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Geometric Reinforcement Learning Based Path Planning for Mobile
Sensor Networks in Advection-Diffusion Field Reconstruction

Jie You and Wencen Wu

Abstract— We propose a geometric reinforcement learning
algorithm for real-time path planning for mobile sensor net-
works (MSNs) in the problem of reconstructing a spatial-
temporal varying field described by the advection-diffusion
partial differential equation. A Luenberger state estimator is
provided to reconstruct the concentration field, which uses the
collected measurements from a MSN along its trajectory. Since
the path of the MSN is critical in reconstructing the field,
a novel geometric reinforcement learning (GRL) algorithm is
developed for the real-time path planning. The basic idea of
GRL is to divide the whole area into a series of lattice to
employ a specific time-varying reward matrix, which contains
the information of the length of path and the mapping error.
Thus, the proposed GRL can balance the performance of the
field reconstruction and the efficiency of the path. By updating
the reward matrix, the real-time path planning problem can be
converted to the shortest path problem in a weighted graph,
which can be solved efficiently using dynamic programming.
The convergence of calculating the reward matrix is theo-
retically proven. Simulation results serve to demonstrate the
effectiveness and feasibility of the proposed GRL for a MSN.

I. INTRODUCTION

Many environmental advection-diffusion processes are of-
ten termed distributed parameter systems (DPSs) as their
states depend not only on time, but also on spatial dynamics.
Approximate mathematical modeling of DPSs often yields
partial differential equations (PDEs) [1]-[3]. In environmen-
tal monitoring and pollution control, estimation and predi-
cation of these advection-diffusion processes find important
applications. For example, a life-threatening contaminant
source is dropped intentionally or unintentionally into a water
reservoir. The release of dangerous materials from the source
results in a plume. The real-time mapping of such a plume
would allow tracking the source and containing possible
adverse effects or at least reducing the impact of the release
[31-[5].

One of the greatest challenges in monitoring advection-
diffusion processes is to achieve the state estimation of the
processes using mobile sensor networks (MSNs) [1], [6], [7],
which are collections of robotic agents with sensing, commu-
nication, and locomotion capabilities. Due to their mobility
and adaptiveness to the environments, MSNs are ideal for
the advection-diffusion field reconstruction mission, which
often requires the exploration of relatively large regions. To
increase the state estimation performance, there is a need
to effectively solve path planning problems to guide agents
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to move along information-rich paths. There exist several
model-based works dealing with the use of mobile agents
for the state estimation of diffusion processes [1], [8], [9].
In general, the problem of selecting the number and locations
of sensors and actuators for the control and state estimation
of such systems is related to the combined control theory
and computational approach, which is supported by a sound
theory [8], [10], [11]. However, most of these studies have
been proven to be effective only in offline schemes, which
do not fit in many practical emerging scenarios.

In many realistic scenarios, it is desirable to provide
feasible solutions for the path planning in a real-time fashion.
In literature [12], [13], the dynamics of mobile agents
is incorporated into the dynamics of the spatial-temporal
process, which assists in the computation of guidance polices
for mobile sensors deployed in spatial domains. However,
when solving for the optimal paths, most of these works only
consider the mapping error in the cost function [12], [13],
which may make the solution easily stuck in local optima
and fail to work in cases with multiple sources. Therefore,
a reinforcement learning algorithm, which keeps a balance
between exploration and exploitation, may provide a more
appropriate solution in the long run [7], [14]. The basic idea
of reinforcement learning is to obtain the optimal control
strategy from the delayed rewards according to the observed
state of the environment in a learning discrete map and to
make a control strategy to select the actions to achieve the
purpose [14]. To the best of our knowledge, the reinforce-
ment learning based path planning for the advection-diffusion
field reconstruction is not well studied.

