,Ω is generated from an AR(5) model, i.e.,Ωjj = c,Ωjℓ = −0.5 if 1 ≤ |j − ℓ| ≤ 5 and 0 otherwise,
where c > 0 is a scalar such that the eigenvalues of Ω are between 0 and 1. We standardize Ω so that diag(Ω) = 1 and
define in-class covariance matrixΣ = Ω−1. Let the sample size n be 50 and p vary from 10 to 200. We estimate the graph by
SR-SLasso [22] with extended BIC for tuning. For each setting, we repeat the procedure 100 times and evaluate the accuracy
of graph estimation by false positive rate (FPR) and false negative rate (FNR). Fig. 1 summarizes the performance of graph
estimation for varying dimensions.

As shown in Fig. 1, the graph estimation using only labeled data deteriorates quickly as the dimension increases. Note
that the structured penalty in (5) encourages the coefficients of all features in a neighborhood to be nonzero together as long
as some of them is useful for classification. Inaccurate graph estimation can reduce the accuracy and the interpretability of
GSLDA.

Compared to labeled data, unlabeled data can be more accessible in many applications. For example, in the handwritten
digit recognition problemdiscussed in Section 6.2, we can easily obtain a large number of images of different digits. However,
it can be expensive to label these images by corresponding digits. As a result, many semi-supervised methods try to utilize
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Fig. 1. Performance evaluation of graph estimation for varying dimensions. The black solid lines are for graph estimation based on a labeled dataset of size
50; the red dashed lines are for graph estimation based on an unlabeled dataset of size 1000; vertical segments indicate the standard deviations of FPR or
FNR of 100 repetitions.

the unlabeled data to improve the classification accuracy [5,32]. In this paper, we focus on using unlabeled data for the graph
constructionwhen available. The following proposition studies the relationship between thewithin-class inverse covariance
matrix and the overall one.

Proposition 1. Assume X comes from a mixture of two populations with a common covariance matrix Σ. The weight and the
expectation of population k ∈ {1, 2} is πk and µ(k). Denote the mean difference of the two populations µ(1)

− µ(2) as δ. We
denote Σ̃ = var(X) the overall covariance matrix of the population mixture and Ω̃ = Σ̃−1 the overall precision matrix. Then
Σ̃ = Σ + π1π2δδ

⊤ and Ω̃ = Ω − cβ∗β∗⊤, where β∗
= Ωδ and c = 1/{(π1π2)−1

+ δ⊤
Ωδ}.

As a remark, we do not require any specific distribution for the populations in Proposition 1, while β∗ is the optimal
discriminant vector if both classes are Gaussian populations. The overall precision matrix Ω̃ is sparse if both Ω and β∗

are sparse, and its support forms the conditional correlation graph of the mixed population. Moreover, we have Ω̃δ =

(1 − cβ∗⊤δ)β∗
∝ β∗. In our problem, a decomposition of the optimal discriminant vector analogous to (2) using Ω̃ can

be written as

β∗
= ξ

p∑
j=1

δjw̃j,

where ξ is a positive scalar and w̃j is the jth column of Ω̃. Therefore, the Bayes classifier can be connected to the graph
structure of themixed population through the new decomposition. Define the graph corresponding to the support of Ω̃ as G̃.
Following the same rationale of GSLDA, we can formulate another estimator of β based on the overall graph structure, viz.

(β̂0, β̂) = argmin
β0,β

1
n

n∑
i=1

(yi − β0 − x⊤

i β)2 + λ∥β∥G̃,τ̃, (6)

where ∥β∥G̃,τ̃ is defined in (5) and τ̃ adapts to G̃ as in (4). The only difference between (6) and (4) is which graph structure
we use. When unlabeled data are abundant, the estimated graph G̃ can be more accurate and thus the new formulation may
provide better classification. We name the formulation (6) as semi-supervised GSLDA. Similar to the original GSLDA, the
semi-supervised variant also has two step: (i) graph estimation based on all available data and (ii) direct estimation of β by
solving formulation (6).

Both versions of GSLDA need to estimate a graph when no prior graph structure is given. But there is a major difference:
unlike G in (4), the graph G̃ in (6) is not for a Gaussian population but a Gaussian mixture. As we will see in Section 3,
likelihood-based estimation such as graphical Lasso would be too complicated to implement. Instead, we can still use
neighborhood selection. In fact, in regressing the feature Xj on the other features X−j, the coefficient vector corresponds
to the conditional correlations between Xj and other features regardless of the distribution of the features, as stated by the
following lemma.

Lemma 1. For any random vector X = (X1, . . . , Xp)⊤ ∼ F , assume we have finite second-order moments and denote µ̃ = EF (X),
Σ̃ = EF {(X − µ̃)(X − µ̃)⊤} and Ω̃ = Σ̃−1. Then for any j, ℓ ∈ {1, . . . , p},
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(i) ω̃jℓ, the (j, ℓ)th element of Ω̃, is 0 if and only if Xj and Xℓ are conditionally uncorrelated, i.e., cov(Xj, Xℓ|X−{j,ℓ}) = 0, where
X−{j,ℓ} denotes all features other than Xj and Xℓ;

(ii) ω̃jℓ is 0 if and only if γ (j)
ℓ = 0, where γ (j)

ℓ is the coefficient of Xℓ in the regression of Xj on X−j.

This lemma is closely related to the results in [28]. According to Lemma 1, the graph based on the inverse covariance
matrix always corresponds to the conditional correlation structure. As long as variable selection consistency of the regression
is guaranteed, neighborhood selection methods are valid for graph estimation. Fig. 1 also shows the performance of graph
estimation based on a large unlabeled dataset under the same settings. We can observe that the estimation still performs
well when the dimension increases.

Remark 2. In practice, we generally use all available data, including both unlabeled and labeled data, in the first step of semi-
supervised GSLDA. Note that even without unlabeled data, the method is still applicable. If we use neighborhood selection
for graph estimation, then the error variance of the jth node-wise regression is var(Xj|X−j) = 1/ω̃jj = 1/(ωjj − cβ∗2

j ) by
Proposition 1. In contrast, when using the labels as in the original GSLDA, the error variance is var(Xj|X−j,G) = 1/ωjj <

1/(ωjj − cβ∗2
j ). Therefore, the semi-supervised GSLDA has better graph estimation only when unlabeled data are abundant.

When there are relatively little unlabeled data, the original GSLDA is more advantageous.

3. Graph estimation and method implementation

If the feature structure is given from prior knowledge, the graph can be directly constructed by assigning edges between
related features. Otherwise, we need to estimate the graph based on training data. In particular, when unlabeled data
are available, we can also use that to estimate the graph and implement semi-supervised GSLDA. In this section, we first
discuss specific graph estimation methods for GSLDA. Then we introduce algorithms to solve formulation (4) as well as
some strategies for efficient implementation.

