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ABSTRACT
In this paper, we propose a new method to approach the

problem of structural shape and topology optimization on mani-
fold (or free-form surfaces). A manifold is conformally mapped
onto a 2D rectangle domain, where the level set functions are
defined. With conformal mapping, the corresponding covari-
ant derivatives on a manifold can be represented by the Eu-
clidean differential operators multiplied by a scalar. Therefore,
the topology optimization problem on a free-form surface can be
formulated as a 2D problem in the Euclidean space. To evolve
the boundaries on a free-form surface, we propose a modified
Hamilton-Jacobi equation and solve it on a 2D plane following
the conformal geometry theory. In this way, we can fully uti-
lize the conventional level-set-based computational framework.
Compared with other established approaches which need to
project the Euclidean differential operators to the manifold, the
computational difficulty of our method is highly reduced while
all the advantages of conventional level set methods are well
preserved. We hope the proposed computational framework can
provide a timely solution to increasing applications involving in-
novative structural designs on free-form surfaces in different en-
gineering fields.

∗Address all correspondence to this author.

1 INTRODUCTION
Previous Work of Topology Optimization on Surface

Topology optimization aims to find the best geometry of a
design in order to obtain an optimal performance under certain
constraints. Topology optimization on shell structure has been
studied extensively because of its broadly applications in engi-
neering including architectural design, automotive and aviation
industry and so on. Recently, due to the maturation of additive
manufacturing technologies which provide the extra freedom on
design space, people’s desires to obtain shell structure designs on
general surfaces are inflated. The density-based approach,such as
the homogenization method [1,2,3] and the Solid Isotropic Mate-
rial with Penalization (SIMP) method [4, 5], is the most popular
way in doing topology optimization on surface. The key idea
is to find the ideal material distribution of a predefined design
domain. By using this method, Fauche et al. [6] obtained the
optimal thickness distribution on a thin shell bridge. Moreover,
Ansola et al. [7] proposed an integrated system to solve the shape
and topology optimization problem on a surface shell structure.
Afterwards, he extended the work to optimize the shape and re-
inforcement layout on a surface simultaneously [8]. In order to
optimize on more general surfaces, Hassani et al. [9] introduced
the NURBS (Non Uniform Rational B-Spline) technology into
their SIMP model for surface generation. However, the design
achieved by the density based optimization method may contain
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the checkerboard patterns or gray elements. Thus, a post pro-
cessing approach like the noise cleaning technique [9] has to be
considered. Alternatively, by adding a minimum length scale as a
geometric constraints, Guest [10] and Zhou et al. [11] were able
to filter the designs to obtain a relatively binary final design.

In contrast to the density-based method, the level set method
can provide a clear boundary design. Moreover, since the level
set functions are defined in the space with one higher dimension,
the higher-order geometric information, such as curvatures and
normal vectors, is embedded naturally in the geometric model.
It allows the level set method for a exclusive capability of deal-
ing with topological changes [12]. The level-set-based topology
optimization (TO) approach has been considered as a powerful
tool in generating innovative designs ever since the shape sen-
sitivity analysis been casted into the framework [13, 14, 15, 16].
However, the conventional level set functions are defined in the
Euclidean space R2 or R3 on a fixed Cartesian coordinate system,
which cannot satisfy the demand of TO on free-form surfaces.

Solving Partial Differential Equations (PDEs) on Mani-
folds

Essentially, the level set based topology optimization is a
PDE-driven approach [17]. Thus, the problem of level-set-
based topology optimization on manifolds is equivalent to solv-
ing variation problems and PDEs on surfaces, which has been
broadly studied in the fields of mathematics and computer graph-
ics. One popular method is based on the numerical approxima-
tion. A manifold is discretized to a triangle mesh [18], point
sets [19], NURBS or B-splines [20, 21], and the solution of the
global PDEs are approximated by solving the local PDEs on each
segments. Recently, the NURBS-based Isogeometric Analysis
method has been used for solving higher order PDEs on mani-
folds [20,21]. The numerical approximation approach is straight-
forward and can be combined with the FEA or CAD solvers.
However, the accuracy of this method is restricted to the quality
of the geometrical representations.

