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Abstract—Weight-constrained route planning (WRP) over stat-
ic graphs has been extensively studied due to its wide applica-
tion to transportation networks. However, real transportation
networks often evolve over time and are thus modeled as time-
dependent graphs. In this paper, we study the WRP problem over
a large time-dependent graph by incorporating continuous time
and weight functions into it. Most existing works regarding route
planning over time-dependent graphs are based on the first-in-
first-out (FIFO) property. Unfortunately, the FIFO property does
not hold for our problem. To solve the problem, we propose two
novel route planning algorithms, namely, a baseline algorithm
and an advanced algorithm. Specifically, the advanced algorithm
is even more efficient than the baseline algorithm, as the advanced
algorithm incorporates a fast traversal scheme and tight bounds
of time functions to terminate the traversal as early as possible.
‘We confirm the effectiveness and efficiency of our algorithms by
extensive experiments on real datasets.

I. INTRODUCTION

Given a source s and a destination d of a static graph G,
the weight-constrained route planning (WRP) problem over G
involves finding the best path from s to d based on its length
with a constraint on its weight [1], [2]. The WRP problem in
static graphs has been extensively studied [1], [2], [3], [4], [5],
since it has many real application to transportation networks.
For instance, from s to d over (G,, a user wants to compute
a route with not only the shortest travel time (length) but
also toll payment (weight) within a budget. In this scenario,
the user should compute a WRP query that minimizes the
total travel time within the budget for toll payment. In reality,
transportation networks often evolve over time. For example,
the Singapore Vehicle Information System and the American
Traffic Message Channel are two transportation systems that
can provide real-time traffic information to users. Such trans-
portation networks are time-dependent graphs, i.e., the travel
time for a road varies with at different times. Therefore, in this
paper, we study the WRP query over a large time-dependent
graph.

In practice, a transportation network can be modeled as a
time-dependent graph G; as follows. Every edge e = (u,v)
in G, has two types of costs: f.(t) and w,(t), where f.(t) is
the time cost to specify how long it takes to travel through an
edge e, and w.(t) is the toll fee (weight) for traveling through
an edge e. Both f.(t) and w.(t) are the functions that are
dependent on the departure time ¢ at the starting endpoint » of
the edge e = (u,v). Figure 1 gives a time-dependent graph G,
with cost functions on its edges. For example, in Figure 1(b),
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Fig. 1: A time-dependent graph with time and weight
functions on edges.

feu () is the time cost-function of edge e; of G;, and w, (t)
is the weight cost-function of edge e; of G;.

Consider an application in the time-dependent graph G; (of
Figure 1) with source s = v; and destination d = vs. Someone
has an appointment with her friends at rendezvous d and wants
to depart at any time during a certain period [£s1, s3] from s.
Under this condition, she wants to compute the earliest arrival
time from s to d that incurs a toll fee within a budget A. This
type of query is called the interval WRP (IWRP) query over
time-dependent graphs.

Specifically, in this paper, we study the IWRP query over
time-dependent graphs G;, which can be defined as follows.
Given a source s, a destination d, a departure period [ts1, ts2],
and a weight constraint A in G, find an optimal path p from s
to d satisfying the following three conditions: (1) the departure
from s occurs within the period [ts1, s3] along path p, (2) the
weight (toll fee) of path p is at most A, and (3) path p has the
earliest arrival time among all the paths satisfying Conditions
(1) and (2).

We continue the above application with [ts1,£s2] = [0, 30]
and A = 80. The answer to the IWRP query is the optimal
path v; — vg — v4 — vs with the earliest arrival time of 70
and the related weight of 75.

There are many works regarding the route planning problem
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in time-dependent graphs G; [6], [7], [8], [9]. Most of them
involve finding an optimal path with the earliest arrival time
from the source to the destination when the departure time
from the source can be selected from a user-given starting-
time interval. These works assume that every edge of G; has
only one time function f.(¢) that is continuous. They employ
Dijkstra-like algorithms. The premise of applying Dijkstra-like
algorithms is that G; has the first-in-first-out (FIFO) property,
which means that a vehicle that enters a road segment first will
also reach the end of the road segment first [10]. Unfortunately,
the FIFO property does not hold for our problem (as detailed
in Section II-B). Thus, the existing works cannot solve the
problem proposed in this paper.

To solve the problem, we propose a unified algorithmic
framework, IWRP_Framework, to answer the IWRP query
efficiently. Specifically, IWRP_Framework consists of three
steps. In the first step, IWRP_Framework defines a skyline
function for every node of G; and specifies how to calculate
it. In this step, IWRP_Framework also proposes a traversal
procedure from source s to destination d, during which every
skyline function is calculated. After the traversal, we can
obtain the minimum arrival-time and weight functions of d,
Arrg(t) and Wghy(t), respectively. In the second step, based
on Arry(t) and Wghy(t), IWNRP_Framework computes the
departure time Dep(s) from s and the arrival time Arr(d) at
d satisfying the query. Finally, IWRP_Framework computes
the optimal route from s at time Dep(s) to d at time Arr{d).

The traversal procedure is very important for the efficiency
of IWRP_Framework. We first propose a baseline traversal
algorithm. This algorithm is elegant but has a high time
complexity of O((k; + k., yn3m?M2), where n and m are the
node and edge numbers, k; and k,, are the average numbers
of breakpoints of arrival-time and weight functions, and M,
is the maximum value of edge-time functions. To improve the
baseline algorithm, we also design an advanced traversal algo-
rithm that incorporates tight bounds on arrival-time functions
to prune the search space greatly. The advanced algorithm has
a time complexity of O(M.(k; + ky,)nm log(nM,)) which is
a great reduction compared to that of the baseline algorithm.
Moreover, we further improve the advanced algorithm by
adding heuristics so that the advanced algorithm runs very
quickly on large time-dependent graphs (e.g., 9.8s on G; with
5M nodes and 32M edges) as demonstrated in the experiments.

To summarize, we make the following contributions.
Contributions. (1) in Section II, we formulate a novel IWRP
query over a large time-dependent graph by incorporating
continuous time and weight functions.

(2) We propose a unified framework, IWRP_Framework, to
answer the IWRP query over time-dependent graphs in Sec-
tion III. IWRP_Framework consists of three steps, namely,
a skyline function, an evaluation that unifies a traversal algo-

rithm and skyline functions, and a route-retrieval procedure

that calculates the actual routes satisfying the IWRP query
predicate.

(3) We plug a baseline traversal algorithm into IWR-

P_Framework to answer the IWRP query in Section IV.
To speed up the baseline algorithm, we also develop an
advanced algorithm that incorporates a novel traversal strategy
and bounds on time-functions to prune the search space in
Section V.