3.1. Graph estimation

There have been extensive studies on graphical model estimation [7,9,14,28,38,46]. As we discussed in Section 2.2, the
graph estimation based on labeled and unlabeled data are different to some extent. Next we discuss them separately. Given
labeled data, the likelihood conditional on the labels becomes

(2π )−pn/2
|Ω|

n/2 exp

⎧⎨⎩−
1
2

∑
gi=1

(xi − µ(1))⊤Ω(xi − µ(1)) −
1
2

∑
gi=2

(xi − µ(2))⊤Ω(xi − µ(2))

⎫⎬⎭ .
Similar to the graphical Lasso, we can estimate Ω by minimizing ℓ1 penalized log-likelihood, i.e.,

argmin
µ(1),µ(2), Ω∈S++

n
2
ln |Ω| −

1
2

∑
gi=1

(xi − µ(1))⊤Ω(xi − µ(1)) −
1
2

∑
gi=2

(xi − µ(2))⊤Ω(xi − µ(2)) + λ∥Ω∥1,

where S++ denotes the set of p-dimensional positive definitematrices and ∥Ω∥1 =
∑

j̸=ℓ |ωjℓ|. It results in µ̂
(1)

= x̄(1), µ̂(2)
=

x̄(2), and

Ω̂ = argmin
Ω∈S++

n
2
ln |Ω| −

1
2

n∑
i=1

(xi − x̄(gi))⊤Ω(xi − x̄(gi)) + λ∥Ω∥1. (7)

This is equivalent to the graphical Lasso for the centered data x1 − x̄(g1), . . . , xn − x̄(gn).
Instead of solving (7), we can also estimate the graph by neighborhood selection as proposed by [28]. This method solves

p node-wise regularized regressions, viz.

argmin
γ
(1j)
0 ,γ

(2j)
0 ,γ(j)

1
2n

∥X(1)
j − γ

(1j)
0 − X(1)

−jγ
(j)

∥
2
2 +

1
2n

∥X(2)
j − γ

(2j)
0 − X(2)

−jγ
(j)

∥
2
2 + λ∥γ (j)

∥1,

where X(k)
j denotes the jth feature of sample from group k and X(k)

−j represents the other features. One can verify that

γ̂
(j)

= argmin
γ(j)

1
2n

∥Ẋj − γ0 − Ẋ−jγ
(j)

∥
2
2 + λ∥γ (j)

∥1, (8)

where Ẋ denotes the data centered by subtracting corresponding group means. We can also use sequential Lasso [23] for
computational efficiency. The graph G is constructed by connecting nodes j and ℓ if γ̂ (j)

ℓ ̸= 0 and/or γ̂ (ℓ)
j ̸= 0.

Both approaches for estimating G have been justified theoretically [28,46]. In this paper, we recommend to use
neighborhood selection approaches for GSLDA. The main reason is that the former approaches, such as graphical Lasso,
usually run through many iterations and can be slow for high-dimensional data (p > 1000). In contrast, neighborhood
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selection approaches only require p penalized regressions. Moreover, our direct interest is not Ω but the graph G on which
neighborhood selection focuses. We use the extended BIC (EBIC) [8] to select λ in (8). As suggested in [8], we choose
1 − 1/(2 logn p) as the EBIC tuning parameter.

Whenwe have an extra unlabeled dataset, denoted as xn+1, . . . , xn+m, the likelihood becomes complicated because of the
Gaussian mixture distribution of the unlabeled data. Thus it is difficult to estimate the parameters via likelihood. Moreover,
the graph we need is directly related to Ω̃ = var(X)−1 rather than Ω. Thus, a penalized likelihood approach is not suitable.
Nevertheless, the neighborhood selection approaches are still valid by Lemma 1, because we are concerned with conditional
correlation. In particular, we estimate the neighborhoods by

ˆ̃γ (j)
= argmin

γ̃(j)

1
2(n + m)

∥X̃j − γ̃0 − X̃−jγ̃
(j)

∥
2
2 + λ∥γ̃ (j)

∥1,

where X̃ = (x1, . . . , xn, xn+1, . . . , xn+m)⊤ denotes the combined feature matrix. Similarly, we use EBIC to select the tuning
parameter λ.

3.2. Parameter estimation and tuning parameter selection

Given the graph G, formulation (4) is a latent group Lasso problem [31]. It can be transformed to an ordinary group
Lasso problem as stated in Problem (3). There are many efficient algorithms to solve group Lasso problems, for example,
groupwise majorization descent [43]. For very high-dimensional data, we use an iterative proximal algorithm as in [44]. For
implementation, we use cross validation for tuning parameter selection.

3.3. Pre-screening

Suppose that there are some entries of δ being zero. Then β∗ can be a linear combination of only a few column vectors,

β∗
=

∑
j∈J

δjwj,

where J = {j : δj ̸= 0}. Using two-sample t tests for screening, we can specify J ′ ⊂ {1, . . . , p}, which is a superset of J with a
large probability. In particular, we have the following lemma.

Lemma 2. Define the t-statistic Tj = δ̂j/{s
(1)2
j /n1 + s(2)2j /n2}

1/2, where s(k)2j is the sample variance of feature j ∈ {1, . . . , p}
in group k ∈ {1, 2}. Assume ln p = o(nγ ), ln |J| = o(n1/2−γ Bn), and minj∈J |δj|/

√
2Σjj = Bn/nγ for some γ ∈ (0, 1/3) and

Bn → ∞. Then there exists C > 0 such that

lim
n→∞

Pr
{
min
j∈J

|Tj| ≥ Cnγ /2, max
j/∈J

|Tj| < Cnγ /2
}

= 1.

The result in Lemma 2 was previously obtained by Fan and Fan [11] and the corresponding proof is omitted. Lemma 2
guarantees the accuracy of our pre-screening procedure.

After feature screening, the proposed regularization can be simplified as follows:

∥β∥GJ′ ,τ
= min∑

j∈J′ v(j)=β, supp(v(j))⊆N (j)

∑
j∈J ′

τj∥v(j)∥2. (9)

Compared with the original regularization (5), the new one in (9) is often simpler and enjoys computational advantages.
Moreover, the new regularization (9) only requires part of the graph, i.e., the part corresponding to the support of {ωj : j ∈ J ′}.
Graph estimation methods based on neighborhood selection fit into this idea naturally. When δ is approximately sparse and
|J ′| ≪ p, the computational cost can be reduced substantially. Unlike the feature screening in [11], features outside J ′ are
not necessarily excluded. Instead, they can be introduced into the model via connection with other features in J ′.

4. Theoretical properties

In this section, we study the theoretical properties of GSLDA. In particular, the original GSLDA in (4) with a known graph G
is considered. Since the semi-supervised GSLDA only differs from GSLDA in the graph used, we do not consider it separately.
In Section 4.1, we show the selection consistency of GSLDA. In Section 4.2, we study the misclassification rate of the GSLDA
and compare it with the Bayes error.

Before diving into the theoretical analysis, we first introduce some notations for our setting. We define, for an n-
dimensional vector a, ∥a∥∞ = max(|a1|, . . . , |an|); for an n × m matrix A, ∥A∥∞ = maxi{|Ai1| + · · · + |Aim|} and
|||A|||∞= maxi,j |Aij|. We consider the problem setting of standard LDA, in which both within-class populations are Gaussian,
i.e.,N (µ(1),Σ) andN (µ(2),Σ). The discriminant vector of the Bayes rule, denoted as β∗, is given in (1). Denote A = {j : β∗

j ̸=

0} the active set, and s = |A|. Define β†
= Ω̃δ, then β† is proportional to β∗ (Proposition 1) and thus defines an equivalent

classifier.
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4.1. Selection consistency

Assume that the feature vectors are centralized, thus β̂ = argminβ ∥y − Xβ∥
2
2/n + λ∥β∥G,τ . Denote S̃ = X⊤X/n, and

κ = ∥Σ̃A∁AΣ̃
−1
AA ∥∞. Define

τ̃j = min
ℓ

{τℓ : j ∈ N (ℓ)
}, τ ∗

= max
j∈A

τ̃j, τ∗ = min
j∈A∁

τj|N (j)
|
−1/2

.

We present several assumptions to be used as follows.

(A1) p = O{exp(nγ )}, s = o(na), for some γ ∈ (0, 1), a ∈ (0, (1 − γ )/2).
(A2) For every j ∈ {1, . . . , p}, either N (j)

⊆ A or N (j)
⊆ A∁.