In this paper, we address the problem of real-time path
planning for MSNs in the advection-diffusion field recon-
struction from the perspective of reinforcement learning. By
using the collected measurements from a MSN along the
moving trajectory, we first provide a Luenberger observer
to achieve the reconstruction of an advection-diffusion field
that takes a form of the copy of the advection-diffusion PDE
with a stabilizing error term. Since the performance of state
estimation heavily depends on the trajectory of the MSN,
a novel geometric reinforcement learning (GRL) algorithm
based on a time-varying reward matrix is further developed
utilizing the length of the path and mapping error from the
Luenberger observer. We divide the whole area into a series
of lattice and exploit a specific reward matrix, which is
simple and efficient for real-time path planning. In GRL, the
reward matrix is adaptively updated based on the mapping
error and the distance between any two grid points. The
convergence of calculating the reward matrix is theoretically

1949



proven. Simulation results validate the effectiveness and
feasibility of GRL for a MSN.

The problem is formulated in Section II. Section III
presents the process state estimator. Section IV shows the
geometric reinforcement learning for path planning using
a MSN. Simulation results are presented in Section V.
Conclusions and future work follow in Section VI.

II. PROBLEM FORMULATION

In this section, we formulate the problem of geometric
reinforcement learning based path planning for mobile sensor
networks for advection-diffusion field reconstruction.

A. Environmental models

It is well known that the atmospheric or waterborne
pollution transport processes can be described by the fol-
lowing two-dimensional (2D) partial differential equation in
a domain Q:

dz(n,1)
Jt

where z(r,¢) is the concentration function, V represents
the gradient operator, V> represents the Laplacian operator,
0 > 0 is a constant diffusion coefficient, and v is a vector
representing the flow velocity. The meaning of Equation (1)
is that there is a net flow of substance from the regions with
higher concentration of the substance to the ones with lower
concentration. This type of PDEs in Equation (1) is widely
used to described physical and engineering phenomena such
as heat process, population dynamics, chemical reactors,
fluid dynamics, etc., [6], [9], [15]. The parameters 8 and v are
assumed to be known, which can be identified using mobile
sensor networks as described in our previous works [4], [15],
[16]. In this work, we will focus on the path planning of
MSNs for the advection-diffusion field reconstruction.

In practical applications such as environmental monitor-
ing, the domain Q is much larger than sensor dimensions
so that the boundary can be modeled as a flat surface [9],
[15]. Hence, the initial and Dirichlet boundary conditions for
Equation (1) are assumed as [9], [15].

2(r,0) = z0(r),
z2(rt) =zp(nr1), r € 0Q,

= 0V2z(rt) +vIVz(rt), reQ, (D

2

where zo(r) and z,(r,¢) are the arbitrary initial condition and
Dirichlet boundary condition, respectively.

B. Sensor dynamics

Consider a formation of N sensing agents forming a mo-
bile sensor network moving in the field. The sensing agents
have single-integrator dynamics given by 7;(¢) = u;(¢),i =
1,2,...,N. where r;(t) C R? is the position, and u(¢) C R?
is the velocity of the ith agent, respectively. As the agent
moves in a field, the position r;(¢) is a function of the time
t. For simplicity, we drop the variable 7 in r;(¢) hereafter. We
have the following assumption for the sensing agents.

Assumption II.1 Every sensing agent is equipped with sen-
sors to measure its location r; and the concentration value

Z(r,‘,l‘).

Under Assumption II.1, each agent equipped with sensors
is able to provide the concentration measurement p(r;,z) =
z(ri,t) +n;, where n; is assumed to be i.i.d Gaussian noise.
We can employ a cooperative Kalman filter to reduce the
measurement noise n;, which is described in our previous
works [4], [12], [15]. In this work, we focus on the path
planning of MSNs. Thus, we assume the noise-free mea-
surements and use z(r;,¢) in equations hereafter.
The problem is formulated as:

1) Under Assumption II.1, develop an estimator that
estimates the concentration z(r,7) r € Q based on the
collected measurements using sensing agents moving
in the advection-diffusion field.

2) Utilizing the collected measurements, build an efficient
algorithm for real-time path planning for MSNs to
improve the state estimation performance.

In the following, we first introduce a Luenberger state
estimator to gradually achieve the advection-diffusion field
reconstruction. To enable the real-time path planning, we
employ a specific reward matrix containing the information
of mapping errors and the geometric distance between the
position of the formation center and the target location. By
using this reward matrix, we design a novel GRL algorithm
so that the agents will move along an information-rich path.