An alternative way of solving PDEs on surface is the em-
bedding method. The key idea is to construct a space surround-
ing the manifold on R3 explicitly (closest point method) [22] or
implicitly (level set method) [23], and then replace the PDEs on
surface by the standard representation defined in R3. Ruuth et
al. [22] presented the closet point method to solve PDEs on sur-
face as close as possible to the PDEs in R3. This approach is
efficient for the reason that the computation is only carried out
on a grid near the surface [22, 24]. However, since the embed-
ding PDE is only valid initially, an extension step is needed to
ensure the computational accuracy. Macdonald and Ruuth [25]
combined the closest point method with level set functions to
solve the PDEs as well as evolving the interfaces on the general
surface. Similar to the closest point method, the implicit method
solves embedding PDEs which defined in the embedded space.

While the embedded space is defined implicitly on one higher
dimension by using level set functions and the PDEs are solved
in the Cartesian coordinate system [26, 23, 27]. This approach
is both robust and accurate in dealing with deforming surfaces.
Chen et al. [28] utilized the method [23,29] to find the point-wise
correspondence of the manifolds during evolution. Nonetheless,
as stressed in the work of King et al [24], the implicit method
can not handle the complex surfaces as much as the closest point
method.

In this work, the method we use to solve PDEs on sur-
faces is conformal mapping [30, 31], which is an explicit ap-
proach [32, 33]. With conformal parameterization, a manifold
is mapped to a 2D domain. Meanwhile, the corresponding co-
variant derivatives on a surface can be represented by the Eu-
clidean differential operators multiplied by a scalar factor [34].
In other words, the variation problems on surfaces is transformed
to the 2D problems. This method offers us the significant advan-
tage which the level set base topology optimization problem on
a free-form surface can be reformulated as a 2D problem in the
Euclidean space. Consequently, we propose a new framework
to approach the problem of structural shape and topology opti-
mization on manifold (or free-form surfaces) by using level set
method and conformal mapping theory. The major contribution
is that we extend the conventional level-set based topology opti-
mization method from Euclidean space to surfaces with arbitrary
topologies.

The paper is organized as follows: Section. 2 introduces the
background regarding conventional level set method and confor-
mal mapping theory. In Section. 3, we formulate the problem
of compliance minimization problem on surface and provide the
sensitivity analysis. The numerical implementation including the
algorithm is presented in Section. 4, followed by the demonstra-
tion numerical experiments in Section. 5. Finally, in Section. 6,
the conclusions are drawn and the future work has been briefly
discussed.

2 METHOD OVERVIEW

In this paper, a computational framework is proposed for
topology optimization on free-form surfaces (manifold), which
hinges on the level-set-based topology optimization method and
the conformal mapping theory. The geometry information is
transported by using the conformal mapping between the man-
ifold and a 2D domain on the Euclidean space. The level set is
then defined on the 2D domain instead of on the surface. The
design is evolved based on computing the modified Hamilton-
Jacobi equation on 2D. The sensitivity analysis is done by using
the strain energy field obtained in the 3D simulation model. The
flow chart is shown in Fig. 1.
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FIGURE 1: THE FLOW CHAT

FIGURE 2: A SCHEMATIC OF LEVEL SET FUNCTIONS

2.1 The Conventional Level Set Based Topology Op-
timization Methodology

Conventionally, the level set function φ is defined in R2

or R3 as a implicit function on one higher dimension [13]. As
demonstrated in Fig. 2, the level set function can implicitly rep-
resents the boundary. By slicing the level set function on the zero
level, we can get the clear boundaries as shown in figure on the
right hand side of Fig. 2. As expressed in Eq. 1, according to the
value of the level set function, the domain is defined as three parts

which are the material, the interface and the void, respectively .

{ φ(x, t)> 0, x ∈Ω, material
φ(x, t) = 0, x ∈ Ω̄, boundary
φ(x, t)< 0, x ∈ D/Ω, void

(1)

where D is a bounded area represents the design domain and
D ⊂ R. x is an point inside the design domain. As discussed
in the Section. 1, the level set representation can spontaneously
handle topological deformation. The evolution of level set func-
tion is governed by solving the Hamilton- Jacobi equation which
is defined by differentiating the level set function with respect to
time t [13].

∂φ

∂ t
− ẋ ·∇φ = 0 (2)

where ẋ is velocity field.

2.2 Conformal Mapping
Suppose given two Riemannian surfaces (S1,g1) and

(S2,g2)where g1 and g2 are Riemannian metric tensors, a C1

smooth mapping ϕ : S1 → S2 is called conformal, if the pull-
back metric induced by ϕ and the original metric on the source
differ by a scalar function. Specifically, there exists a real funci-
ton λ : S→ R, such that

ϕ
∗g2 = e2λ g1.