(A3) ∥Σ̃
−1
AA ∥∞ is bounded by ϕ < ∞.

(A4) ∥Σ̃A∁AΣ̃
−1
AA ∥∞ < τ∗/τ

∗.
(A5) b = minj∈A |β

†
j | ≫

√
ln p/n.

Here (A1) specifies the order of feature dimension as well as the number of discriminating features. By Assumption (A2),
a discriminative feature can only be connected with other discriminative features. This is a reasonable condition in reality
since a feature is often relevant for classification if it is related to another useful feature. Condition (A3) ensures that there
is no extreme collinearity among discriminative features. Assumption (A4) is an irrepresentability condition that is often
employed in showing the selection consistency of regularized estimators [28,51].

It may not be immediately clear why we impose the irrepresentability condition (A4) on Ω̃ rather than Ω. Note that the
more similarity between predictive and non-predictive features, the more difficult it is to achieve selection consistency.
While Ω encodes the within-class feature dependence, the relationship among features in the whole dataset is determined
by the overall covariance. Thus we impose the condition on Ω̃. The main theoretical result on the selection consistency of
the GSLDA is given in the following theorem.

Theorem 1 (Selection Consistency). Under conditions (A1)–(A5), let
√
ln p/n ≤ λτ ∗

≤ O(b) and n be sufficiently large, then the
GSLDA recovers the active set A and ∥β̂A − β

†
A∥∞ = O(

√
ln p/n) with probability at least 1 − O(p−C1 ) for some C1 > 0.

When we use an empty graph G and set τj = 1 for all j, our GSLDA is equivalent to the DSDA method. In this special case,
τ ∗

= τ∗ = 1, and the selection consistency conditions are similar to those for DSDA [26].

4.2. Convergence rate

With respect to a classifier, the error rate is one of the most important performance measures. In this section, we
investigate themisclassification rate of GSLDA.We first present some basic results on the classification problem. For a linear
classifier gβ0,β , denote its classification error under our settings as Qβ0,β = Pr{gβ0,β(X) ̸= G}. Then we have the following
results from [6].

Lemma 3 (Classification Error Rate in LDA Setting). Under our setting,

Qβ0,β =
1
2
Φ

(
−β0 − β⊤µ(1)√

β⊤
Σβ

)
+

1
2
Φ

(
β0 + β⊤µ(2)√

β⊤
Σβ

)
,

where Φ denotes the cumulative distribution function of N (0, 1). The misclassification rate of the Bayes classifier gβ∗
0 ,β

∗ is
Qβ∗

0 ,β
∗ = Φ(−∆1/2/2), where∆ = δ⊤

Ωδ.

SinceQ is a continuous function ofβ0 andβ, themisclassification rate of theGSLDA classifier is asymptotically the same as
the Bayes error rate, i.e., Q

β̂0,β̂

p
→ Qβ∗

0 ,β
∗ , as long as β̂

p
→ β∗. A more interesting problem is the order of the misclassification

rate of the GSLDA when Qβ∗
0 ,β

∗ → 0. To investigate this, we first introduce a new condition, under which we can construct
an ℓ2 error bound for the GSLDA estimator.

(A6) Denote C(A) = {∆ ∈ Rp
: ∥∆A∁∥G,τ ≤ 3∥∆A∥G,τ}, where ∆A = (∆j1(j ∈ A))p×1 and ∆A∁ = (∆j1(j /∈ A))p×1. For all

∆ ∈ C(A), ∆⊤Σ̃∆/∆⊤∆ ≥ σ > 0.

This is actually a restricted eigenvalue condition, which is often used in showing the error bound for regularized
estimators [30]. Compared to the irrepresentability condition (A4), this is much less stringent. With the new condition,
we have the following ℓ2 error bound for the GSLDA estimator.

Theorem 2 (ℓ2-error Bound). Under conditions (A1)–(A2) and (A6), let λ ≥ 4C2(1 + ∥β†
∥1)

√
ln p/n for some C2 > 0 and n be

sufficiently large, then ∥β̂ − β†
∥
2
2 ≤ 9λ2sτ ∗2/σ 2 with probability at least 1 − sp−C3 for some C3 > 0.

Based on Theorem 2, we can establish the asymptotic error rate of the GSLDA classifier as follows.
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Theorem 3 (Convergence Rate). Under conditions (A1)–(A2) and (A6), as n, p → ∞, if∆ → ∞, we have

Qβ∗
0 ,β

∗ → 0 and Q
β̂0,β̂

/Qβ∗
0 ,β

∗

p
→ 1,

given λτ ∗
= o[min{λmax(Σ)−1∆−2s−1/2

∥β†
∥

−1
2 ,∆−1s−1/2

∥δ∥−1
2 }] and ∥β†

∥1 = o(n1−γ∆−1), where∆ is defined as in Lemma 3
and λmax(Σ) denotes the largest eigenvalue of Σ.

That is, under mild conditions, the misclassification rate of the GSLDA classifier is of the same order as the Bayes error
rate in this case.

5. Simulation study

To demonstrate the performance of the GSLDA methods, we compare them with several existing high-dimensional LDA
extensions and other classificationmethods. Themethods in comparison include the naive Bayes rule (NB), nearest shrunken
centroids (NSC), sparse LDA (SLDA) [35], ℓ1 penalized Logistic regression (PLR), penalized Fisher’s discriminant analysis
(PLDA) [39], direct sparse discriminant analysis (DSDA) [26], linear programming discriminant (LPD) [6], and the ROAD [12].
In particular, the methods NSC, PLR, PLDA and DSDA are implemented with R packages pamr, glmnet, penalizedLDA and
dsda, respectively. We implement the LPD method via the parametric simplex algorithm [37] as suggested in [34].

Besides the above supervised methods, there are many semi-supervised clustering (or classification) methods; see,
e.g., [20,32,52]. We have implemented the semi-supervised spectral clustering (SSSC) method proposed in [20]. Both the
original and the semi-supervised GSLDA are implemented, and the latter is denoted as GSLDA-S. We also include the
GSLDA methods with the true graph, denoted as GSLDA-O (with G) and GSLDA-SO (with G̃), in the comparison. To make
a fair comparison, pre-screening is not employed in the numerical studies. The Bayes rule, denoted as Oracle, is used as a
benchmark.

In the simulation, we fix the dimension p = 200 and the sample size n = 200. The labels g1, . . . , gn are generated with
π1 = π2 = 1/2 and the features are sampled fromN (µ(gi),Ω−1) based on the labels. Moreover, we generate an independent
dataset of sample size 2000 and remove the labels, for the semi-supervised methods. All tuning parameters are selected by
10-fold cross validation. We consider four different feature structures as follows.

Example 1 (Blockwise Sparse Model). In this example, ΣB is a 5 × 5 matrix with 1 for the diagonal and 0.7 for off-diagonal
elements. We use 20 such blocks for the diagonal of the covariance matrix Σ and 0 for the rest, and let Ω = Σ. The group
means are generated such that µ(1)

j = 0.5 for j ∈ {5, 10, . . . , 25} and µ(1)
j = 0 otherwise; and µ(2)

= −µ(1).

Example 2 (AR(3) Model). The precision matrix Ω is generated such that ωjj = 1, and ωjℓ = −2/3 if 1 ≤ |j − ℓ| ≤ 3 and
0 otherwise. The group means are generated such that µ(1)

j = 0.75 for j ∈ {5, 10, . . . , 25} and µ(1)
j = 0 otherwise; and

µ(2)
= −µ(1).

