9th International IEEE EMBS Conference on Neural Engineering

San Francisco, CA, USA, March 20 - 23, 2019

TMS-EEG based Source Localized Connectivity Signature
Extraction by using Unsupervised Machine Learning

Deepa Gupta'”, Member, IEEE, Xiaoming Du?, Elliot Hong>3, Fow-Sen Choa', Member, IEEE

Abstract— Transcranial magnetic stimulation (TMS) is
gaining increasing attention for therapeutic treatment of
mental illnesses. However, a clear understanding of its impact
to the underlying brain mechanisms is critical for its effective
application. For this, we analyze electroencephalography
(EEG) response to TMS subthreshold pulse at the left motor
cortex from 6 healthy controls and 6 schizophrenia patients.
We use principal component analysis (PCA) along sparse
nonnegative matrix factorization (NMF), an unsupervised
machine learning technique, on brain connectivity data
established by sliding window coherence of EEG based source
localized data. The source localization was achieved by using
the sLORETA algorithm on our EEG data after artifact
removal. This, hence, provides high temporal and spatial
resolution in the connectivity analysis results, giving advantage
over other neuroimaging modalities. PCA aids in establishing
the number of common underlying connected subnetworks (say
k) across subjects whereas NMF is employed to derive these k
spatial and temporal signature subnetwork response to the
stimulus. Within these signatures, we studied motor cortical
connectivity and found that schizophrenia patients exhibited
sensory gating deficits as compared to controls. These findings
can act as potential biomarkers to monitor TMS for clinical
therapeutic techniques in the future.

I. INTRODUCTION

Sensory gating deficits are very common in mental
illnesses, especially schizophrenia, where the individual
lacks the physiological process of filtering out unnecessary
sensory information [1], [2]. Therapeutic techniques
developed for treating such ailments are still undetermined.
Transcranial Magnetic Stimulation (TMS) has recently
gained a lot of popularity for the same, however, it’s
consequent effect to the cortical activity is still not clearly
understood, which hinders its usage as an effective treatment
and raises concerns for safety [3]. Efforts in this direction
are better explored with electroencephalography (EEG)
given that derivation of causal relationship is impossible
without high temporal resolution, which is essential for the
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given problem statement. EEG is a non-invasive
neuroimaging technique that offers high temporal resolution
unlike any other neuroimaging technique [4]. Applying this
technique with source localization algorithm, a 3D inverse
technique to predict source dipoles inside the brain for the
given EEG data, improves spatial resolution information for
better analysis.

Here, we studied EEG based source localized data in
response to TMS subthreshold stimulus administered at the
left motor cortex of 6 healthy controls and 6 schizophrenia
patients by using machine learning techniques to generate
common spatial and temporal signature across controls and
patients, which show sensory gating deficits in patients. We
discuss our algorithm in the methods section and report our
signature findings in the results and discussions section.

II. METHODS

A. Experimental Procedure and data preprocessing

TMS was administered at the left motor cortex of 6
healthy controls and 6 schizophrenia patients. Their EEG
response was recorded from 11 cortical electrode sites as
shown in Fig. 1 for 60 trials each 4sec apart. EEG was then
processed for artifact removal by applying a 1-50Hz band
pass filter and a peak to peak threshold value of 100uV in a
sliding window technique with a window size of 200ms with
S50ms shift in MATLAB based EEGLAB and ERPLAB
toolbox[5], [6]. The epoch size for each trial was chosen to
be 1000ms post S0ms of the TMS pulse to avoid the very
noisy part of the data. The epochs with artifacts were
discarded.