(4) We evaluate the effectiveness and efficiency of our pro-
posed algorithms with extensive experiments on road network-
s, measuring both the running time and memory overhead in
Section VL

II. PROBLEM DEFINITION
A. Weight-Constrained Route Planning

In this section, we define our IWRP queries over time-
dependent graphs similar to works [7], [11].
Time-Dependent Graph. A time-dependent graph is a simple
directed graph, denoted G¢(V, E,F,W) (or G; for short),
where V is the set of nodes, E C V x V is the set of edges,
and F and W are two sets of non-negative value functions.
For every edge € = (u,v) € E, there are two functions: time
function f,(t) € F and weight function w,(t) € W, where ¢
is a time variable. A time function f.(t) specifies how much
time it takes to travel from u to v if departing from w at time
t. A weight function w,(t) specifies the cost (e.g., toll fee) it
takes to travel from w to v if departing from u at time ¢. We
let |[V| =n and |E| = m.

In this paper, we assume that f.(t) > 0 and w.(t) > 0. The

assumption is reasonable because the travel time is always
positive and the travel cost (weight) cannot be negative in
real applications. Our work can be easily extended to handle
undirected graphs, in which an undirected edge (u,v) is
equivalent to two directed edges (u,v) and (v,u), where
f(u,u)(t) = f{v,u)(t) and w(u,u)(t) = W(y,u) (t) Below, we
provide more details about time and weight functions.
Time Function. The edge-time function f,(¢) is a continuous
and periodic (with time period T") function defined as follows:
Vk € N, Vvt € [0,T), fe(ET +t) = fe(t), where f, :
[0,7) — [1, M,] such that tllr’r} fe(t) = fe(0) for some fixed
integer M, denoting the maximum value of f.(¢). Without
loss of generality, fo(t) can be approximately represented by
a piece-wise linear (PWL) function. In fact, any continuous
function can be approximately by a set of PWL functions
through a numerical approximation method [12]. Since f. is a
periodic, continuous and PWL function, it can be represented
succinctly by a number K, of breakpoints defining f.. Let
K =3} g K. denote the number of breakpoints to represent
all of the edge-time functions in G,.

For example, Figure 1 shows a time-dependent graph G
with a time function f.(t) and a weight function w,(t) for
each edge. In Figure 1 (d), f,(t) defines the time function of
the edge e3 = (v2,v4). The period T and M, of f.,(t) are
100 and 50, respectively. fe,(t) has two breakpoints, (50, 40)
and (80, 10).

Arrival-time Function. For a node v € V, we use Arr(v) and
Dep(v) to denote the arrival time at v and departure time
from v, respectively. Then, for an edge e = (u,v) € E, we




have Arr(v) = Dep(u) + fe(Dep(u)). Note that, we do not
consider the waiting time during the routing path (the reasons
will be given later.), and thus we have Arr{v) = Dep(v). Let
p = (e1 = (v1,v2),€2 = (v2,03),....,€n = (Vn,vn+1)) be a
given path with the departure time ¢,. Then, we have

Arr(vi) = Dep(v1) = ts,
Arr(vg) = Arr(v) + fe, (Arr(v)),

Arr(vpy1) = Arr(vn) + fe, (Arr(vg)).

The travel time of path p is defined as Trv(p) = Arr(vp41) —
ts. The edge-arrival-time function of an edge e € F is defined
as Arre(t) =t + fe(t), Vt € [0,T). Then, the path-arrival-
time function of a path p = (ey,...,en) is the composition
Arry(t) = Arre, (Arre,_ (- -~ (Arre, () ---)) of the edge-
arrival-time functions for the constituent edges. The path-
travel-time function is then Trvp(t) = Arry(t) —t.

Weight Function. We assume that edge-weight function w, ()
is a piecewise constant function, which can be formalized as
follows:

.‘UJ]_, 0<t<ty
we, t <t<ip

we(t) = 4 (1)
_wo‘a o1 <t <ty

Here, [0,t,] is the time domain of function w,(t) with o
breakpoints. The value of w, (1 < z < o) is a constant,
which represents the value of w,(t) when ¢ € [tp—1,tq)
The assumption is reasonable. In real applications, the weight
functions are always piecewise constant. For example, in road
networks, the toll fees for traveling through a road are distinct
constant values during the day and night. This fact implies
that the weight-function of this road is a piecewise-constant
function.

Figure 1 illustrates the weight-functions for five edges e;
(v1,v2), ea = (v1,v3), e3 = (v2,v4), €4 = (v3,v4) and e5 =
('U43 'U5)'

Similar to the time function, let p = {e; = (v1,v2),e2 =
(v2,03), ., €4 = (U, Uh+1)) be a given path with the depar-
ture time t,. For any vertex v; € p, we use Wgh(v;) to denote
the weight from v; to v; by path p. Wgh(wv;) can be calculated
recursively as follows:

Wgh(v1) =0, Arr(vy) = tg,
Wgh(va) = Wgh(v1) + we, (Arr(v1)),
Wgh(vni1) = Wgh(vn) + we,, (Arr(vp))-

The weight of path p is defined as Wgh(p) = Wgh(vpi1).
Let s and d be the route source and destination nodes in G;

and [ts1,%s2] be a starting time interval at s. Let A be a user-
specified weight constraint on the route from s to d. Next, we
provide the definition of the problem of the interval weight-
constrained route planning (IWRP) query in time-dependent
graphs.

Definition 1 (Interval Weight-Constrained Route Planning):
Given a time-dependent graph G; = (V, E, F,W), a query
Q = (s,d, ts1,ts2, A) is to find a path from s to d, represented
as p = (vg,v1, ---Up+1), such that: (1) s = vy and d = vp41,
(2) ts1 < Dep(s) < tsz, (3) Wgh(p) < A, and (4) Arr(d)
is the minimum among all possible paths meeting Conditions
(1), (2) and (3). O

In this paper, we only study the problem of computing the
earliest arrival time (i.e.,the least Arr(d)), as the problems of
computing the latest departure time and the minimum travel
time can be solved by making minor modifications to our
algorithms.

To illustrate the definition, we initiate an IWRP query a-
gainst the time-dependent graph in Figure 1 with the following
time and weight constraints: s = v1, d = vs, [ts1,%s2] = [0, 30]
and A = 80. The optimal path with the smallest Arr(d) is
vy = vp — vg — vs. The smallest Arr(d) is 70 and the
related weight is 75.

We do not consider the waiting time at the intermediate
nodes while processing the IWRP query. The reasons are two-
fold: (1) We could take more time to travel along a longer path
but with a lower weight, which has the same effect as waiting
for a route with a lower weight. (2) In many real applications,
vehicles are not allowed to stop during the trip, e.g., driving
on a highway.

B. Invalidity of Existing Solutions for the INRP Problem

Most existing works on route planning over time-dependent
graphs involve finding an optimal path with the earliest arrival
time. We discuss their common principle and give the reasons
why they cannot be used to solve our problem.,

These works employ Dijkstra-like algorithms, which, how-
ever, are somewhat different from the classical Dijkstra algo-
rithm over static graphs G,. In the classical Dijkstra algorithm,
a node v with the shortest distance from source s is selected in
each iteration, and then, the neighbor nodes of v are explored.
In G, the distance from s to v is a scalar, whereas in G;, the
distance becomes a continuous function because every edge-
time function is continuous. In G, such a node v may not
exist because the function (related to v) that is minimum over
the entire domain may not exist.