III. THE PROCESS STATE ESTIMATOR

In this section, we first introduce the formation control for
MSNs, then develop a process state estimator to construct a
map of the advection-diffusion processes using the measure-
ments taken by mobile agents over time as input.

A. The view scope and the formation control of MSNs

When multiple coordinated agents move in the field, the
agents can only measure the concentration value at finite
discrete points and share the information with each other.
Then we implement a cubic spline interpolation to fit the
measurements so that we obtain the field values in a limited
detection area or view scope at each time step. Let us denote
the limited view scope as I'(¢). The illustration of the view
scope I'(z) with eight mobile agents is the grey shaded area
shown in Fig. 1, in which the blue circles represent the eight
agents at current time step and orange circles represent the
eight agents at previous time step. The field value z(r,¢) r €
I'(¢) can be obtained through interpolating the measurements
of mobile agents or running a cooperative Kalman filter [15].
Thus, it’s reasonable to assume that the estimated field values
within the view scope I'(¢) are available to us at each time
instant . The field values in the time-dependent view scope
I'(¢) are then modelled by a spatial Dirac delta function,

V(1) = /'5(r_rs)z(r,t)d9, Rel(), reQ, 3

where ry is an arbitrary spatial point in the time-dependent
view scope I'(z) and §(.) is the impulse function.

In this view scope I'(¢), we require the agents to stay
relatively close to each other to collect the measurements of
the field. It is therefore important to have a formation control
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Fig. 1. A formation composed of eight agents with the center r..

for the MSN to maintain a desired formation. It should be
noted that, I'(¢) moves correspondingly, as the MSN moves
along a certain trajectory. For simplify, we drop the variable
t in I'(¢) hereafter.

Motivated by [12], [17]-[19], we apply the following
consensus tracking algorithm for each agent,

Z aij[(

where u; is the control input of the ith robot, a;; is the
entry of the adjacency matrix which specifies the intercon-
nection topology of the MSN, ¢; is a positive scalar, and
rf represents the desired position of the ith agent. rf’ is
denoted as ¢ = r.+R;-rd., where r, = %Zri is the position
of the formation center, which will be designed using the
geometric reinforcement learning method in the next section,
rﬁ; represents the desired deviation of the ith agents relative
to the formation center . and R; is the rotation matrix from
body frame to inertia frame. For example, in a 2D setting,
R; is defined as CQS(GCi) —sin(Oei)

sin(6gi)  cos(6c)
orientation of the body frame with respect to the inertia
frame. Fig. 1 illustrates an example of the formation control
composed of eight agents, where Cj represents the inertial
frame and Cr represents the body frame with the origin at

the formation center r. with an orientation 6,; relative to Cy.

Remark IIL.1 It should be noted that the shape of the
formation does not need to be fixed. The optimal formation
shapes can be determined by different criteria such as graph
connectivity, energy efficiency, etc. [17]-[20]. Moreover,
with the changing dynamics of the environment, the optimal
Jormation shape can change over time. Therefore, when the
agents switch from one formation to another, a collision
avoidance scheme should be employed, which is also referred
as the collision-free motion control. Interested readers can
refer to [17]—[19] for additional insight.

)= (rj=r)], @

-d
up=r; =r; _(pz

, where O,; is the

B. Luenberger state estimator

By applying the formation control, a MSN can coopera-
tively provide the measurements of field values in the view
scope I' determined by the desired formation at each time
step. In this section, we will show how to use this information
to achieve the field reconstruction.

The Luenberger estimator developed in [9] is modified
to account for the trajectories of MSNs to estimate the

concentration state over the entire spatial domain. The basic
idea is employing an estimator in the form of a copy of
the system, plus a stabilizing error term. The proposed state
estimator takes the form,

L 2(ren)). )
where r; € I' and r € Q. The hat notation indicates that
2(r,r) is the estimate of the concentration z(r¢), ¥ > 0 is
constant, and Z(ry,?) provides the state estimator prediction
of the concentration value in the view scope I'. Similar to
the definition of y(ry,t) in Equation (3), 2(rs,7) is modelled
by a spatial Dirac delta function as follows,

OV22(r,t) +vIVE(rt) +y- (y(rs,t) —

2(rs,t) /5 r—rg)2(rnt)dQ, ry €T, re Q, (6)

where 6(.) is the impulse function. In fact, y(ry,t)
is the stabilizing error in the view scope I'.