Channel locations
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Figure 1Layout of (approximate) location of electrode sites used
for recording EEG response from 12 subjects to TMS
administered at the left motor cortex.
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B. EEG source localization and connectivity estimation

Source localization was performed on each EEG epoch
data by using the sLORETA algorithm[7]. sLORETA,
abbreviated for  standardized low-resolution  brain
electromagnetic tomography, is a standard technique to solve
the inverse problem at a spatial resolution of 5Smm based on
the digitized Talairach atlas provided by the Brain Imaging
Centre Montreal Neurological Institute[8] to estimate source
current density inside the brain for the given EEG data. For
each epoch’s estimated source current density, a sliding
window coherence was calculated. Coherence computation
was based on the unambiguous brain interaction approach
formulated by Nolte et al[9], which is given as:

Cy(f) = —2P— M
( Sii(f) Sjj(f))2

All of these algorithms were implemented by using the
open source MNE-Python library[10], [11]. We extended this
by implementing a sliding window coherence technique for
enabling the analysis of causal temporal dynamics from the
68 estimated sources with a window size of 200ms and 20ms
shift over the 1000ms long epoch, resulting in coherence
values based on (1) for 2,278 pairs of estimated sources for
41 windows for each subject.

C. Subnetwork Extraction

The 2,278 coherence values over 41 windows for each of
the 6 controls were stacked together yielding A € RP*T
where P is the number of pairs, i.e. 2,278 pairs from 68
estimated sources (n(n-1)/2 where n=68 sources) and T are
the total number of time windows, which is equal to 246
given that there are 6 controls each with 41 time windows.
Given that coherence values range between 0 (least coherent
pair) and 1 (most coherent pair), A is a nonnegative matrix
that is factorized into two matrices W and H by employing
sparse non-negative matrix factorization algorithm, an
unsupervised machine learning technique formulated by Kim
and Park et al [12], which is given as:

T
1
min |14 = wHI|; + 7wl +,BZ|IH(:,i)||i]
i=1

s.t.W,H =0 2

where W € RP*¥ is a subnetwork connectivity matrix i.e. the
spatial signature and H € R**T is temporal expression
coefficients i.e. the temporal signature across the subjects
(please see the Appendix for our methods’ illustration). The
common dimension, k is the number of signatures obtained
from this factorization. n is a regularization parameter for
constraining the connectivity values in W and £ is a penalty
parameter that is used for enforcing sparsity on the temporal
expression coefficients. Based on the dynamic machine
learning approach [13], [14], to select a suitable value of k
we used PCA as its resulting Eigen-decomposition along the
corresponding variance estimation gives an indication of how
many underlying patterns or components contribute
substantially towards the connectivity dataset A. We take 1 to
be the square of maximal element in A following prior work
[12], [14]. We optimize for § by computing the frobenius
norm of the error A — WH for varied values of [ for the

selected k and selecting the one that yields the minimum
error.

Unlike PCA that generates orthogonal components, NMF
generates factors that can capture subnetworks that may share
some overlaps. Given that brain connectivity overlaps over
multiple underlying brain subnetworks, NMF becomes more
suitable for our analysis. Chai et al have used similar
approach with fMRI studies for analyzing subnetworks in
young and adult subjects[14]. However, fMRI is temporally
limited and hence, exploring this with EEG based source
localized data gives an advantage in investigating brain
response to TMS at a high spatial and temporal resolution.

D. Signature analysis metrics

For analyzing the temporal signature H, we averaged time
expression coefficients for 41 windows across subjects to
understand the transient signature for each subnetwork.

For analyzing the spatial signature W, we reshaped each
vector into a 68x68 coherent graph for plotting and better
analysis. Then, out of the estimated 68 source dipoles, 6
major regions were shortlisted that majorly belonged to the
motor cortex, namely the precentral gyrus, paracentral lobule
and the postcentral gyrus in both left and right hemisphere.
Coherence of these elements with each other, in each
subnetwork (i.e. a vector in W) that was obtained after NMF
of A, was averaged to get a measure of within motor cortex
(M1) connectivity. For example, for a deduced subnetwork
W (r), the within motor cortex connectivity will be given by:

W(r)i; 3)

|M1]

where |[M1| = 6 i.e. number of nodes or regions belonging
to the motor cortex as listed above, r varies from 1 to k (k =
total number of factors from NMF as explained in the
previous section) and W (r) represents the r vector i.e. a
subnetwork in W. Similarly, connectivity between the motor
cortex and the rest of the regions for a given subnetwork,
W (k), will be given by:

Connyitnin m = ZiE|M1|,jE|M1|

W(r);;
IN|

“)

where N represents rest of the brain regions |N| = 68 i.e. the
number of brain regions or nodes.