To solve the problem, the Dijkstra-like algorithms on G,
employ a novel idea [13], [14], [7]: determine the latest time
t4 for each node v such that the current earliest arrival-time
function for any time less than t4 gives the actual earliest
arrival time at v. Thus, for the time before ¢, these algorithms
can determine the unique node with the shortest distance from
s and select it in each iteration. The premise behind applying
this idea is that G, has the first-in-first-out (FIFQ) property,
which means that a vehicle that enters a road segment first will
also reach the end of the road segment first [10]. However,
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ty =2 (t41, wa1 )=(4, 20)
Source 5 g »0d Destination
I =3 (tdZ; Wd2)=(5, 15)

Fig. 2: Example of the invalidity of existing algorithms for
the TWRP query.

the FIFO property does not hold for the IWRP query over G;.
Below is a simple example.

Example 1: Figure 2 shows a time-dependent graph G; with
only one edge e from source s to destination d. Assume that a
person A departs from s either at time £,7 = 2 or at time £, =
3 and would like to reach d as early as possible. If G; has
the FIFO property, then we can assume that the related arrival
times of A at d are t4; = 4 and tg = 5, respectively. This is
because ¢, < tsp implies tg1 < tgo, which satisfies the FIFO
property. In this case, t4; is better than t;2 when computing
the earliest arrival time. The Dijkstra-like algorithms [13], [7]
on this query return t4; instead of £ga.

In regard to the IWRP query, this query answer is not right.
Assume that it will cost A toll fees wg; = 20 for £4; and
wgz = 15 for £go. We cannot say that tg4; is better than ¢4
anymore because wq1 > wqe, although ty; < t4o still holds.
In other words, the answers (t41,wq1) and (g2, wqz) cannot
be compared with each other. Algorithms on the IWRP query
should return both (41, wq1) and (g2, wez)- O

This example shows that we need to develop novel solu-
tions to process the IWRP query, which is introduced in the
following sections.

III. ALGORITHMIC FRAMEWORK

Procedure IWRP_Framework {
Input: G, Q(s,d,ts1,ts2, A)
Output: Arr(d), Psa
(1) {Arra(t), Wgha(t) }=IWRP_Fn(G., @);
/*Compute the minimum arrival and weight functions of d.*/
(2) {Dep(s), Arr(d)}= _Arr(Arrq(t), Waha(t), Q)
/* Compute the departure and arrival times. */
(3) Py g=IWRP_Path(G:, Q, Dep(s), Arr(d));
/# Compute the routing path from s to d.*/ }

Fig. 3: Framework of the IWRP query algorithm.

This section introduces the framework of our approach
to solve the IWRP query. This framework consists of three
phases, which are denoted IWRP_Fn, IWRP_Arr and IWR-
P_Path. Figure 3 shows the three phases, introduced as
follows:

(1) Given a time-dependent graph G; and a query @, |-
WRP_Fn computes the minimum arrival-time and weight
functions of d (Arrg(t) and Wghg(t)) in G; (line 1). The
idea of IWRP_Fn is to traverse G; from s to d, during
which the minimum arrival-time and weight functions of every
node v of (G; are calculated. To calculate the functions,
we define a skyline function for each v and propose how

to compute it. Based on the skyline function, we propose
two traversal algorithms in the next two sections, namely,
a baseline algorithm Base Fn and an advanced algorithm
Adv_Fn.

(2) Based on the the minimum Arrg(t) and Wghg(t), |-
WRP_Arr computes the earliest arrival time Arr(d) and the
related departure time Dep(s) satisfying Q (line 2). The
minimum Arrg(t) and Wghg(t) contain all desired informa-
tion, and hence, IWRP_Arr can very easily compute Dep(s)
and Arr(d) by inputting ) into the minimum Arrg(t) and
Waha(t).

(3) Based on Dep(s) and Arr(d), IWRP_Path returns the
routing path P, 4 from s at time Dep(s) to d at time Arr(d)
(line 3). In this phase, we can advocate the use of existing
traversal algorithms (e.g., [15]) over static graphs to compute
P, ; because we have specific departure and arrival times,
based on which the minimum arrival time at every node of
G is a scalar instead of a function.

From the discussion above, we see that IWRP_Fn is the
most important phase, as IWRP_Arr and IWRP_Path can
be easily calculated based on {Arrg(t), Wghgs(t)} output
from IWRP_Fn. Therefore, we only propose IWRP_Fn (i.e.,
Base Fn and Adv_Fn) in this paper, and the detailed intro-
ductions to IWRP_Arr and IWRP_Path can be found in the
full version of this paper [16].

IV. BASELINE ALGORITHM

This section introduces the baseline algorithm (i.e.,
Base Fn) to perform the first phase of the algorithmic
framework. We first show how to calculate the arrival-time and
weight functions for each node of G;. After that, we present
the entire process of Base_Fn.

A. Arrival-time and Weight Functions

As introduced in Section II-A, both the time and weight
functions are continuous. Therefore, we construct arrival-time
and weight functions for each node of G, instead of scalar
values, as for the discrete functions. Given a node v; € G,
the arrival-time function of v; and the weight function of v, are
denoted by Arr;(t) and Wgh;(t), respectively. Recall that the
query is @ = (s,d, ts1,%s2, A). Arr;(t) monitors the arrival
time at v; via a route R that departs from s at time t. W gh,(t)
monitors the total weight of R to v; from s at time ¢. Thus,
the two functions of »; can be denoted by a pair F;(t) =
(Arr;(t), Wgh;(t)). The domain of Arr;(t) (resp. Wgh;(t))
is the departure time from s within the interval [£s1,¢s2]. For
example, Arr;(20) = 30 means that a route R starts from s
at time 20 and arrives at v; at time 30. Weight;(20) = 600
means that the total weight for R from s to d is 600.

In the routing algorithm, we need to minimize Arr;(t)
and W gh,(t) together. Thus, as a multi-objective optimization
problem, two important concepts in Base Fn are the domi-
nance relationship and skyline. They are defined as follows.

Definition 2: In a two-dimensional space M with real
numbers in each dimension, given two points P; = (z1,¥1)
and P, = (:I:g,yg), P, dominates Ps iff 21 < x5 and 31 < y3.
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A set S of points in M is called a skyline set iff no point in
S is dominated by another in the same set S. We say that a
point P is a skyline point if P is in a skyline set. O

In the traditional two-objective optimization problem, we
need to compute the skyline set as the result [17]. A skyline
point consists of two scalar values, but in Base_Fn, a skyline
result consists of two continuous functions (i.e., Arr;(¢) and
Wghi(t)). Given Fi(t) = (Arri(t), Wghi(t)) and Fa(t) =
(Arra(t), Wgha(t)), we define the skyline function of F(t)
and F(t), denoted Sky(Fi, Fa).

We need to calculate Sky(F1, F3) in which the values of
F,(t) and F(t) are changed. The calculation of the skyline
function is denoted Sky(Fi,F,) = (Sky(F1),Sky(Fs)),
where Sky(Fy) (resp. Sky(F)) is the changed result of F; (t)
during the calculation.