Intuitively, the derivative map dϕ : T S1(p)→ T S2(ϕ(p)) is a
scaling transformation, which maps infinitesimal circles to in-
finitesimal circles. As shown in Fig. 3, a surface is conformally
mapped onto a 2D disk, and the infinitesimal circles on surface
as Fig. 3a are preserved on 2D as Fig. 3b. Therefore, ϕ pre-
serves angles. In conclusion, the conformal mapping can be re-
garded as a local scaling process governed by the scalar function
λ . It is proven [32] that by using conformal mapping the covari-
ant derivatives on surface are equivalent to the differential op-
erators on Euclidean apart from the scalar function. Thus, with
conformal mapping, PDEs on surface can be formulated to 2D
with a modified variational operators. For example, at each point
p ∈ (S,g), there is a neighbor U(p), which can be conformally
mapped onto the unit disk D2 on the plane. Suppose the planar
coordinates are (u,v), then the Riemanian metric can be written
as

g = e2λ (u,v)(du2 +dv2),

(u,v) is called the isothermal parameters of the surface.
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(a) Infinitesimal Circles on Sur-
face

(b) Infinitesimal Circles on 2D
Disk

FIGURE 3: CONFORMAL MAPPING FROM (a) TO (b) PRE-
SERVES INFINITESIMAL CIRCLES

3 TOPOLOGY OPTIMIZATION
3.1 Problem Formulation

In this paper, a mean compliance minimization problem of
free-form surface with a volume constraint is studied. The free-
form surface is considered to be a linear elastic shell structure.
The optimization problem is formulated as follows:

Minimize : J =
∫

Ω

ε̌i j(u)Ci jkl ε̌kl(u)dΩ

Subject to : a(u,v,φ) = l(v,φ)

V (Ω) =V ∗

where V denotes the volume of the manifold shell, V* refers to
the target volumn. Ci jkl is the fourth order constitutive tensor. Ω

is the region occupied with linear elastic material.

V (Ω) =
∫

D
H(φ)dΩ

a(u,v,φ) =
∫

Ω

ε̌i j(u)Ci jkl ε̌kl(v)dΩ

l(v) =
∫

Ω

f · vdΩ+
∫

Ω̄

g · vdΩ̄

where D is the design domain; a(u,v) is a symmetric bilinear
function, which means a(u,v) is linear both in u and v. Thus,
a(u,v) = a(v,u). l is a linear function depending on the body
force f and the traction force g as shown in Fig.4.

3.2 Shape Sensitivity Analysis
The Lagrangian of the optimization problem can be written

as:

L(u,v) = J+λ (a(u,v)− l(v)) (3)

FIGURE 4: A SCHEMATIC OF GENERAL BOUNDARY
CONDITION

where the λ is a Lagrange multiplier, and v is the test function.
Since a(u,v) and l(v) are linear functions in terms of v,

L(u,v) = J+a(u,λv)− l(λv) (4)

In equation (3), λv is in the same space of v. For simplicity
we can denote λv as v from now on, and equation (3) can be
reformulated as:

L(u,v) = a(u,u)+a(u,v)− l(v) (5)

The material derivative [35, 36] of the equation (5) with respect
to a pseudo time t is formulated as

dL(u,v)
dt

=
∂L(u,v)

∂ t
+

∂L(u,v)
∂Ω

(6)

where the partial derivative with respect to time results in the so
called adjoint equation:

∂L(u,v)
∂ t

= L
′
= a

′
(u,u)+a

′
(u,v), (7)

and

a
′
(u,u) = 2

∫
Ω

ε̌i j(u′)Ci jkl ε̌kl(u)dΩ

a
′
(u,v) =

∫
Ω

ε̌i j(u′)Ci jkl ε̌kl(v)dΩ.
(8)
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The convection term of the material derivative forms the shape
derivative which is formulated as follows:

∂L(u,v)
∂Ω

=
∫

Γ

ε̌i j(u)Ci jkl ε̌kl(u)vnds+
∫

Γ

ε̌i j(u)Ci jkl ε̌kl(v)vnds

−
∫

Γ

f · vvnds−
∫

Γ

[
∂ (g · v)

∂n
+κg · v]vnds.