In this paper, the trajectory design of the MSN in the next
section will be based on the state estimator error, or mapping
error, that is, e(r,t) = z(r,t) —2(r,1),r € Q. Using Equations
(1) and (5), we can obtain the dynamics of e(r,t),

de(r,r)
ot 2(rs,1)), (1)

where r, € I' and r € Q. By applying the above error
dynamics in Equation (7), the convergence proof of the
Luenberger estimator in Equation (5) can be readily obtained
by using the Lyapunov function V = —(e(r1),A. - e(nt)),
where A, is a closed-loop operator with symmetry and
coercivity properties. There are several literatures [9] include
this part of proof. We omit the detailed proof here due to
space limitation. Please kindly refer to the related references
[9], [12] for more details.

_2(’%71‘)

= sze(r,t) +vIVe(rt) —y- (y(rs,t) —

IV. GEOMETRIC REINFORCEMENT LEARNING FOR PATH
PLANNING

Once the mapping errors in the view scope are estimated
sequentially over time, GRL is designed to determine the
path of the the formation center r. of the MSN.

A. Path planning

The decision in reinforcement learning depends on a set of
actions decided by the reward matrix G. The reward matrix G
is essential for a reinforcement learning based path planning
problem, which can be used to find the optimal path from
a given point to the target point with optimal distance and
minimum integral mapping error. The real-time path planning
problem can be efficiently solved by adaptively updating
this specific remard matrix. In order to represent the reward
matrix, the computational domain Q is discretized into a set
of Ny x Ny grid points, where Q' = [0, Nx] x [0, Ny]. Then,
the dimension of G is Nx X Ny and the number of grid points
in &' is denoted as N,q. = Nx X Ny.

Suppose that the formation center r, starts at the start point
rs and ends at the target point r7. The target point rr can be
considered as a base station, where agents can charge energy.
The goal of GRL is to find the optimal sequential positions
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0. rl ... rT for the MSN by optimizing the reward matrix G,

which can be found as follow,
e = argmin(G),1 € [0,7], )

c

where 7 is the terminal time, 0 = rg, and r¥ = ry. In the
following, we will show how to construct the reward matrix

G based on the optimization criteria for path planning.

B. Optimization criteria for path planning

We first introduce our optimization criteria for path plan-
ning. The goal of path planning for MSNs is to minimize
both the mapping error and the length of the path. The
integral mapping error in the view scope can be defined as,

_ 2
M_Ag(mwp )

We denote the geometric distance 7, which is the length of
the path from the start point rg to the end point rr,

T:/a’s7
Js

where S is the path of the formation center r.. Assuming
that the speed of agent is fixed, minimizing the length of
the path is then equivalent to minimizing the traveling time
along the path. Therefore, the consideration of geometric
distance T makes our scheme energy-efficient. Moreover, for
a MSN, the geometric distance is a very valuable element for
path planning when only partial information of the mapping
errors is available. In this case, the mobile agents can use
the distance information to guide them to escape from local
optimums of mapping error, which increases the robustness
of the proposed algorithm. Note that, as the MSN moves
along a trajectory, I" moves correspondingly.

By combining the mapping error in Equation (9) and the
length of the path in Equation (10), the optimization objective
can be written as

St = arngin(T—|—K X M),

(10)

(1)

where S* is the designed optimal path and K > 0 controls
the degree of the influence of the mapping error and the
geometric distance. A large K means that the MSN has the
tendency of moving towards directions that would reduce
the mapping error instead of directions that result in the
shorter path towards the target point. K should be selected
appropriately to keep a good balance between the accuracy
of the field reconstruction and the length of the path.

C. The reward matrix based on the mapping error and
geometric distance

In Section IV.B, we illustrate the continuous version of
the optimization criteria of GRL (11). Since the field Q is
divided into a series of lattice (Ny x Ny grid points), we will
introduce the weight between one grid point and its neighbor
points, which serves as the discretized representation of our
optimization criteria (11). By using this weight, the reward
matrix G that is critical in GRL can be effectively generated.