Example 3 (Random SparseModel). The graph G is generated in such away that any two nodes are connectedwith probability
0.05. Based on G, we generate the precision matrix Ω by setting ωjℓ = −0.5 for all connected j and ℓ in the graph and 0
otherwise. We add c Ip, where c > 0 and Ip is an identity matrix, to Ω such that the eigenvalues are between 0 and 1. We
standardize Ω so that its diagonal elements are all 1. The group means are generated in such a way that µ(1)

j = 0.75 for all
j ∈ S and 0 otherwise; and µ(2)

= −µ(1).

Example 4 (Scale-free Random Graph). The graph is generated in a way similar to the Barabasi–Albert (BA) model. Starting
from an identity matrix L ∈ Rp×p, at step iwe randomly assign −0.5 to min{⌊0.05p⌋, i− 1} entries in row iwith probability
Pr(i, j) ∝ #{Lℓj ̸= 0 : 1 ≤ ℓ ≤ p}, j < i. Repeat the procedure until i = p. Thenwe get a lower triangularmatrix.We construct
Ω = L⊤L and standardize it such that the eigenvalues are between 0 and 1. Denote the 6th to 10th most connected nodes
as J . The group means are generated such that µ(1)

j = 0.75 for all j ∈ J and 0 otherwise; and µ(2)
= −µ(1).

All four graph structures are displayed in Fig. 2. The first two examples are fixed while the last two produce random
graphs. Compared with the random sparse model, the scale-free random graphs are featured with hubs. For each graph
structure, we repeat the simulation for 100 times and evaluate the performance, both prediction and selection accuracy, of
all classification methods. Table B.1 in the Appendix displays the graph estimation accuracy for all examples.

Tables 1–4 give a summary of the performance comparison of all methods in Examples 1 and 4. In particular, mis-
classification rates in percentage (Error), false positives (FP) and false negatives (FN) of β estimation are computed. The
misclassification rate is evaluated based on an independent test dataset of size 20,000. All metrics are averaged over 100
simulations and the numbers within parentheses are the standard errors. Both the NB and the SSSC are not considered in
the comparison of variable selection, since these methods do not perform variable selection.

From Tables 1–4, we observe that the two plug-in extensions of LDA, namely the naive Bayes and the NSC, performworse
than ℓ1 penalized logistic regression and other direct LDA methods under these settings. This is expected because there is
substantial correlation among the features while both the plug-in extensions of LDA use diagonal estimates ofΣ. In contrast,
the performance of the direct LDAmethods varies across the settings. For example, theDSDAhas lowermisclassification rates
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Fig. 2. The graph structures used in the simulation study. From left to right: the blockwise sparse model, the AR(3) model, the random sparse model, the
scale-free model. The last two plots use one realization for demonstration, and the graphs may vary among different realizations.

Table 1
Performance comparisons of different classification methods for Example 1.

Error FP FN Size

NB 27.01 (0.18) – – –
NSC 14.17 (0.11) 0.71 (0.54) 20.27 (0.13) 5.44 (0.62)
SLDA 10.28 (0.16) 5.71 (1.29) 12.53 (0.31) 18.18 (1.61)
PLR 7.17 (0.13) 14.73 (0.56) 8.1 (0.24) 31.63 (0.69)
DSDA 6.76 (0.13) 23.26 (1.53) 6.79 (0.27) 41.47 (1.71)
LPD 7.80 (0.38) 37.20 (1.97) 5.73 (0.29) 56.47 (2.17)
ROAD 6.54 (0.12) 23.45 (1.24) 6.01 (0.24) 42.44 (1.37)
PLDA 14.16 (0.10) 3.62 (1.16) 19.53 (0.16) 9.09 (1.29)
SSSC 8.11 (0.10) – – –
GSLDA 5.57 (0.07) 20.48 (2.17) 7.31 (0.25) 38.17 (2.33)
GSLDA-S 4.53 (0.06) 18.79 (2.26) 0.74 (0.11) 43.05 (2.29)
GSLDA-O 4.86 (0.08) 18.55 (2.63) 0 (0) 43.55 (2.63)
GSLDA-SO 4.52 (0.07) 16.43 (1.93) 0 (0) 41.43 (1.93)

Oracle 3.27 (0.01) 0 (0) 0 (0) 25 (0)

Table 2
Performance comparisons of different classification methods for Example 2.

Error FP FN Size

NB 36.59 (0.43) – – –
NSC 17.46 (0.14) 42.75 (2.16) 25.96 (0.45) 55.79 (2.48)
SLDA 14.39 (0.12) 19.28 (1.72) 17.59 (0.43) 40.69 (2.17)
PLR 7.86 (0.11) 15.83 (0.42) 20.58 (0.29) 34.25 (0.54)
DSDA 6.96 (0.09) 25.13 (1.22) 17.21 (0.38) 46.92 (1.46)
LPD 8.84 (0.69) 34.48 (1.56) 17.98 (0.48) 55.50 (1.97)
ROAD 7.42 (0.12) 25.16 (0.98) 17.36 (0.35) 46.80 (1.17)
PLDA 16.48 (0.12) 2.26 (0.48) 32.69 (0.14) 8.57 (0.57)
SSSC 9.27 (0.17) – – –
GSLDA 6.60 (0.10) 25.48 (1.83) 15.41 (0.43) 49.07 (2.19)
GSLDA-S 5.56 (0.07) 34.43 (2.52) 3.33 (0.41) 70.1 (2.77)
GSLDA-O 6.19 (0.09) 27.26 (1.72) 7.37 (0.47) 58.89 (2.08)
GSLDA-SO 5.79 (0.07) 30.78 (1.94) 2.16 (0.39) 67.62 (2.31)

Oracle 3.32 (0.01) 0 (0) 0 (0) 39 (0)

than the ROAD inmost cases,while ROADhas better classification accuracy in Example 1. Utilizing the graph structures, high-
dimensional LDA is further improved in GSLDA. As we can see from the results, GSLDA methods have the best performance
among all methods in these four settings. In particular, the GSLDA method has lower misclassification rates than all other
methods except its semi-supervised variant. Since the DSDA is the special case of the GSLDA with an empty graph, it is a
good benchmark to quantify the benefit of using graph structures. In most cases, the GSLDA provides better model selection
than the DSDA. Therefore, utilizing the graph structure does help us to improve the LDA classifier in high dimensions.

With respect to the semi-supervised GSLDA, due to the large amount of unlabeled data, it often has better graph
estimation and yields more accurate classifiers. In fact, the semi-supervised GSLDA has the lowest misclassification rates
among all methods in all cases. Furthermore, the semi-supervised GSLDA has superior model selection over the original
GSLDA in most cases. This demonstrates the advantages of using unlabeled data.

Wenotice thatmodels estimated by the semi-supervisedGSLDAoften have larger sizes, sometimesmore false positives in
coefficient vectors, than the original GSLDA classifiers. This is probably because the graph used in the semi-supervisedGSLDA
often hasmore edges. There are two possible reasons: (i) the true graph G̃ corresponding to Ω̃ hasmore edges than G, and (ii)
graph estimation based on unlabeled data uses a much larger training dataset which often leads to denser graphs estimate.
While a denser graph estimatemay recover more connections among the features, it can also result in more false edges. This
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Table 3
Performance comparisons of different classification methods for Example 3.