To calculate Sky(F1, Fa) = (Sky(F1), Sky(Fz)), we first
give the data structure used in the calculation.

Data Structure. As stated in Section II-A, the edge-time
function f.(t) can be represented by linear piecewise func-
tions. Specifically, f.(t) equals a set of consecutive dis-
crete linear functions. These functions share the end points
and are maintained in ascending order of time. Based on
this, f.(t) is denoted as an ordered point set fo(t) =
{(1, fe(t1)), .oy (K., Ti(tk,))}. For example, in Figure 1
(e), f3,4(t) is denoted by the order set {(0,5),(40,15), (80,
45),(100,45)}. Similarly, the edge-weight function w(t)
equals a set of consecutive discrete constant functions de-
noted we(t) = {(t1,wi(t1)),--,(tes, wi(ts)))}. For exam-
ple, in Figure 1 (f), ws4(t) is denoted by the order set
{(0,30), (10,10), (90,45)}. Arr;(t) is also piecewise linear
and can be represented as an ordered set because it is con-
structed from the edge-time functions. Similarly, Wgh,(t) is
also piecewise constant and can be represented as an ordered
set because it is constructed from the edge-weight functions.

The procedure to calculate Sky(F1, Fz) is denoted Skyline.
Given a set {Fi(t,), Fa(t,)} at time t,, the main idea of
Skyline is to determine which is a skyline point (F(¢,) or
F5(t,)) in the set. However, either Arr;(t) or Wgh,(t) is
continuous; hence, there are universal points in either function,
and we cannot enumerate all points. To overcome this issue,
we compare two segments that are parts of the two functions.
For example, in Figure 4 (a), we can compare the two segments
51 (OB) and S3 (O A) between two points [0, 10] on the lateral
axis.

Algorithm 1 shows the details of Skyline. Skyline inputs
any two pairs of functions Fi(t) = (Arry(t), Wghi(t)) and
Fy(t) = (Arra(t), Wgha(t)) and outputs the skyline function
Sky(F1, F») = {Sky(F1),Sky(Fz)}. Specifically, Skyline
implements the following two phases:

Phase 1: compute all intersection points and breakpoints.
In this phase, Skyline first constructs data structures (as given
above) to represent Arry(t), Wgh(t), Arra(t) and Wgha(t)
(line 1). After that, Skyline calculates all intersection points of
Arry(t) and Arry(t) instead of Wghi(t) and Wgha(t) (line
4) because Wgh1(t) and Wgho(t) contain constant values
and cannot intersect each other. Skyline lastly sorts all the

100 100} T 0WEM() > Wghi(D)
—
8O} o
B - P
i = 6ot i
= :
L ——
£
< <7 !
20
..... i e
o 20 40 60 80 100 0 20 40 60 80 100
Starting time Starting time
@ ®)

Fig. 4: Calculation of the skyline function of two pairs of
functions Fj(t) and Fa(t).

breakpoints (from Arry(t), Wgha(t), Arra(t) and Wghs(t))
and intersection points in ascending order of time and keeps
the result in a list T'L (line 6).

Phase 2: determine the skyline function. For each con-
secutive [t;,t;41] of T'L obtained in the first phase, Sky-
line compares two constant weights Wghi(t;) = w] and
Wagha(t;) = wi. If w] < wj, it compares the function values
of Arry(t) and Arra(f) and gives the skyline result (lines
7-19). In calculating the skyline result, Skyline adopts the
smaller part to prune the dominated part of functions and
maintain the undominated part of functions. For example, if
Arri(t) is the smaller part, it maintains Arrq(¢) and Wgh, (t)
unchanged (lines 11-12) and removes the dominated part of
Arra(t) and Wgha(t) (lines 13-14). Otherwise, it maintains
Arry(t), Wgha(t), Arri(t) and Wgh,(t) all unchanged (lines
16-19). If w] > wj, Skyline reverses the calculations in the
steps above (lines 20-31). Finally, we can obtain the result
Sky(Fy, F,) after traversing every consecutive time interval
of T'L.

Example 2: Figure 4(a) gives two atrival-time functions
Arri(t) and Arro(t), and Figure 4(b) shows two weight func-
tions Wghy(t) and Wgha(t). Here, Arri(t) and Wgh, (1)
form a pair Fy(t) = (Arri(t), Wghi(t)), and Arra(t) and
Wgho(t) form another pair Fy(t) = (Arra(t), Wgha(t)).
As given in Figure 4(a), Arri(t) and Arra(t) have two
breakpoints (20, 70) and (30, 20) and one intersection point
(10, 40). As shown in Figure 4(b), Wgh,(t) and Wgha(t)
only have two breakpoints (60, 80) and (70, 40) and no
intersection point. To calculate Sky(Fi, F2), we sort all the
breakpoints and the intersection points in increasing order of
their projections on the lateral axis: (10, 40), (20, 70), (30,
20), (60, 80) and (70, 40). Then, we obtain consecutive time
intervals on the lateral axis (besides the end points 0 and 100):
[0, 10], [10, 20], [20, 30], [30, 60], [60, 70] and [70, 100],
which finishes the first phase of Skyline.

In the second phase of Skyline, we compute a skyline
function for each consecutive time interval. Here, we only
show an example for one time interval; the process for other
time intervals is similar. In the time interval [10, 20], we com-
pare the related weights Wgh;(t) = 50 and Wgha(t) = 90
and the related arrival-time functions Arri(t) (of segment
S3 = OC) and Arry(t) (of segment Sy = OD), which
are depicted in Figure 4(a). Since Wgh;(t) < Wgha(t) and
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Algorithm 1: Skyline

-

N

Input: {Fi(t), F2(t)} =

{(Arri(t), Wgha(t)), (Arra(t), Wgha(t))}
Output: Sky(Fy, F2) = {Sky(F1), Sky(F2)}
Construct data structures Arry(£) = {(t%,,al)},
Waha(t) = {(th,, wi)}, Arra(t) = {(t:;,a8)},
Wghz (t) {(tng’ w2)}
Construct an empty list LT";

3 Tnsert {(t5, a1}, {(tu,, wh)}, {(th,, a2}, {(te,, wi)} into
LT;

-

N &t

10
1

12

13

A L]

15
16

17

18

19

2

n

Calculate all intersection points of Arri(t) and Arra(t):
Int(t) = {(tay, a3)};

Insert Int(t) = {(ts,,a3)} into LT;

Sort all elements of LT in the ascending order of time;
for each consecutive interval [t;,t;11] in LT as it is ordered
do

if w < wj then

tmp=Min(a],a3);

if tmp == a] then o

In Arri(t), maintain {(t,,a])} and
@&, ek

In Wgha (t), maintain {(t, ,w])} and
fHE i ™)

In Arra(t), remove {(t},,a3)} and
{2, e )k ‘

In Wgha(t), remove {(t,,,w5)} and
{2k

In Arry(t), maintain {(t],,a])} and
{(&",a]™k :