To find the next reward from the current reward, we need
know the weight or relationship between one grid point and

its neighbor points. Then, the reward matrix can be updated
according to the current reward and the weight as follows,

Grj = er,r,,?,, + Gr,,‘mj € 1,2, Nuode, (12)

where G, is the element of reward matrix G at point r; and
Wi, r,, 18 the weight between grid point r; and its neighbor
point r,p, h € {1,2,---,8}. To update the reward matrix
G efficiently, we assume the further action in each step is
limited to eight directions as shown in the Fig. 2. More
specifically, the next position of r; is limited to the eight

grid points of the neighborhood r, 5, h € {1,2,---,8}.

e .
n Tn,2 .3
3 H ;

LEWI P
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Fig. 2. TIllustration of the reward matrix G and the eight directions from
a point to its neighbors. The blue circles are the eight neighbor grid points
Tnp of 1.

Considering our optimization criteria in Equation (11), this
weight Wr,-.rn_h should contain the information of both the
geometric distance T and mapping error M. Then, the weight
for the path between one point and its neighbor points is
computed by the distance and the mapping error measure,

Wit = ey + K X fe(€ (rans)), (13)

J J

where d;, = |[rj —ranll2 is the distance between r; and
T 1t should be pointed out that dy, ,,, and fo(€ (ran:t))
are the discretized representation of 7 and M in Equation
(11), respectively. €' (r, 4,t) is the normalized mapping error,

2
. . e~ (r Jt)—e
which is shown as follow é/(r, ;,t) = W,m,h er,
’ €max~ Cmin

where e(r,;,t) is the mapping error at position r, ,, which
can be obtained from the Luenburger observer in Equation
(7), emax and ep;;, are the maximum and minimum mapping
errors in the view scope I'. And f;(.) is a Z-shaped function
shown in Fig 3, which is shown as,

1 if p <O,
1-2p%,  if0<p<i,
= 14
1#) 20p—1)2, iff<p<l, (1
0, if p>1.

We use f;(.) to reverse the influence of normalized mapping
error €' (r, 5,t). More specifically, the larger the normalized
mapping error € (r, p,t) is, the smaller weight we get. Then,
we can readily convert a path planning problem to a shortest
path problem in a weighted graph, which can reduce the
computational complexity of the graph search algorithm.
It should be noted that, different from existing works on
reinforcement learning with static reward matrix [7], [14], the
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designed reward matrix G based on an advection-diffusion
field is time varying. Therefore, as the mobile agents move,
the weight matrix W in the scope view will be dynamically
updated to track the reward matrix according to (13).

Z-shaped function
1

0.9,
0.8;

Weight
o o o

0.2,

0.1

Fig. 3. The illustration of the Z-shaped function f;(-).

D. The geometric reinforcement learning algorithm

The key idea of GRL is how to calculate the reward matrix
G for MSN, which can be used to find the real-time optimal
path from a given point rg to a target point 7 with optimal
geometric distance and integral mapping errors.

In this paper, we employ the Bellman Ford algorithm to
update G’,j, which is the element of reward matrix G at point
r; and at time step . The idea of the Bellman Ford algorithm
is based on dynamic programming [7], [14]. The procedure
of the Bellman Ford algorithm is described in Algorithm 1.

Algorithm 1 Online Bellman Ford algorithm for real-time
path planning

1: Assign G(r)T at the end point r7 with 0, and the other
points with +oo (a big value).

2: for t = 1 to N,yyge do
3:  for Each edge do
4: Update G,; by its neighbors points as:

41 . t t

Gr_/_ = mm{G,j,Wr_,-,r,,.,, + Gr,,r,,]“
5:  end for
6: end for

We can observe from the above algorithm that the time
complexity of this algorithm is O(8(Nyode)?) = O((Npode)?)
and the space complexity of this algorithm is O(N,pq.). In
the following, we show that by running Algorithm 1, we can
find the optimal path from a given point rg to the end point rr
with optimal geometric distance and integral mapping errors.

