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Abstract— Transcranial magnetic stimulation (TMS) is 

gaining increasing attention for therapeutic treatment of 

mental illnesses. However, a clear understanding of its impact 

to the underlying brain mechanisms is critical for its effective 

application. For this, we analyze electroencephalography 

(EEG) response to TMS subthreshold pulse at the left motor 

cortex from 6 healthy controls and 6 schizophrenia patients. 

We use principal component analysis (PCA) along sparse 

nonnegative matrix factorization (NMF), an unsupervised 

machine learning technique, on brain connectivity data 

established by sliding window coherence of EEG based source 

localized data. The source localization was achieved by using 

the sLORETA algorithm on our EEG data after artifact 

removal. This, hence, provides high temporal and spatial 

resolution in the connectivity analysis results, giving advantage 

over other neuroimaging modalities. PCA aids in establishing 

the number of common underlying connected subnetworks (say 

k) across subjects whereas NMF is employed to derive these k 

spatial and temporal signature subnetwork response to the 

stimulus. Within these signatures, we studied motor cortical 

connectivity and found that schizophrenia patients exhibited 

sensory gating deficits as compared to controls. These findings 

can act as potential biomarkers to monitor TMS for clinical 

therapeutic techniques in the future.   

 

I. INTRODUCTION 

Sensory gating deficits are very common in mental 

illnesses, especially schizophrenia, where the individual 

lacks the physiological process of filtering out unnecessary 

sensory information [1], [2]. Therapeutic techniques 

developed for treating such ailments are still undetermined. 

Transcranial Magnetic Stimulation (TMS) has recently 

gained a lot of popularity for the same, however, it’s 

consequent effect to the cortical activity is still not clearly 

understood, which hinders its usage as an effective treatment 

and raises concerns for safety [3]. Efforts in this direction 

are better explored with electroencephalography (EEG) 

given that derivation of causal relationship is impossible 

without high temporal resolution, which is essential for the 
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given problem statement. EEG is a non-invasive 

neuroimaging technique that offers high temporal resolution 

unlike any other neuroimaging technique [4]. Applying this 

technique with source localization algorithm, a 3D inverse 

technique to predict source dipoles inside the brain for the 

given EEG data, improves spatial resolution information for 

better analysis.  

 

 Here, we studied EEG based source localized data in 

response to TMS subthreshold stimulus administered at the 

left motor cortex of 6 healthy controls and 6 schizophrenia 

patients by using machine learning techniques to generate 

common spatial and temporal signature across controls and 

patients, which show sensory gating deficits in patients. We 

discuss our algorithm in the methods section and report our 

signature findings in the results and discussions section. 

II. METHODS 

A. Experimental Procedure and data preprocessing 

TMS was administered at the left motor cortex of 6 
healthy controls and 6 schizophrenia patients. Their EEG 
response was recorded from 11 cortical electrode sites as 
shown in Fig. 1 for 60 trials each 4sec apart. EEG was then 
processed for artifact removal by applying a 1-50Hz band 
pass filter and a peak to peak threshold value of 100µV in a 
sliding window technique with a window size of 200ms with 
50ms shift in MATLAB based EEGLAB and ERPLAB 
toolbox[5], [6]. The epoch size for each trial was chosen to 
be 1000ms post 50ms of the TMS pulse to avoid the very 
noisy part of the data. The epochs with artifacts were 
discarded.  
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Figure 1Layout of (approximate) location of electrode sites used 

for recording EEG response from 12 subjects to TMS 

administered at the left motor cortex. 
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B. EEG source localization and connectivity estimation 

Source localization was performed on each EEG epoch 
data by using the sLORETA algorithm[7]. sLORETA, 
abbreviated for standardized low-resolution brain 
electromagnetic tomography, is a standard technique to solve 
the inverse problem at a spatial resolution of 5mm based on 
the digitized Talairach atlas provided by the Brain Imaging 
Centre Montreal Neurological Institute[8] to estimate source 
current density inside the brain for the given EEG data. For 
each epoch’s estimated source current density, a sliding 
window coherence was calculated. Coherence computation 
was based on the unambiguous brain interaction approach 
formulated by Nolte et al[9], which is given as: 

𝐶𝑖𝑗(𝑓) = Sij(𝑓)
( Sii(𝑓) Sjj(𝑓))12                              (1) 

All of these algorithms were implemented by using the 
open source MNE-Python library[10], [11]. We extended this 
by implementing a sliding window coherence technique for 
enabling the analysis of causal temporal dynamics from the 
68 estimated sources with a window size of 200ms and 20ms 
shift over the 1000ms long epoch, resulting in coherence 
values based on (1) for 2,278 pairs of estimated sources for 
41 windows for each subject.  