Error FP FN Size

NB 36.86 (0.80) – – –
NSC 24.16 (0.84) 29.15 (3.35) 44.78 (1.62) 50.37 (4.93)
SLDA 13.28 (0.72) 21.07 (2.29) 40.59 (1.57) 46.48 (3.87)
PLR 11.09 (0.12) 21.44 (0.56) 42.08 (0.39) 45.36 (0.75)
DSDA 10.94 (0.15) 30.32 (1.49) 38.12 (0.63) 58.20 (2.01)
LPD 13.19 (0.73) 41.67 (1.52) 39.84 (0.82) 67.83 (2.25)
ROAD 11.25 (0.15) 33.14 (1.46) 37.53 (0.55) 61.61 (1.92)
PLDA 26.31 (0.68) 22.34 (2.33) 50.89 (1.12) 37.45 (3.41)
SSSC 13.57 (0.91) – – –
GSLDA 10.53 (0.10) 27.34 (1.91) 36.67 (0.85) 56.67 (2.67)
GSLDA-S 8.77 (0.08) 34.08 (2.77) 18.2 (0.72) 81.88 (3.37)
GSLDA-O 9.77 (0.08) 36.87 (2.54) 26.22 (0.78) 76.65 (3.27)
GSLDA-SO 8.91 (0.08) 35.17 (2.37) 16.31 (0.63) 84.86 (3.01)

Oracle 5.36 (0.02) 0 (0) 0 (0) 66 (0)

Table 4
Performance comparisons of different classification methods for Example 4.

Error FP FN Size

NB 32.84 (0.28) – – –
NSC 22.78 (0.12) 8.62 (1.76) 48.87 (0.76) 18.75 (2.49)
SLDA 17.53 (0.27) 19.83 (1.29) 38.23 (0.67) 40.60 (1.98)
PLR 14.60 (0.21) 16.51 (0.66) 35.5 (0.5) 40.01 (1.06)
DSDA 13.48 (0.17) 33.71 (1.9) 28.18 (0.65) 64.53 (2.47)
LPD 16.87 (0.36) 46.86 (1.66) 29.17 (0.71) 76.69 (2.31)
ROAD 13.95 (0.19) 36.9 (2.01) 27.71 (0.77) 68.19 (2.69)
PLDA 22.64 (0.12) 6.6 (1.06) 51.58 (0.45) 14.02 (1.48)
SSSC 12.08 (0.21) – – –
GSLDA 10.46 (0.11) 21.53 (1.7) 15.69 (0.55) 64.84 (2.14)
GSLDA-S 9.15 (0.12) 12.87 (1.29) 5.03 (0.54) 66.84 (1.57)
GSLDA-O 10.39 (0.18) 28.29 (1.73) 19.44 (0.8) 67.85 (2.43)
GSLDA-SO 9.36 (0.17) 19.87 (1.69) 5.47 (0.71) 73.05 (2.31)

Oracle 4.62 (0.02) 0 (0) 0 (0) 59 (0)

effect is enhanced by the difficulty of graph estimation with unlabeled data. As a consequence, the semi-supervised GSLDA
may suffer from more false positives, as shown in Examples 2 and 3. To resolve this issue, we may consider to use more
conservative graph estimation for the semi-supervised GSLDA.

6. Real data analysis

In this section, we implement our methods and several other existing classifiers on two real datasets. The first dataset
is a genetic dataset with very high dimensions, and the second one consists of images of handwritten digits. We estimate
the graphs from labeled training data and unlabeled data. We find that GSLDA methods have a good performance in both
datasets and utilizing the feature structure is beneficial.

6.1. Arcene cancer data

Nowadays, genetic diagnosis is an important tool in the clinical study and medical practice. By using the genetic
information, we can estimate the potential risk of cancer for healthy people or determine cancer subtypes for patients.
The Arcene dataset is a gene dataset of 88 cancer patients and 112 healthy individuals. The dataset contains 10,000 features
and was originally used in the NIPS 2003 feature selection challenge (https://archive.ics.uci.edu/ml/datasets/Arcene). Out of
the 10,000 features, 7000 are real genes while the other 3000 are noise features that have no predictive power and make
the prediction harder. Besides the labeled data, there is an unlabeled dataset of 700 individuals, which is used to construct
a graph for GSLDA-S. As in the previous simulation studies, we apply the GSLDA and other methods on the dataset.

The labeled data are randomly split into a training set and a test set, of sizes 150 and 50, respectively. All methods except
the naive Bayes are tuned by 10-fold cross validation. The experiment is repeated 100 times and the results are summarized
in Table 5.

From Table 5, we can see that both GSLDA and semi-supervised GSLDA outperform othermethods in prediction. Although
semi-supervised GSLDA uses more data for graph estimation, its performance is inferior to GSLDA for this application,
possibly due to the difficulty of graph estimation based on unlabeled data. In addition, the size of the unlabeled dataset is not
substantially larger than that of the labeled dataset. Compared with PLR, DSDA and ROAD, our methods have significantly

https://archive.ics.uci.edu/ml/datasets/Arcene
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Table 5
Comparison of GSLDA and other methods on the Arcene dataset.

Error Size

NB 35.50 (0.62) –
NSC 36.05 (0.61) 9934.46 (9.06)
SLDA 34.64 (0.73) 297 (4.17)
PLR 28.36 (0.65) 16.57 (0.90)
DSDA 28.29 (0.72) 30.96 (2.69)
LPD 31.59 (1.33) 10.95 (3.58)
ROAD 29.29 (0.64) 31.86 (3.43)
PLDA 34.36 (0.61) 9.39 (1.63)
SSSC 27.93 (0.83) –
GSLDA 22.57 (0.70) 229.36 (6.39)
GSLDA-S 24.50 (0.68) 319.57 (8.37)

Table 6
Comparison of GSLDA and other methods on the Semeion dataset.

Error Size

NB 13.81 (0.34) –
NSC 15.21 (0.44) 84.74 (11.31)
SLDA 14.43 (0.67) 20.23 (2.80)
PLR 18.69 (0.88) 9.46 (0.40)
DSDA 13.76 (0.66) 16.76 (1.01)
LPD 17.15 (0.86) 15.32 (0.91)
ROAD 19.73 (0.98) 15.38 (1.25)
SSSC 13.97 (0.75) –
GSLDA 12.65 (0.61) 28.46 (1.45)
GSLDA-S 11.23 (0.56) 33.28 (1.32)

larger model sizes. This may indicate that many genes are related to each other. It is likely that those genes contribute to
cancer together, and including all of them in modeling can potentially make the classifier more robust. This characteristic
may also contribute to the good performance of the proposed two GSLDA methods.

6.2. Semeion handwritten digits dataset

The Semeion dataset (https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit) consists of 1593 images of
handwritten digits. Each digit is in the form of a 16 × 16 grayscale image and saved as a vector of 256 features. We take
a subset of the dataset that only contains digits 1 and 7, which are generally difficult to distinguish. We randomly choose
40 images for training, and 80 for graph estimation of the semi-supervised GSLDA after removing labels. The remaining 200
images are used for testing. Other settings are the same as the cancer example. Table 6 gives a summary of the results.

As shown in Table 6, the semi-supervised GSLDA has excellent performance for this problem. It has the lowest
misclassification rate among all methods in comparison. The original GSLDA method also has good classification accuracy
for this problem. Moreover, we can see that both GSLDA methods have larger model sizes than other direct LDA methods,
as in the previous analysis in Section 6.1.