Proposition IV.1 Consider the weighted directed graph with
weight in Equation (13). Given the start point rs and the
target point rr, the optimal path from rs to rr can be found
by running Algorithm 1.

Proof: In the proposed graph, each point connects with
eight neighbor points. Thus, rg is reachable from rr no more
than N,,q. steps. Next, from Equation (13), we can observe
that all of weights W, ,. , are positive. That means there are
no negatives cycles in the proposed weight graph. Then, we
can prove the proposition by induction : 1) When rg = rr,
G’,T equals to 0, since we do not have negative cycles. 2)
Supposing the mth point r,, leads to an optimal path with rr
as the target, we have an optimal path containing no more

than m edges. Now we just need to prove the m -+ 1th point
leads to the same target point using our algorithm. From
Equation (13), we can find that

G, —~=min{W,

Fmt1 kom+1

+G ), k<m. (15)

As G’,k is already calculated for any other points, the optimal
path for m+ 1th point can be computed using Equation (15).
Thus, the procedure can find the optimal path from the start
point to the target point. [ ]

The above procedure is based on the greedy algorithm
to find each position of a path. When the mobile agents
move, we should update the weight matrix W according to
the measured mapping errors in the view scope I' and re-
compute the path in a real time fashion. It also should be
noted that after the MSN reaches the target point rr, the data
obtained are then analyzed and used to select the next target
point. We can repeat the above path planning until we obtain
the satisfactory field reconstruction performance.

V. SIMULATION RESULT

To demonstrate the performance of the proposed GRL
path planning scheme, we consider a well-known advection-
diffusion process in Equation (1) with the diffusion coeffi-
cient 0 = 0.6 and the flow velocity v =[—0.4,0.2]. The initial
condition is illustrated in Fig. 4, in which there are two
maximum values at points (20,40) and (75,70). The whole
domain is a rectangular area with 0 <x <100, 0 <y < 100.
We implement an implicit ADI finite-difference scheme in
MATLAB, with 100-by-100 grid lattices to generate the
concentration field. The computational time step of 0.ls is
chosen for the PDE simulation and the weight K is set to 0.5.
In the simulation, we deploy eight sensing agents represented
by the colored stars and circles, which are controlled to
maintain the desired formation shown in Fig. 4. In Fig.
4, the contour represents the level curves of the advection-
diffusion field and the dotted colored line shows the designed
trajectory for the formation center of the MSN. To achieve
a fair validation, the simulations are performed using three
different start points and end points, which are shown in the
dotted blue, red, and black lines in Fig. 5. We can observe
that the designed trajectories can go through the two local
optimums and avoid getting stuck in the local optimums. To
illustrate the efficiency of the proposed state estimator, we
further calculate the root mean squared error (RMSE) of the
state estimation in the whole spatial domain corresponding
to the simulation shown in Fig. 4. The RMSE is shown in
Fig. 6. As expected, RMSE is gradually decreasing as the
sensing agents collect more measurements of the process.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a new geometric reinforcement learn-
ing method to solve the path planning problem for a MSN to
achieve the reconstruction of an advection-diffusion field. By
designing a specific reward matrix, the proposed GRL keeps
a good balance between the field reconstruction performance
and path length. Compared with other methods, the proposed
GRL leads to a simple path planning algorithm, which can
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Fig. 4. The illustration of the evolution of the field and the real-time
designed trajectory with start point (12,12) and end point (85,90).
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Fig. 5. The illustration of real-time path planning with three different
start and end points. The dotted blue, red, and black lines are the resulting
trajectories. The dotted blue line starts at (5, 35) and ends at (90, 90). The
dotted red line starts at (12, 12) and ends at (85, 90). The dotted black line
starts at (15, 5) and ends at (75, 90).
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Fig. 6. The RMSE of the state estimation error.

provide a feasible solution within a short time. Theoretical
justifications are provided for the reward matrix calculation.
Our future work will focus on setting adaptive K for more
efficient path planning, extending the algorithm to other types
of PDEs, and applying the algorithm to real mobile robot
testbed to verify the effectiveness.
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