In Wgha(t), maintain {(t1, ,w])} and
(@& w™k

In Arra(t), maintain {(t,,a)} and
{(&1",a3 ™k . &

In Wgha(t), maintain {(t%‘lzn'w:,!]} and
G AR E

else

tmp=Min(a},a3);

if tmp == a] then

In Arry(t), maintain {(t},,a7)} and
{6l

In Wgha(t), maintain {(t],,w])} and
{7 vk

In Arra(t), maintain {(t},,a3)} and
{5k

In Wgha(t), maintain {(t},,,w})} and
{54, wd™)}:

In Arri(t), remove {{t,,a])} and
(e ’1+ )b ,

In Arra(t), maintain {(t],,a3)} and
{0 a0k

In Wgha(t), remove {(t, 1:"”1)} and
{ vl ™)k

In Wgha(t), maintain {(ﬂmr'wé)} and
fal ™k

Algorithm 2: Base_Fn

Inmput: G:(V, E), Q(s,,ts1,ts2,A)

Output: {{Arrq(t), Wgha(t))} of node d
1 for (each node v; in G) do
2 F; = {Arri(t) = inf, Wghi(t) = inf};
Fy = {Arr,(t) = 0, Wgh,(t) = 0}; Create an entry list
L(wv;) for each node v; in V, and insert F; into L(v;);
3 while any Fy(t) = (Arra(t), Wgha(t)) in L(d) do not
change) do

4 if exists Fy(t) s.t. Min(Wgha(t)) < A then
5 for each edge e = (vs,v;) € E with fe(t) and we(t)
do
6 for each Fi(t) = (Arri(t), Wghi(t)) in L(v;) do
7 Arri(t) = Arri(t) + fe(Arri(2));
8 Wgh' (t) = Wahi(t) + We(Arri(t));
9 for each F,(t) (Arr;(t), Wgh;(t)) in
L{vy) do

10 LW(A ‘,) =MinArrj {t),

UP(A}) —MaxArr] 5 (E),

LW(W —Mngh' @),

UP(W; ) _Mangh (t);
11 LW (A;) =MinArr;(t),

UP(A;) =MaxArr;(t),

W(W;) =MinW gh; (t),

UPW; =MaxW gh; (t);
12 if UPA; < LWA; and

UPW, < LWW; “then
13 Remove F',{t) = (Wgh;(t), Arr;(t))

from L(v;);
14 Insert Fy(t) = (Wghj(t), Arri(t))
_ into L{v;);

15 if UPA; > LW A, and

UPW; > LWW, then
16 L Discard F! 1) = (Wghi(t), Arri(t));
7 {F(), Fa()} =

{(Arri(t), Wghi (1)), (Arrs(t), Wah;(t) };
18 Sky(Fi, Fz)=Skyline(F\(t), Fa(t))
19 | Insert Sky(F1, F2) into L(v;);
20 return L(d);

Arryi(t) > Arra(t), the skyline function for the time-interval
[20, 30] is exactly {Fy(t), Fa(t)}. O

B. Routing Algorithm

Based on Skyline, we present the complete procedure of
Base_Fn in this subsection.

1) Idea of Base Fn: The main idea of Base Fn is to
use the Bellman-Ford method to find the minimum Arry(t)
and Wghy(t) from s to node d of G;. Instead of updating the
distance from s to d, Base_Fn updates Arrg(t) and Wghy(t)
until they are stable.

Base_Fn is based on the principle of relaxation, in which
approximations to the minimum Arrg(t) and Wgh,(d) are
gradually replaced by more accurate functions until eventually,
the two functions are stable. In Base_Fn, both approximations
of Arry(t) and Wghy(t) to d are always overestimates of

the minimum Arrg(t) and Wghg(t) and are replaced by the
skyline function of their old functions and the functions of
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a newly found path. As discussed before, we cannot use the
Dijkstra-like algorithm that uses a priority queue to greedily
select the node with the least Arr;(¢) that has not yet been
processed and performs this relaxation process on all of its
outgoing edges; by contrast, Base_Fn simply relaxes all the
edges and does this until the arrival-time and weight functions
of d do not change. In each of these repetitions, the number
of nodes with correctly calculated minimum Arr;(t) and
Wgh;(t) grows, from which it follows that eventually node d
will has its minimum arrival-time and weight functions.

2) Algorithm Details: Algorithm 2 shows the detailed steps
of Base Fn. Simply put, Base_Fn initializes the Arr,(t)
and Wgh,(t) to the source s to 0 and those to all other nodes
to infinity (lines 1-2). In the meantime, for each node v; €
G, it creates a list L; that maintains the skyline functions
(line 3). Then, Base_Fn performs a while loop, for which
the halting condition is that any pair of functions in L(d) are
stable (line 4). When the loop stops, we can obtain the desired
pairs {(Arrq(t), Wghqa(t))} of d from L(d) (line 20).

In the while loop, we also should guarantee that the weight
constraint is satisfied (line 4). Also in the loop, for each edge
e = (v;,v;), Base_Fn updates each pair of functions F} in
L(v;) by summarizing the related pair of functions Fj in L(v;)
and the edge pair of functions F, (lines 7-20). Specifically,
Base_Fn first obtains a new FJ’ through calculations of F;
and F, (addition, compounding and assignment) for pair F;
in L{v;) (lines 7-9).

After that, for each pair F;, Base_Fn updates F; and
F; by calculating their skyline functions (lines 10-20). In
the calculation, Base Fn determines the smallest and largest
values of any function in Fj and F; (lines 10-11). Based on
these values, Base_Fn could prune the functions not involved
in calculating the skyline function. By comparing the values,
Base_Fn removes F; from L(v;) and inserts F} into L(v;)
if F;j is dominated by F} (lines 13-14); it discards F; if F}
is dominated by Fj (lines 16-17). After the pruning, ékyline
is invoked to compute the skyline function from candidate
functions (lines 17-18) that are maintained in L(v;) (line 19).
When the loop stops, we obtain all stable pairs of functions
{Arra(t), Wghg(t)} contained in L(d) for d.

Example 3: Following the example in Section II-A, we
initiate an TWRP query over the time-dependent graph G, in
Figure 1 with the following time and weight constraints: s =
U1, d= Vs, [331,532] = [0,30], and A = 80.

We process the edges of G; in the order e;, es, es, €4
and e;. We have no functions for »; since it is the source
node. To process e; = (v1,vs), we obtain the functions of
va, AT‘T‘g(t) by t+ fl’g(t) and Wghz(t) by 0 +'w1,2(t). The
result of Arry(t) is given in Figure 5(a), and Wghy(t) is
just the figure shown in Figure 1(a). Similarly, to process
ez = (v1,v3), we obtain the functions of vs, Arrs(t) shown
in Figure 5(b) and Wghs(t), which is the same as w 3(t)
shown in Figure 1(b). To process e3 = (v2,v,), we obtain the
functions of vy, Arrs(t) by compounding Arra(t) and fz 4(t)
and Wgha(t) by Wgha(t)+ws 4(t). To process eq = (vs, v4),
we first obtain new functions of v4, Arr}(t) by compounding

25F i1 |

0 20 40 60 80 100
Starting time

20 40 60 80 100
Starting time

30

0 20 40 60 80 100 0 20 40 60 80 100” T 40 60_80 100
Starting time Starting time Starting time
® @

Fig. 5: Running example of Base Fn over the
time-dependent graph shown in Figure 1.