7. Discussion

With many extensions in the literature, LDA can be readily applied to high-dimensional classification problems. In
particular, the direct approaches of high-dimensional LDA are attractive due to their simplicity and good performance. Under
the standard setting of LDA problems, we explore the relationship between the graph structure of features and the optimal
discriminant vector β∗. Our study shows that, by taking advantage of such structure, we can get better LDA classifiers in
high dimensions. Based on this idea, we propose the GSLDA method. After investigating the overall graph structure of the
Gaussian mixture population for unlabeled data, we further propose the semi-supervised GSLDA that can utilize unlabeled
data. Both GSLDA methods have been evaluated on simulated and real data, which demonstrate the advantages of utilizing
the graph structures.Moreover, we conclude that the performance of semi-supervisedGSLDAdepends on both the size of the
unlabeled dataset and the graph complexity.When the graph structure is very complex, it is better to consider a conservative
graph estimate for GSLDA. Finally, our focus in this paper is on binary problems. It will be useful to extend the methods for
multicategory problems.
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Fig. A.1. A 3-dimensional LDA example demonstrating how marginal differences of the three features (δ1, δ2, δ3) contribute to the predictive power of all
features. Here ω23 = ω32 = 0. The terms around each node represent a decomposition of the corresponding coefficient. The gray scale of each term and
the edge direction together indicate the source of the marginal differences.

Table B.1
Graph estimation accuracy for all examples in the simulations. The graphs are estimatedwith labeled data (L) after centering,
or with unlabeled data (U). The former estimation is compared with G, and the latter is compared with both G and G̃. The
results are averaged over 100 repetitions and the standard errors are provided in the parentheses.
Graph type Data TP FP Size True size

L 51.54 (0.25) 6.86 (0.48) 58.4 (0.55) G: 100 (0)
Block sparse U 100 (0) 82.96 (0.66) 182.96 (0.66) G: 100 (0)

U 176.48 (0.46) 6.48 (0.38) 182.96 (0.66) G̃: 600 (0)

L 468.02 (1.31) 69.64 (1.24) 537.66 (1.34) G: 1188 (0)
AR(3) U 1178.04 (0.38) 76.72 (0.87) 1254.76 (1.01) G: 1188 (0)

U 1235.76 (0.75) 19 (0.61) 1254.76 (1.01) G̃: 2508 (0)

L 353.14 (2.02) 69.34 (1.25) 422.48 (1.73) G: 818 (0)
Random sparse U 814.52 (0.18) 72.74 (1.04) 887.26 (1.12) G: 818 (0)

U 866.14 (0.87) 21.12 (0.70) 887.26 (1.12) G̃: 2426 (0)

L 374.92 (1.37) 32.44 (0.92) 407.36 (1.48) G: 776 (0)
Scale-free U 709.88 (0.73) 103.5 (1.00) 813.38 (1.18) G: 776 (0)

U 799.08 (1.05) 14.3 (0.53) 813.38 (1.18) G̃: 3564 (0)

Appendix A. Some comments on the GSLDA method

A.1. A graphical display of the discriminant vector decomposition

See Fig. A.1.

A.2. Connection between GSLDA and existing methods

We first consider the case when G is a complete graph. Without loss of generality, we assume that there is a unique
minimum weight, i.e., there exists an ℓ such that τℓ < τj for all j ̸= ℓ. In this case, for any β ∈ Rp and v(1) + · · · + v(p) = β,
we have

p∑
j=1

τj ∥v(j)∥2 ≥ τℓ

p∑
j=1

∥v(j)∥2 ≥ τℓ ∥β∥2.

By taking v(l) = β and v(j) = 0 for all j ̸= ℓ, the regularization (5) becomes ∥β∥G,τ = τℓ∥β∥2. Similarly, we can show the
equivalence in the case where G consists of K disjoint complete subgraphs.

Appendix B. Numerical results

B.1. Graph estimation results

To better understand the performance of our proposed GSLDA methods, we also present the graph estimation results
for the methods. In particular, we compare the graph estimation based on both labeled data (for supervised GSLDA) and
unlabeled data (for semi-supervised GSLDA) with the true graphs, within-class graph G and overall graph G̃. The accuracy
metrics include false positives (TP) and false positives (FP).

B.2. Additional simulation results

The misclassification rates may not reflect the comprehensive performance of classification models, especially when
the classes are unbalanced. Thus we present the receiver operating characteristic (ROC) curve for the classification models.
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Fig. B.1. ROC Curve under the balanced setting for the four examples. The proportion of Class-0 sample is 50%. The ROC curve is computed based on 100
repetitions.

Besides the balanced class setting as in themain text, we also consider an unbalanced class setting in which Class-0 accounts
for 80% of the whole dataset. As we can see from Figs. B.1 and B.2, our methods still outperform other methods in terms of
higher sensitivities at each specificity level.

Appendix C. Proofs to the theoretical results

C.1. Proof of Proposition 1

The random variableX can be represented asX = ξZ1+(1−ξ )Z2,where (i) ξ ∼ Bin(1, π1) is a Bernoulli random variable
and (ii) Z1 and Z2 are from the two population components, respectively. Moreover, ξ , Z1, and Z2 are mutually independent.
We have var(Z1) = var(Z2) = Σ, EZ1 = µ(1), and EZ2 = µ(2). Then E(X) = π1µ

(1)
+ π2µ

(2) and

E(XX⊤) = E{ξ 2Z1Z⊤

1 + (1 − ξ )2Z2Z⊤

2 + ξ (1 − ξ )Z1Z⊤

2 + ξ (1 − ξ )Z2Z⊤

1 } = π1E(Z1Z⊤

1 ) + π2E(Z2Z⊤

2 ).
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Fig. B.2. ROC Curve under the unbalanced setting for the four examples. In particular, the proportion of Class-0 sample is 80%. The ROC curve is computed
based on 100 repetitions.

Thus the overall covariance matrix is var(X) = Σ + π1π2δδ
⊤, where δ = µ(1)

− µ(2).
Now we verify the inverse matrix of var(X), i.e., the overall precision matrix of the mixture distribution. By setting

c = π1π2/(1 + π1π2δ
⊤
Σ−1δ), we have

(Σ−1
− cΣ−1δδ⊤

Σ−1)(Σ + π1π2δδ
⊤) = I + π1π2Σ

−1δδ⊤
− cΣ−1δδ⊤

− π1π2cΣ−1δδ⊤
Σ−1δδ⊤

= I.

Denote β∗
= Σ−1δ. Then we have var(X)−1

= Σ−1
− cβ∗β∗⊤. □

C.2. Proof of Theorem 1

Before the proof, we introduce a lemma from [7]. The proof is omitted.
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Lemma 4. Let ξ1, . . . , ξn be independent random variables with mean zero. Suppose that there exists some t > 0 and B̄n such
that

∑n
k=1 E(ξ

2
k e

t|ξk|) ≤ B̄2
n. Set Ct = t + t−1. Then uniformly for x ∈ (0, B̄n],

Pr

(
n∑

k=1

ξk ≥ Ct B̄nx

)
≤ exp(−x2).

Denote ξ1 = ∥S̃AA − Σ̃AA∥∞, ξ2 = ∥S̃−1
AA − Σ̃

−1
AA ∥∞, and ξ = ∥S̃A∁AS̃

−1
AA − Σ̃A∁AΣ̃

−1
AA ∥∞. With simple calculations, one can

show that for all β ∈ Rp,

min
β0∈R

n∑
i=1

(yi − β0 − x⊤

i β)2 =

n∑
i=1

(yi − ẋ⊤

i β)2,

where ẋi = xi − (x1 + · · · + xn)/n is the centralized feature vector. Thus the loss function of GSLDA in (4) is equivalent
to
∑n

i=1(yi − ẋi⊤β)2/n + λ∥β∥G,τ . In the rest of our proof, we assume the sample X has been centralized. Then the GSLDA
formulation (4) becomes

β̂ = argmin
β∈Rp

∥Y − Xβ∥
2
2/n + λ∥β∥G,τ . (C.1)

Under the assumption (A1), we can define

γ̂ = argmin
γ∈Rs

∥Y − XAγ∥
2
2/n + λ∥γ∥GA,τA , (C.2)

where GA denotes the subgraph of G corresponding to A. If we can show that (i) all elements of γ̂ are non-zero; and (ii) β̂

with β̂A = γ̂ and β̂A∁ = 0 solves (C.1); then, GSLDA estimation recovers all significant features accurately.
We first show statement (i). By Section 4.6 of [31], the formulation (C.2) is equivalent to γ̂ =

∑
j∈A û

(j) where

{û(j)
: j ∈ A} = argmin

u(j)∈Rs:supp(u(j))⊆N (j)∩A,j∈A
∥Y −

∑
j∈A

XAu(j)
∥
2
2/n + λ

∑
j∈A

τj∥u(j)
∥2.