(9)

Solving equation (7), we can get the adjoint variable v =
−2u. Substitute v = −2u to equation (9) and ignore the body
force, we can get

∂L(u,v)
∂Ω

=
∫

Γ

ε̌i j(u)Ci jkl ε̌kl(u)vnds (10)

By using the steepest-descent method, we can construct the nor-
mal velocity filed as

vn =−ε̌i j(u)Ci jkl ε̌kl(u) (11)

which is the strain energy density of the linear elastic structure.
The volume constraint is considered by using the penalty La-
grangian method.

vn =−ε̌i j(u)Ci jkl ε̌kl(u)+λ1(V −V ∗) (12)

4 NUMERICAL IMPLEMENTATION
4.1 Modified Hamilton-Jacobi Equation

By using our method, we can parameterize the manifold
conformally onto the rectangular domain and evolve the level set
function on 2D to optimize the design. Assume we have a level
set function φ(x, t) where the boundary is defined as

φ(x, t) = 0, (13)

Conventionally, by differentiating Eq. 13 with respect to t, we get
the Hamilton-Jacobi (H-J) equation. In our case, as stressed in
Section. 2.2 , we can modify the H-J equation with the manifold
version of gradient in order to solve the PDE on surface, which
is shown as follows:

∂φ

∂ t
− ẋ ·∇gφ = 0 (14)

where ẋ is the continuous velocity field,∇gφ is the gradient of
φ on manifold. According to [37], Only the normal component

of velocity field plays a part in deforming the boundary.Thus,
Eq. 14 can be rewritten as

∂φ

∂ t
− vn|∇gφ |g = 0 (15)

Let f be the conformal mapping between manifold M and 2-D
domain: f : M→ R2. Considering [33, 34]:

|∇gφ |g = e−λ |∇φ | (16)

where the λ is a conformal factor. Thus the Eq. 14 changes to

∂φ

∂ t
− e−λ vn|∇φ |= 0 (17)

We define the Eq. 17 as modified Hamilton-Jacobi equation (M-
H-J). The level set revolution on manifold can be successfully
solved on the 2D domain by M-H-J equation.

4.2 Algorithm
In our proposed method, the geometry information is trans-

ported by using conformal mapping from the manifold to the Eu-
clidean space, as shown in Section. 2.2. Instead of solving the
variation problem directly on the surface, a modified Hamilton-
Jacobi equation is computed on 2D to involve the interface of
level set function in order to optimize the design. The velocity
is inherited from the sensitivity analysis results, which is equiva-
lent to the strain energy density obtained in the simulation model
on the surface. Intuitively, the method can guarantee to optimize
the 3D design with a lower computational cost.

The framework can be decomposed into seven steps as
shown in Alg. 1. The input is a triangle mesh surface S1. In the
first step, a 2D triangular mesh rectangle Q1 is achieved utilizing
the conformal mapping parametrization. Then, we construct a
2D quad mesh on Q where we define the level set function sub-
sequently. The third step is to transport the level set values from
2D onto the surface. Firstly, the level set values on the 2D tri-
angular mesh can be interpolated from the values on 2D quad
mesh. By conformal mapping , the vertices’s relationship on S1
and Q1 is given, which means a vertex on Q1 is corresponding to
one specific vertex on the surface S1. Since the level set value on
each vertices’s can be regarded as a constant, the transportation
from 2D to surface can be naturally made by the calculated con-
formal mapping parametrization. Step 4 and 5 are about to solve
the equilibrium physics equations and do shape sensitivity anal-
ysis to construct the design velocity filed on the surface. Next,
by solving the Modified Hamilton-Jacobi equation, the level set
function is updated. The step 2 through 6 is repeated until the
convergence criterion is fulfilled.
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Algorithm 1: A Framework for Level-Set-Based Shape
and Topology Optimization on Manifold

Input: A triangle meshed surface
Output: The 3D minimum compliance design

1 Given S1, compute the global conformal parametrization
from S1 onto the 2D rectangle Q1.;

2 Initialize the level set function φ on the 2D rectangle
domain Q;

3 Transport the value of φ onto S1 by using Barycentric
interpolation method;

4 Solving equilibrium equation on S1 to obtain strain
energy field;

5 Shape sensitivity analysis to construct the design velocity
filed;

6 Update level-set function by solving the M-H-J Equation
on Q until getting converged;

7 Get the topology optimization design S2 from φ ;

(a) Mean curvature flow on the surface

(b) Mean curvature flow on 2D

FIGURE 5: MEAN CURVATURE FLOW

5 NUMERICAL EXAMPLES
5.1 Curvature Flow on Surface

In this example, we test our level set algorithm on the motion
with curvature-dependent acceleration. The interface moves in
the normal direction with a velocity reciprocal to its curvature:

vn =−κ =−∇ ·n (18)

where ∇ is the Laplace operator and n is the normal vector of the
level set. Initially, the level set is designed in a star-shape [38] on
the 2D rectangle domain as shown in Fig. 5b. By using confor-
mal mapping, the star-shape interface is mapped to the surface
as Fig. 5a. Eventually, on both 2D and the surface, the interface
becomes to a circle and shrinks to a point until disappeared.