Arrs(t) and f3’4(t) and Wghf;(t) by Wgh3(t)+w3,4(t). After
that, we obtain the final functions of vy by computing the
skyline function as shown in Figure 5(c). Finally, we obtain
the functions of vs, Arrs(t) by compounding Arrs(t) and
fas(t) and Wghs(t) by Wgha(t) + was(t). The result is
given in Figure 5(d). O
For v; € Gy, let Arr;(t) and Wgh,(t) have average
breakpoints k; and k,,, respectively, after Base Fn finishes.
For analysis of Base_Fn, we have the following theorem:
Theorem 1:

« Base Fn outputs the corrected minimum functions
{Fu(t)} = {(Arra(t), Wgha(1))}-

« Base_Fn has O((k; + ky,)n®m?M?2) time complexity,
which is the time complexity of IWRP_Framework. O

The proof can be found in the full version of this paper [16].

V. ADVANCED ROUTING ALGORITHM

Base_Fn has a high time complexity because of its ex-
pensive traversal manner over G;. To solve this problem,
in this section, we propose an advanced traversal algorith-
m (denoted Adv_Fn) to compute {Arrg(t), Wgha(t)} in
IWRP_Framework such that the time complexity of IWR-
P_Framework is reduced from O((k; + ky)n®m?M2) to
O(Me(ki + kv )nm log(nhd,)).

A. Algorithm of Adv_Fn

Idea of Adv_Fn. The main idea of Adv_Fn is to use the
Dikjstra method to find the minimum Arr;(t) and Wgh,(t)
from s to every other node v; of G;. Specifically, during the
traversal from s, Adv_Fn maintains a label set L{v) for each
node v, which contains the current set of skyline functions
(related to all paths) from the source s to ». Adv_Fn is
not finished until Adv_Fn traverses all the paths from s to
destination d.

As shown in Section II-B, the existing Dijkstra-like algo-
rithms cannot solve the TWRP problem. However, the idea of
Adv_Fn is different from the existing Dijkstra-like algorithms
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in that Adv_Fn traverses every edge instead of every node, as
in the existing Dijkstra-like algorithms. This small difference
makes Adv_Fn process the IWRP query correctly and effi-
ciently.

Algorithm Details. Algorithm 3 shows the detailed steps of
Adv_Fn. Similar to Base_Fn, Adv_Fn initializes the Arr(t)
and Wgh,(t) to the source g to 0 and those to all other nodes
to infinity (lines 1-2). In the meantime, for each node v; € G;,
it creates a list I; that maintains the skyline functions (line 3).
Adv_Fn also constructs a data structure min-heap H, which
stores the paths in ascending order of the smallest value of
Arr;(t), i.e.,, Min(Arr;(t)) (line 4). Initially, H contains only
one trivial path with no edge, which both starts and ends at the
source node s. Then, Adv_Fn utilizes H to iteratively compute
the skyline function for every other node v; originated from s
(lines 5-18).

In each iteration, Adv_Fn pops the top path P from H
(line 6). Let v; be the last node in P. We can stop the
current iteration (line 8) if v; is the destination d and the
current Wghg4(t) is beyond the weight constraint A (line 7).
Otherwise, (P, Sky;(t) = (Arr;(t), Wgh;(t))) is inserted into
{(v;) as a candidate path (line 9). Adv_Fn enumerates each
new path P,., that can be obtained by appending an edge
(vi,v;) at the end of P (lines 10-11) and obtains a new pair
of functions Fy(t) = (Arri(t), Wghj(t)) for v; (lines 12-
13). After that, Adv_Fn computes the skyline function (i.e.,
Skyline) between Fi(t) and every other pair of functions
(Fy(t) = (Arr;(t), Wgh;(t))) in L(v;) and obtains the new
functions (Sky(Fy) and Sky(Fz)) for Fi(t) and Fy(t) (lines
15-16). At the end of each iteration, Adv_Fn updates L(v;)
by inserting the new functions (Sky(F;) and Sky(F3)) into
it and pushes P,.,, and its new function Sky(F;) into H for
the next iteration (lines 17-18).

Adv_Fn terminates when H becomes empty (line 5). Final-
ly, Adv_Fn returns all pairs of functions maintained in L{d)
(line 19).

Example 4:

As in Example 3, we initiate an IWRP query against the
time-dependent graph G; in Figure 1 with the following time

and weight constraints: s = v, d = vs, [ts1,ts2] = [0,30],
and A = 80.
Adv_Fn first traverses edges ey = (v1,v2) and e3 =

(v1,v3) from v, and we obtain the functions of vy (ie.,
Arra(t) and Wgha(t)) and the functions of vz (i.e., Arrs(t)
and Wghgs(t)). The results of Arry(t) and Wgha(t)) are
given in Figures 5(a) and 1(a), respectively. Additionally, the
results of Arrs(t) and Wghg(t) are given in Figures 5(b)
and 1(b), respectively. In the second step, Adv_Fn expands
vg and processes edges es = {vg,v4) since Min(Arry(t)) =
10 <Min(Arrs(t)) = 30. In this step, we obtain the functions
of vy, Arry(t) and Wghy(t) shown in Figure 6(a). In the third
step, Adv_Fn expands v, and processes edge es = (va4,vs)
since Min(Arry(t)) = 35 is the smallest. In this step, we
obtain the functions of vz, Arrs(t) and Wghs(t) shown in
Figure 6(b).

Algorithm 3: Adv_Fn

Input: G+(V, E), Q(s, ,ts1,1s2, A)
Output: {{Arrq(t), Wgha(t))} of d
1 for (each node v; in G;) do
2 F; = {Arri(t) = inf, Wghi(t) = inf};
Fy = {Arrs(t) = 0,Wgh,(t) = 0};
3 Create an entry list L{v;) for each node v; in V, and insert
| F; into L(v;);
Create a min-heap H with entries in the form
p = (P, Skyi(t) = (Arri(t), Wghi(t))), sorted in ascending
order of Min(Arr;(t));

-

5 while H is not empty do
6 Pop the top entry p = (P, Skyi(t)) from H;
7 if v; = d and Min(W gha(t)) > A then
8 | continue;
9 | Insert p into L(v;);
10 for each outgoing edge e = (vi,v;) of v; with fe(t) and
we(t) do
1 Construct path P, by extending P with e;
12 Arri(t) = Arri(t) + fe(Arrs(t));
13 Wah;(t) = Wghi(t) + We(Arri(t));
14 for each Fj(t) = (Arr;(t), Wgh;(t)) in L{v;) do
15 {Fi(t), x(t)} =
{(Arr’(8), Wahi(0)), (Arrs (6), Why (£)};
16 (Sky(F1), Sky(Fa))=Skyline(F: (t), Fa(t));
17 Insert Sky(F1) and Sky(F2) into L(v,);
18 Push {Ppew, Sky(F1)) into H;
19 return L(d);

Weha(f)
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Fig. 6: Running example of Adv_Fn over the
time-dependent graph in Figure 1.