Since this is a convex optimization problem, any solution {u(j)
: j ∈ A} satisfies the KKT conditions [4], which are for all j ∈ A,

either

u(j)
̸= 0 and 2X⊤

N (j) (Y − XAγ)/n = λτju
(j)
N (j)/∥u(j)

∥2,

or

u(j)
= 0 and 2∥X⊤

N (j) (Y − XAγ)∥2/n ≤ λτj,

where γ =
∑

j∈A u
(j). Thus we have ∥X⊤

A (Y − XAγ̂)∥∞/n ≤ λτ ∗/2, and we can write γ̂ as γ̂ = S̃−1
AA (δ̂A + λτ ∗tA/2), where

tA ∈ Rs satisfies ∥tA∥∞ ≤ 1. We have

∥γ̂ − β
†
A∥∞ = ∥(S̃−1

AA − Σ̃
−1
AA )δA − S̃−1

AA (δA − δ̂A) + S̃−1
AA λτ

∗tA/2∥∞

≤ ∥δA∥∞ξ2 + (ϕ + ξ2)∥δ̂A − δA∥∞ + λτ ∗(ϕ + ξ2)/2

≤ ξ2(∥δA∥∞ + ∥δ̂A − δA∥∞ + λτ ∗/2) + ϕ(∥δ̂A − δA∥∞ + λτ ∗/2)

≤
ϕ2ξ1

1 − ϕξ1
(∥δA∥∞ + ∥δ̂A − δA∥∞ + λτ ∗/2) + ϕ(∥δ̂A − δA∥∞ + λτ ∗/2) ≡ L1,

in which the second inequality holds for sufficiently large n because ϕξ1 ≤ 1 and ξ2 ≤ (1 − ϕξ1)−1ϕ2ξ1. If ξ1 ≤ ϵ and
∥δ̂A − δA∥∞ ≤ ϵ, then L1 = O(ϵ) + λτ ∗ϕ/2 > 0, which proves (i). By Lemma 4, the statement (i) is true with probability at
least 1 − 2s2 exp(−a1nϵ2/s2) − 2s exp(−a2nϵ2), for some positive a1 and a2.

Now we prove statement (ii). The formulation (C.1) is equivalent to β̂ =
∑p

j=1 v̂
(j), where

{v̂(1), . . . , v̂(p)} = argmin
v(j):supp(v(j))⊆N (j), 1≤j≤p

1
n

Y −

p∑
j=1

Xv(j)
2
2

+ λ

p∑
j=1

∥v(j)∥2. (C.3)

This is also a convex optimization problem and the KKT conditions of formulation (C.3) are for all j ∈ {1, . . . , p}, either

v(j) ̸= 0 and 2X⊤

N (j) (Y − Xβ)/n = λτjv
(j)
N (j)/∥v(j)∥2, (C.4)

or

v(j) = 0 and 2∥X⊤

N (j) (Y − Xβ)∥2/n ≤ λτj, (C.5)

where β = v(1) + · · · + v(p). Let v(j) = 0 for all j ∈ A∁, and v(j)A = u(j), v(j)
A∁

= 0 for all j ∈ A. Then βA = γ̂ and βA∁ = 0.
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For j ∈ A, (C.4) holds owing to the definition of γ̂ . For j ∈ A∁, 2∥X⊤

N (j) (Y −Xβ)∥2/n ≤ 2
√

|N (j)|∥X⊤

N (j) (Y −Xβ)∥∞/n. Denote
η = ∥δ̂ − δ∥∞. If ∥δ̂ − δ∥∞ ≤ ϵ and ∥S̃A∁A − Σ̃A∁A∥∞ ≤ ϵ, then

∥X⊤

A∁ (Y −XAγ̂)∥∞/n = ∥S̃A∁AS̃
−1
AA (δ̂A + λτ ∗tA/2)− δ̂A∁∥∞ ≤ (∥δA∥∞ + 1+ ϵ + κ + λτ ∗/2)ϵ + λτ ∗κ/2 ≤ O(ϵ)+ λτ∗/2.

By Lemma 4, the statement (ii) is true with probability at least 1 − 2ps exp(−a1nϵ2/s2) − 2p exp(−a2nϵ2). By taking
ϵ =

√
ln p/n, the active set is recovered and ∥β̂A − β

†
A∥∞ ≤ O(

√
ln p/n) with probability at least 1 − 2s2 exp(−a1nϵ2/s2) −

2ps exp(−a1nϵ2/s2) − 2p exp(−a2nϵ2) = 1 − O(p−C1 ) for some C1 > 0. □

C.3. Proof of Theorem 2

The proof uses the following lemma from [30].

Lemma 5. Denote M a subspace of Rp and M⊥ its orthogonal complement. For a regularized estimation problem

θ̂ = argmin
θ∈Rp

L(θ) + λR(θ),

where

(i) R is a norm and is decomposable with respect to (M,M⊥), i.e., R(θ + η) = R(θ) + R(η) for all θ ∈ M, η ∈ M⊥;
(ii) L is convex and differentiable, and satisfies restricted strong convex condition with curvature κL, i.e., δL(θ∗,∆) = L(θ∗

+

∆) − L(θ∗) − ∇L(θ∗)⊤∆ ≥ κL∥∆∥
2
2 for some θ∗, for all ∆ such that R(∆M⊥ ) ≤ 3R(∆M) + 4R(θ∗

M⊥ ).

Let λ ≥ 2R∗
{∇L(θ∗)}, where R∗ denotes the dual norm of R, then any solution θ̂ to the problem satisfies

∥θ̂ − θ∗
∥2 ≤ 9λ2ψ(M)/κ2

L + 4λR∗(θ∗

M⊥ )/κL,

where ψ(M) = supu∈M/{0} R(u)/∥u∥2.

Proof. In the GSLDA formulation, the loss function is L(β0,β) = ∥y−β01−Xβ∥
2
2/n, and the regularization is R(β) = ∥β∥G,τ .

It has been shown in [31] that R is a norm and its dual norm is R∗(u) = max1≤j≤p τ
−1
j ∥uN (j)∥2. When we take τj =

√
|N (j)|,

R∗(u) ≤ maxj ∥uN (j)∥∞ = ∥u∥∞.
For some ϵ > 0, denote the eventχ = {∥δ̂−δ∥∞ ≤ ϵ, |||S̃·,A−Σ̃·,A|||∞≤ ϵ}. Thenby Lemma4, Pr(χ ) ≥ 1−2p exp(−a2nϵ2)−

2ps exp(−a1nϵ2). Under the event χ ,

∥∇L(β†)∥∞ = ∥2n−1X⊤(y − Xβ†)∥∞

= ∥2(δ̂ − S̃β†)∥∞ = ∥2(δ̂ − δ) − 2(S̃ − Σ̃)β†
∥∞ ≤ 2∥δ̂ − δ∥∞ + 2∥(S̃ − Σ̃)·,Aβ

†
A∥∞

≤ 2∥δ̂ − δ∥∞ + 2∥(S̃ − Σ̃)·,A∥∞∥β
†
A∥1 ≤ 2ϵ + 2∥β†

A∥1ϵ.