ConNyith M1ana N = Die|M1|,je|N|

III. RESULTS

Following our methodology, we obtained a total of 6
spatial and temporal signatures for patients whereas for
controls we got 5 spatial and temporal signatures as shown in
fig. 2. The number of controls and patients are same, which
means the dataset was the same size to begin with despite
which our machine learning approach yielded more factors
for patients than controls. Moreover, the temporal expression
coefficients are overall unstable and higher in magnitude for
patients controls. This signifies that the brain activity in
patient exhibits higher amount of activity than the controls.
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Figure 2 Spatial connectivity signatures (above) and their corresponding temporal signatures (below) achieved from our machine learning approach for
(a) controls and (b) patients. The connectivity signatures are coherence values among 68 brain regions. The temporal signatures are transient

characteristics for that subgraph.

Analysis of each signature could be assessed by
computing (3) and (4) for brain regions belonging to other
standard subnetworks such as the visual, auditory, executive
and salience subnetworks for computing their connectivity
within their network and with the rest of the brain regions,
which we keep for our future scope.

Furthermore, following (3) and (4), connectivity within
the motor cortex and connectivity between the motor cortex
and rest of the brain regions, as depicted in fig. 3, was
comparatively in patients larger than that in controls on
average by 16% and 0.8% respectively. Given that the
subjects were not doing any tasks, we can be sure that higher
connectivity does not correlate to constructive synchronous
brain activity and hence implies that controls were able to
inhibit the TMS subthreshold pulse whereas patients were not
thereby signifying sensory gating deficits in patients.

Iv.

To conclude, it is essential to understand the underlying
brain mechanisms in response to TMS for effective and
safe treatment. We achieved this with unsupervised
machine learning technique in high spatial and temporal
resolution by using EEG based source localized
connectivity data in response to TMS subthreshold pulse
stimulus administered to left motor cortex in schizophrenia
patients and healthy controls.

CONCLUSION AND FUTURE SCOPE
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Figure 3 A depiction of connectivity within (white edges)
motor cortex area and connectivity between the motor
cortex and other parts of the brain (black edges) is
shown. The motor cortex area is highlighted in green.
Patients had higher connectivity activity than in controls
thereby signifying sensory gating deficits.

More importantly, we successfully demonstrated that
our results correlate to behavioral features i.e. the sensory
gating deficits in patients. In future, we plan to extend our
study to assessing subnetworks other than just the motor
cortex for analyzing each signature in further detail.

APPENDIX

Here, we show a flowchart illustration of our methods in

fig. 4.
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Figure 4 Tllustration of our methods is shown here (a) After EEG
recording and data preprocessing for artifact removal, we use
sLORETA for 3D inverse projection to get source localization onto 68
regions inside the brain among which coherence is calculated with
sliding window technique (b) coherence among 68 regions during one
sample window for a sample subject is depicted in the form of a circular
plot where the left sided semi-circle shows left hemisphere’s regions
and right sided semi-circle shows right hemisphere’s regions. The high
and low coherence values are shown by bright and dark colored
connecting edges respectively. This connectivity data is equivalently a
68x68 symmetric matrix data that is flattened to a 2278x1 vector. (c) the
flattened connectivity vector for all sliding window data of all subjects
is stacked up as a 2278x246 matrix A, which is factorized by using
NMF to get k spatial and temporal signatures namely, W and H
respectively. Each vector in W corresponds to a subnetwork
connectivity matrix and H contains the corresponding temporal
signature.
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