Now, Adv_Fn has not finished, as edge e4 = (vs,v4) has
not been processed. In the fourth step, Adv_Fn expands vs
again and processes edge es. We obtain new functions of
vg, Arrhi(t) and Wgh)(t). After that, we obtain the final
functions of v4 by computing the skyline function, as shown in
Figure 5(c). Finally, Adv_Fn expands v4 and processes edge
es = (v4,v5) again, and the results of Arrg(t) and Wghs(t)

921



Fig. 7: Graphs G, and G of time-dependent graph G; in
Figure 1.

are shown in Figure 5(d). O
Theorem 2:

» Adv_Fn outputs the corrected minimum functions
{Fa(t)} = {(Arrq(t), Wghg(t))} for destination d.

o Adv_Fn has O((k; + ky)M.nmlog(nM,)) time com-
plexity, which is also the time complexity of IWR-
P_Framework by employing Adv_Fn in it. O

The proof can be found in the full version of this paper [16].

B. Speeding Up Adv_Fn

We can further speed up Adv_Fn by a heuristic approach,
which is introduced below.

We first define some concepts. For an edge e € G;, we
define [/ {e) as the largest value of function f.(¢) and L(e) as
the smallest value of f.(t). For a time-dependent graph G; =
(Vis B, fe(t)), we also define static graphs G,(Vy,, E., F,)
as Vu = W: Eu = Et and Fu(e) — U(C) and GI(VE':EE': F‘E)
a V; =V, E; = E; and Fi(e) = L(e). Intuitively, for an
edge e, € G,, F,(e,) maintains the upper bound on the time
function of e; € G;. Similarly, for an edge ¢, € G, Fi(er)
maintains the lower bound on the time function of e; € G;.

For example, Figure 7 shows the static graphs G,, and G;
of time-dependent graph G; in Figure 1. As shown in G, the
value (40) assigned to edge e; is the upper bound of f., (¢)
in Figure 1. Similarly, the value (10) assigned to edge e; in
G is the lower bound of f,,(t) in Figure 1.

Heuristic Approach. Now, we provide the speeding up
approach, denoted SAdv_Fn. Recall that in each iteration
of Algorithm 3, SAdv_Fn expands the node with the s-
mallest Min(Arr;(t)) among all non-expanded nodes. Now,
SAdv_Fn will expand the node with the smallest value of
Min(Arr;(£))+(Di(vs, d)+Dy(vs, d)) /2. Here, Dy (v;, d) is the
shortest distance from w; to d in Gy, and D, (v;,d) is the
shortest distance from v; to d in G,. Both Dj(v;,d) and
D, (v;,d) can be computed in advance. SAdv_Fn terminates
when the destination d is first expanded.

Denote by Arri4(t) the arrival-time function from v; to
d. Then, we have Dy(v;,d) < Arry(t) < D,(v;,d). Thus,
intuitively, SAdv_Fn expands v; closer to d among all non-
expanded nodes. The final query results change a little, as
shown in the experiments, but the order in which the nodes
are expanded can change a lot. If d is expanded earlier, we
have to expand fewer nodes before the computation stops. This
can save much running time.

VI. PERFORMANCE EVALUATION
A, Experimental Settings

Datasets. We employ the following two real road networks.

MA: This dataset is the Maine road network, including 187,315
nodes and 422,998 edges. A node represents an intersection
or a road endpoint, and an edge represents a road segment.

W-US: This network describes the Western USA road network,
and it includes 6,262,104 nodes and 15,248,146 edges. As for
MA, a node represents an intersection or a road endpoint, and
an edge represents a road segment.

F-US: This network describes the full USA road network, and
it contains 23,885,296 nodes and 58,327,516 edges.
Following the work [11], we generate time-dependent
graphs using the MA and W-US datasets as follows. We first
generate the travel time according to the road length. The travel
time for an edge (u,v) is greater if the road represented by
(u,v) is longer. The time domain is set as T = [0, 2000],
i.e., the departure time ¢ can be selected from [0, 2000] for
source node. Here, 2000 means 2000 time units. For every
we(t), we split the time domain T into k subintervals and
assign a constant value randomly for every subinterval; it
is then a piecewise-constant function. For every fc(t), the
time domain T is also randomly divided into k subintervals
([to,ta], [t1,t2), -+ - 5 [Ek—1, t&]), where tp and tj are the start
and end of the time domain T, respectively. The value of
fe(to) is first generated as a random number from [0, f], where
f is a number to restrict the max value of f,(t). Within each
subinterval [t;_1,t;] (1 < z < k), fe(t) is a linear function
f2(0), f2(ta1) = 2 (ts—n), and f2(t,) is generated as
a random number from [maz(0, fZ(t;_1) — Aty), f], where
Aty =1, —ty_1.
Algorithms. We evaluate the baseline routing algorithm, the
advanced routing algorithm and the speeding up of the ad-
vanced algorithm in processing IWRP queries over time-
dependent graphs. The three algorithms are denoted Baseline,
Advance and Speed-Adv, respectively.

Metrics. We are interested in the following aspects to evaluate
the performances of Baseline, Advance and Speed-Adv: (1)
the impact of the number of nodes (|V;|), (2) the impact of
the number of edges (| E;|), (3) the impact of the distance (d;)
between source and destination, (4) the impact of the length
(I5) of the starting time interval [£51, 50] (ie., Is = ts2 — £s51),
and (5) the impact of the average numbers (ny and n,,) of
segments of f.(t) and w,(t). The parameters to be evaluated
are the (1) querying time and (2) memory overhead.

B. Experimental Results

Exp-1: varying d;. We vary d; from 10 to 30 on the MA
and W-USA graphs. In this test, we set [, = 800, ny = 15
and n,, = 15. As shown in Figure 8, (1) Speed-Adv has
the highest efficiency and least memory overhead, followed
by Advance and then by Baseline. (2) Both Baseline and
Speed-Adv consume more time and memory overhead as d,
increases, as longer distances require more computations to
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reach the destination in Baseline and Speed-Adv. Advance
is not affected by the change of d; due to Advance computing
the arrival and weight functions from s to all other nodes.

Exp-2: varying [,. We vary [, from 400 to 1200 on the MA
and W-USA graphs. In this test, we set d, = 20, ny = 15 and
Ny = 15. As shown in Figure 9, (1) Speed-Adv is 13 and 220
times faster than Advance and Baseline and consumes 1/8
and 1/80 of the memory overhead of Advance and Baseline.
This is because the Dijkstra-like traversal in Advance is much
faster than the Bellman-Ford-like traversal in Baseline, and
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Fig. 10: Impact of the number of segments (ny) of edge-time
functions on the MA graph.
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Fig. 11: Impact of the number of segments (n,,) of
edge-weight functions on the W-US graph.
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Fig. 12: Impact of node size |V;|.