We take ϵ = C2
√
ln p/n where C2 > (a1 ∧ a2)−1. Then λ ≥ 2R∗(∇L(β†)). Under the event χ with ϵ ≤ cσ for some c > 0,

for sufficiently large n, we have∆⊤S̃∆ ≥ ∆⊤Σ̃∆− |∆⊤(S̃ − Σ̃)∆| ≥ σ∥∆∥
2
2/2 for∆ ∈ C(A). Thus δL(β∗,∆) ≥ 2∆⊤S̃∆ ≥

σ∥∆∥
2
2 for all ∆ ∈ C(A).

We take M = {β ∈ Rp
: βA∁ = 0}. Then β†

∈ M and β
†
M⊥

= 0. Moreover,

ψ(M) = sup
β∈M

R(β)
∥β∥2

= sup
βA∁=0

min∑ v(j)=β

∑
τj∥v(j)∥2

∥β∥2
≤ sup

βA∁=0

∑
j∈A τ̃j|βj|

∥βA∥2
≤ τ ∗

√
s .

Therefore, by Lemma 5, we have

∥β̂ − β†
∥
2
2 ≤ 9λ2s τ ∗2/σ 2,

with probability at least 1 − 2ps exp(−a1nϵ2) − 2p exp(−a2nϵ2) ≥ 1 − sp−C3 where C3 = C2(a1 ∨ a2) − 1 > 0. □

C.4. Proof of Theorem 3

We use the same notations as in the proof above. Without loss of generality, we assume µ(1)
+ µ(2)

= 0, then
µ(1)

= δ/2,µ(2)
= −δ/2, and β†

0 = 0. According to Lemma 3, we have

Q (β̂0, β̂)/Q (β†
0 ,β

†) − 1 =

⎡⎣⎧⎨⎩Φ
⎛⎝−β̂0 − β̂

⊤

µ(1)√
β̂

⊤

Σβ̂

⎞⎠−Φ

(
−β†Tµ(1)√

β†T
Σβ†

)⎫⎬⎭
+

⎧⎨⎩Φ
⎛⎝ β̂0 + β̂

⊤

µ(2)√
β̂

⊤

Σβ̂

⎞⎠−Φ

(
β†Tµ(2)√
β†T

Σβ†

)⎫⎬⎭
⎤⎦
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×

{
Φ

(
−β†Tµ(1)√

β†T
Σβ†

)
+Φ

(
β†Tµ(2)√
β†T

Σβ†

)}−1

≤ max

⎧⎨⎩Φ
⎛⎝−β̂0 − β̂

⊤

δ/2√
β̂

⊤

Σβ̂

⎞⎠/Φ

(
−β†T δ/2√
β†T

Σβ†

)

− 1, Φ

⎛⎝ β̂0 − β̂
⊤

δ/2√
β̂

⊤

Σβ̂

⎞⎠/Φ

(
−β†T δ/2√
β†T

Σβ†

)
− 1

⎫⎬⎭
≡ max{R(1), R(2)

}.

We will use the following property of standard Gaussian distribution function [6]:

|Φ(x0 + r)/Φ(x0) − 1| ≤ c1|r|(|x0| + 1) exp(c2|x0r|). (C.6)

For k ∈ {1, 2}, let

r (k) =

⏐⏐⏐(β̂0 + β̂
⊤

µ(k))/
√

β̂
⊤

Σβ̂ − β†Tµ(k)/

√
β†T

Σβ†
⏐⏐⏐.

Since β†T δ/
√

β†T
Σβ†

= ∆1/2, it suffices to verify the orders of r (k) and∆.
According to Theorem 2, ∥β̂ − β†

∥2 ≤ 3λτ ∗
√
s /σ with probability going to 1. Moreover, by the definition of β†, we have

β†
= 4/(4 +∆)β∗, and β†T

Σβ†
= 16∆/(4 +∆)2. Since

|β̂
⊤

Σβ̂ − β†T
Σβ†

| ≤ |(β̂ − β†)⊤Σ(β̂ − β†)| + 2|(β̂ − β†)⊤Σβ†
|

≤ λmax(Σ)∥β̂ − β†
∥
2
2 + 2λmax(Σ)∥β̂ − β†

∥2∥β
†
∥2 ≤ 3λmax(Σ)∥β̂ − β†

∥2∥β
†
∥2,

≤ 9λmax(Σ)λτ ∗
√
s ∥β†

∥2/σ ,

for sufficiently large n, we have

|(β̂
⊤

Σβ̂)−1/2
− (β†T

Σβ†)−1/2
| =

⏐⏐⏐⏐⏐ (β̂
⊤

Σβ̂)1/2 − (β†T
Σβ†)1/2

(β̂
⊤

Σβ̂)1/2(β†T
Σβ†)1/2

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐ β̂
⊤

Σβ̂ − β†T
Σβ†

(β̂
⊤

Σβ̂)1/2 · (β†T
Σβ†)1/2[(β̂

⊤

Σβ̂)1/2 + (β†T
Σβ†)1/2]

⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐ β̂
⊤

Σβ̂ − β†T
Σβ†

3/4(β†T
Σβ†)3/2

⏐⏐⏐⏐⏐ ≤
(4 +∆)3

4∆3/2 λmax(Σ)λτ ∗
√
s ∥β†

∥2/σ ,

in which the first inequality holds because β̂
⊤

Σβ̂ ≥ β†T
Σβ†/2 for sufficiently large n. Moreover, under χ we have,

|(β̂0 + β̂
⊤

δ/2) − (β†T δ/2)| ≤ |(β̂ − β†)⊤δ|/2 + |−x̄⊤β̂|

≤ ∥β̂ − β†
∥2∥δ∥2/2 + |x̄⊤β†

| + |x̄⊤(β̂ − β†)| ≤ 3λτ ∗
√
s ∥δ∥2/(2σ ) + ∥β†

∥1ϵ.

Therefore,

r (1) ≤ |(β̂0 + β̂
⊤

δ/2){(β̂
⊤

Σβ̂)−1/2
− (β†T

Σβ†)−1/2
}| + |(β̂0 + β̂

⊤

δ/2) − β†T δ/2|/(β†T
Σβ†)1/2

≤
(4 +∆)2

2∆1/2 λτ ∗λmax(Σ)
√
s ∥β†

∥2/σ +
4 +∆

4∆1/2 {2λτ ∗
√
s ∥δ∥2/σ + ∥β†

∥1ϵ}.

Using the property (C.6), then we have

R(1)
=

⏐⏐⏐⏐Φ(−∆1/2/2 + r (1))
Φ(−∆1/2/2)

− 1
⏐⏐⏐⏐ ≤ c1|r (1)|(∆1/2/2 + 1) exp(c2r (1)∆1/2/2) = O{r (1)∆1/2 exp(c2r (1)∆1/2/2)}.

Since ∆2λτ ∗λmax(Σ)
√
s ∥β†

∥2/σ → 0, ∆λτ ∗
√
s ∥δ∥2/σ → 0, and ∆nγ−1

∥β†
∥1 → 0, we have r (1)∆1/2

→ 0 and thus
R(1) p

→ 0. Similarly, we can show R(2) p
→ 0, which proves the theorem.
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