(a) Motion on the torus (b) Motion on 2D

FIGURE 6: CONSTANT CONVECTION ON TORUS

5.2 Constant Convection Motion on the Torus (Genus
one Surface)

In this example, a numerical experiment of interface moving
on a torus is applied as to show the advantage of our proposed al-
gorithm on handling boundary changes on manifolds with com-
plex topologies. As shown in Fig. 6b a circle is defined by level
set function on the zero level is moving under a constant velocity.
The corresponding motion on torus surface is shown in Fig. 6a.
The motion is driven by the H-J equation defined on 2D as

∂φ

∂ t
− ẋ ·φ = 0 (19)

Here, the velocity field ẋ is a constant along the specified direc-
tion on 2D. By applying the periodic boundary conditions [39],
the circle can move continuously on the torus.

5.3 Vase Shape Surface Optimization
In the following example, the extended Level Set methods

with conformal geometry theory is applied to the minimum mean
compliance problem discussed in Section. 3 on a vase shape shell
model. The volume target of the design is 40%. The linear elas-
tic material with properties of Piosson’s ratio ν = 0.3 and the
Young’s modulus E = 1GPa is applied. In order to avoid sin-
gularity, a weak material with E = 10−6GPa is set for the void.
Fig. 7a shows the boundary conditions and the design domain. A
vertical distributed load and a moment of force along -z direction
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(a) Design Boundary Conditions

(b) Design Evolution on Vase Surface

(c) Design Evolution on 2D

FIGURE 7: TOPOLOGY OPTIMIZATION ON VASE SUR-
FACE

FIGURE 8: THE OPTIMIZATION HISTORY OF A VASE
SURFACE DESIGN

are applied on the top of the vase with bottom boundary fixed.
Following the Alg. 1, we map the 3D triangular meshed vase sur-
face with 39764 elements onto a 2D rectangle domain Q1. Then
the level set function is constructed on Q1 with a 101×75 quad
mesh in order to evolve the design. By using this approach, the
problem is notably simplified. The results on 2D and on the sur-

(a) Design Boundary Conditions

(b) Design Evolution on Torus (c) Design Evolution on 2D

FIGURE 9: TOPOLOGY OPTIMIZATION ON TORUS

face are shown in Fig. 7c as well as Fig. 7b. The initial design
domain is set to be a surface with 40 circular holes. As presented
in Fig. 8, the mean compliance of the vase is minimized and the
volume constraint is satisfied after 300 iterations. In addition, it
is noticeable that on the vase surface the local shape of the de-
sign is preserved from the 2D design which is in accord with the
conformal mapping theory.

5.4 Topology Optimization on a Torus Surface
A minimum compliance problem on a torus shape shell is

considered by using the same method and material properties as
Section. 5.3. The target volume ratio is 50%. The design do-
main along with the boundary conditions are shown in Fig. 9a.
Similarly to the vase model, a concentrated load and a moment
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of force along -z direction are applied to the top of the model.
A small area on the torus bottom is fixed. The mesh element on
surface is 3200 and the quad mesh size on 2D is 101× 36. The
design results are shown in Fig. 9.

6 CONCLUSIONS
In this paper, a framework of structural shape and topology

optimization on manifold (or free-form surfaces) is proposed. By
using conformal mapping theory, we extend the level set based
topology optimization approach from the Euclidean space R2 or
R3 to surfaces with arbitrary topologies. A manifold is confor-
mally mapped onto a 2D rectangle domain, where the level set
functions are defined. With conformal mapping, the correspond-
ing covariant derivatives on a manifold can be represented by the
Euclidean differential operators multiplied by a scalar. There-
fore, the TO problem on a free-form surface can be formulated
as a 2D problem in the Euclidean space. To evolve the bound-
aries on a free-form surface, we propose a modified Hamilton-
Jacobi equation and solve it on a 2D plane following the confor-
mal geometry theory. In this way, we can fully utilize the conven-
tional level-set-based computational framework. Compared with
other established approaches, the computational difficulty of our
method is highly reduced while all the advantages of conven-
tional level set methods are well preserved. The results of numer-
ical experiments indicate the robustness and effectiveness of our
method in solving topology optimization problems on manifolds.
Further work will be related to the innovative structural designs
on free-form surfaces with different type of objection functions
and constraints. For instance, the optimum design on free-form
surfaces with multiple material and under multiple loading cases.
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