Speed-Adv further speeds up Advance by adding heuristics.
(2) Both the querying time and memory overhead of Speed-
Adv, Advance and Advance are not affected, as both f.(¢)
and w,(t) do not change.

Exp-3: varying ny and n,,. We vary ny and n,, from 5 to 25
on the MA graph and W-USA graphs, respectively. In this test,
we set d; = 20 and [, = 800. As shown in Figure 10 and 11,
(1) the querying time and memory overhead of Baseline,
Advance and Speed-Adv increase with increasing number
of segments (i.e., ny and n,). The reason is that Skyline will
require more calculations in the three algorithms when ns and
Ty increase. (2) All curves on ny increase more rapidly than
those on n,,, as the change in ny directly affects Arry(t),
which is the query objective.

Exp-4: varying |V;|. We vary |V;| from 1M to 20M, where
graphs with 1M to 20M nodes are generated from the F-US
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dataset. In this test, we set d, = 20, [, = 800, ny = 15
and n, = 15. As shown in Figure 12, (1) the advanced
algorithm yields much better running and storage efficiencies
than the baseline algorithm. For example, Speed-Adv and
Advance are nearly 260 and 50 times faster than Baseline.
For the memory overhead, the improvements can reach 180
and 30 times. (2) The querying time and memory overhead of
Speed-Adv increase slowly with increasing number of nodes.
The curves of the querying time and memory overhead for
Baseline increase very rapidly and exceed 1000 s and 10G
for the graph with 10M and 5 nodes, respectively. However,
the curves for Speed-Adv and Advance become smooth,
especially for Speed-Adv. This experimental result shows that
Speed-Adv scales well with the node number.

Exp-5: varying |E;|. We vary |E;| from 4M to 64M by fixing
[Vi] =2M on the F-US dataset. In this test, we set d, = 20,
I = 800, ny = 15 and n,, = 15. As shown in Figure 13,
(1) the querying time and memory overhead of Speed-Adv
increase slightly and are 4.2 s and 61M for the graph with
16 million edges. The querying time and memory overhead
of Baseline grow exponentially and are greater than 1,000s
and 10G for the graph with 16 million edges. (2) All curves
for increasing |V;| grow more obviously compared to those for
increasing | E;|. This is because the traverses by all algorithms
converge more rapidly, as the average distance of graph
becomes shorter with the increasing of | E;|.

The results of all of the above experiments justify that
Speed-Adv is efficient and lightweight and scales well with
all metrics. Additionally, Speed-Adv almost returns optimal
query answers, although Speed-Adv is a heuristic algorithm.

VII. RELATED WORK

We categorize the related work as follows.
Route planning over time-dependent graphs. These works are
classified into two categories: one category is based on the dis-
crete time model, and the other one is based on the continuous
time model. A basic version of the discrete time model [18],
[19] contains a node for every departure and arrival event,
with consecutive departure and arrival events connected by
connection (or travel) edges. A few route planning algorithms,
such as the earliest-arrival-time path, the latest-departure-
time path, and the shortest- duration-time path, have been
proposed for such graphs. Cooke et al. [20] proved that these

queries could be solved with a modified version of Dijkstra’s
algorithm. However, it does not scale well with the size of
the graph, and hence, several techniques, such as indexing,
have been proposed to improve the efficiency [8], [21], [22],
[23]. A few works [24], [25] aimed to optimize the earliest
arrival time and the number of transfers on discrete time-
dependent graphs. Their methods cannot solve our problem, as
the other optimized objective is different (ours is the weight-
optimal objective) and the graph models are different (ours is
continuous).

Several studies in the field of operations research consider
the weight-optimal path problem under the discrete time
model [26]. They develop dynamic programming schemes to
obtain the exact solution, but their time complexities are very
high. Close to our work is [11]: they define a discrete time
function f; j(vi, v;) and a discrete weight function w; ;(v,v;)
for each edge (v;,v;) and aim to find the path with minimum
weight, not the minimum time.

A more precise method to describe a time-dependent traffic
network is to use the continuous time-dependent function.
The earliest arrival time can also be computed by a Dijkstra-
like algorithm if the FIFO property holds for the continuous
model [20], [13], [7]. The algorithm in [7] is the most efficient
because it applies a more precise refinement approach that
expands the time interval step by step rather than computing
the entire time interval iteratively. The recent work [14] studied
the shortest- duration-time path problem without the FIFO
property, as it allows waiting at intermediate nodes during
the route. However, it assumes that every edge function still
has the FIFO property, and thus, the problem can be easily
solved by a Dijkstra-like algorithm. On the other hand, the
earliest-arrival-time path cannot be computed by this algorithm
because the entire graph does not have the FIFO property.
Other works further build different indices to speed up the
query, such as time-dependent CH [27] and time-dependent
SHARC [28].

Our work differs from previous works in the following
aspects. Our problem minimizes both time and weight ob-
jectives such that it has a non-FIFQ characteristic (detailed
in Section II-B), whereas all the previous works assume the
FIFO property. Thus, we develop completely novel techniques
to address the difficult problem incurred by the non-FIFO
characteristic.

Weight-constrained route planning over static graphs.  The
WRP is a classical NP-complete problem. Joksch [29]
first studied the WRP problem and proposed a dynamic
programming algorithm for the exact WRP. Subsequently,
Handler and Zang [1] proposed two methods for exact WRP
processing: one method formulated the WRP as an integer
linear programming (ILP) problem and solved it with a
standard ILP solver. This same methodology was used by
Mehlhorn and Ziegelmann [30]. The state-of-the-art solution
for the exact WRP problem is the one proposed in [15],
which followed the general idea of Dijkstra’s algorithm.
To address the hard problem, Hansen [15] proposed the
first c-approximate solution, which runs in polynomial time
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but has a high complexity: O(1rnf’"_,"'Ti1 log ;). Lorenz and
Raz [31] lowered the complexity. However, this solution is
orders of magnitude slower than an exact WRP algorithm, as
shown in [32]. Wang et al. [5] speed up the c-approximate
WRP query by proposing an effective index. The works [33],
[34] study the routing problems over road networks from
practice to theory. All of these algorithms only work for
static graphs and cannot address dynamic or time-dependent
graphs.
VIII. CONCLUSION

We have proposed an IWRP query by extending traditional
static weight-constrained route planning to time-dependent
graphs. The IWRP query aims to find an optimal path with
the earliest arrival time from the source to the destination
while keeping the total weight within a budget when the
departure time from the source can be selected from a user-
given starting-time interval. We have developed baseline and
advanced algorithms to process the IWRP query, but the
advanced algorithm is more efficient. Our experimental study
verified the feasibility of our proposed algorithms for real-life
graphs.

The TWRP query has a non-FIFO characteristic, and thus,
our two proposed algorithms could process queries over non-
FIFO graphs. We will study this in more detail. We will also
study parallel scalable algorithms and indexing techniques to
speed up the IWRP query over large time-dependent graphs.
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