C. Subnetwork Extraction 

 The 2,278 coherence values over 41 windows for each of 
the 6 controls were stacked together yielding 𝐴 ∈ ℝ𝑃×𝑇  
where 𝑃 is the number of pairs, i.e. 2,278 pairs from 68 
estimated sources (n(n-1)/2 where n=68 sources) and 𝑇 are 
the total number of time windows, which is equal to 246 
given that there are 6 controls each with 41 time windows. 
Given that coherence values range between 0 (least coherent 
pair) and 1 (most coherent pair), 𝐴 is a nonnegative matrix 
that is factorized into two matrices 𝑊 and 𝐻 by employing 
sparse non-negative matrix factorization algorithm, an 
unsupervised machine learning technique formulated by Kim 
and Park et al [12], which is given as: 

min𝑊,𝐻
12 {||𝐴 − 𝑊𝐻||𝐹

2 + 𝜂||𝑊||𝐹
2 + 𝛽 ∑||𝐻(: , 𝑖)||1

2𝑇

𝑖=1
} 

𝑠. 𝑡. 𝑊, 𝐻 ≥ 0                            (2) 

where 𝑊 ∈ ℝ𝑃×𝑘 is a subnetwork connectivity matrix i.e. the 

spatial signature and 𝐻 ∈ ℝ𝑘×𝑇 is temporal expression 
coefficients i.e. the temporal signature across the subjects 
(please see the Appendix for our methods’ illustration). The 
common dimension, 𝑘 is the number of signatures obtained 
from this factorization. 𝜂 is a regularization parameter for 
constraining the connectivity values in 𝑊 and 𝛽 is a penalty 
parameter that is used for enforcing sparsity on the temporal 
expression coefficients. Based on the dynamic machine 
learning approach [13], [14], to select a suitable value of 𝑘 
we used PCA as its resulting Eigen-decomposition along the 
corresponding variance estimation gives an indication of how 
many underlying patterns or components contribute 
substantially towards the connectivity dataset 𝐴. We take 𝜂 to 
be the square of maximal element in 𝐴 following prior work 
[12], [14]. We optimize for 𝛽 by computing the frobenius 
norm of the error 𝐴 − 𝑊𝐻 for varied values of 𝛽 for the 

selected 𝑘 and selecting the one that yields the minimum 
error.   

Unlike PCA that generates orthogonal components, NMF 
generates factors that can capture subnetworks that may share 
some overlaps. Given that brain connectivity overlaps over 
multiple underlying brain subnetworks, NMF becomes more 
suitable for our analysis. Chai et al have used similar 
approach with fMRI studies for analyzing subnetworks in 
young and adult subjects[14]. However, fMRI is temporally 
limited and hence, exploring this with EEG based source 
localized data gives an advantage in investigating brain 
response to TMS at a high spatial and temporal resolution. 

D. Signature analysis metrics 

 For analyzing the temporal signature 𝐻, we averaged time 
expression coefficients for 41 windows across subjects to 
understand the transient signature for each subnetwork.  

For analyzing the spatial signature 𝑊, we reshaped each 
vector into a 68x68 coherent graph for plotting and better 
analysis. Then, out of the estimated 68 source dipoles, 6 
major regions were shortlisted that majorly belonged to the 
motor cortex, namely the precentral gyrus, paracentral lobule 
and the postcentral gyrus in both left and right hemisphere. 
Coherence of these elements with each other, in each 
subnetwork (i.e. a vector in 𝑊) that was obtained after NMF 
of 𝐴, was averaged to get a measure of within motor cortex 
(M1) connectivity. For example, for a deduced subnetwork 𝑊(𝑟), the within motor cortex connectivity will be given by: 

𝐶𝑜𝑛𝑛𝑤𝑖𝑡ℎ𝑖𝑛 𝑀1 =  ∑ 𝑊(𝑟)𝑖,𝑗|𝑀1|𝑖∈|𝑀1|,𝑗∈|𝑀1|        (3) 

where |M1| = 6 i.e. number of nodes or regions belonging 
to the motor cortex as listed above, 𝑟 varies from 1 to 𝑘 (𝑘 = 
total number of factors from NMF as explained in the 
previous section) and 𝑊(𝑟) represents the 𝑟th vector i.e. a 
subnetwork in 𝑊. Similarly, connectivity between the motor 
cortex and the rest of the regions for a given subnetwork, 𝑊(𝑘), will be given by: 

𝐶𝑜𝑛𝑛𝑤𝑖𝑡ℎ 𝑀1 𝑎𝑛𝑑 𝑁 =  ∑ 𝑊(𝑟)𝑖,𝑗|𝑁|𝑖∈|𝑀1|,𝑗∈|𝑁|        (4) 

where 𝑁 represents rest of the brain regions |𝑁| = 68 i.e. the 
number of brain regions or nodes.  

III. RESULTS  

Following our methodology, we obtained a total of 6 
spatial and temporal signatures for patients whereas for 
controls we got 5 spatial and temporal signatures as shown in 
fig. 2. The number of controls and patients are same, which 
means the dataset was the same size to begin with despite 
which our machine learning approach yielded more factors 
for patients than controls. Moreover, the temporal expression 
coefficients are overall unstable and higher in magnitude for 
patients controls. This signifies that the brain activity in 
patient exhibits higher amount of activity than the controls. 
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