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ABSTRACT

The constrained shortest path (CSP) query over static graph-
s has been extensively studied, since it has wide application-
5 in transportation networks, telecommunication networks
and etc. Such networks are dynamic and evolve over time,
being modeled as time-dependent graphs. Therefore, in this
paper, we study the CSP query over a large time-dependent
graph. Specifically, we study the point CSP (PCSP) query
and interval CSP (ICSP) query. We formally prove that
it is NP-complete to process a PCSP query and at least
EXPSPACE to answer an ICSP query. We propose approx-
imate sequential algorithms to answer the PCSP and ICSP
queries efficiently. We also develop parallel algorithms for
the queries that guarantee to scale with big time-dependent
graphs. Using real-life graphs, we experimentally verify the
efficiency and scalability of our algorithms.
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1. INTRODUCTION

The constrained shortest path (CSP) query over a graph
is to find the best path from source to destination based
on one criterion with a constraint on another criterion [14,
16]. The CSP query in static graphs has been studied ex-
tensively [14, 16, 21, 29] because it has wide applications.
In route planning over transportation networks, a traveler
has a tour plan to Beijing with maximum budgets on dif-
ferent reimbursement categories. His/her travel budget is
1,000 RMB, his/her accommodation budget is 5,000 RM-
B, and other budget is 6,000 RMB. Thus, he may want to
compute a shortest route to Beijing with toll payment with-
in 1,000 RMB. In this scenario, he should compute a CSP
query that minimizes the total travel time within the budget
for toll payment. In an online navigation system, the con-
straint can be presented to the user in the form of a slider
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bar, which drastically simplifies user-system interactions. In
telecommunication networks, a routing algorithm not only
computes a fastest route, but also guarantees the packet loss
rate within a threshold for a reliable transmission [28]. In re-
ality, graphs often evolve over time. For example, buses and
trains run at different frequencies on schedule-based public
transportation systems, and road networks are consistently
congested during rush hours. The Vehicle Information and
Communication System (VICS) and the Furopean Traffic
Message Channel (TMC) are two transportation system-
s, which can provide real-time traffic information to user-
g. Such transportation networks are time-dependent graphs,
i.e., the travel time for a road varies over time. Therefore,
in this paper, we study the CSP query over a large time-
dependent graph G:.

Every edge e = (u, ) in G¢ has two types of costs: fe()
and we(t). fo(t) is the time cost for specifying how long it
takes to travel through an edge e, and w.(¢) is the weight
(e.g, the toll fee) for traveling through an edge e. Both f.(t)
and w.(#) are functions that are dependent on the departure
time ¢ at the starting endpoint u of the edge e = (u, v).

When f.(t) is discrete, we refer G; to a discrete time-
dependent graph. When f.(t) is continuous, we refer G
to a continuous time-dependent graph. In this paper, we
consider a continuous time-dependent graph for two reason-
s. First, continuous (7¢ is a general model, and discrete &,
is a special case of continuous G¢. Second, a continuous
G+ can model many real networks, e.g., road networks [19],
schedule-based public transportation networks [32] and com-
puter networks [24].

The query types over continuous time-dependent graphs
include the point query and the interval query. The point
query computes the shortest path for a departure time point,
while the interval query has the departure time within a
period [24]. In this paper, we study point CSP (PCSP)
queries and interval CSP (ICSP) queries over continuous
time-dependent graphs. Below is an example.

Example 1. Figure I shows o continuous time-dependent
graph Gy with time-function f.(t) and weight function w.(t)
assigned to every edge € of Gv. In Figure 1(c), fo(t) is the
time-function of edge ez, which is a piece-wnse linear func-
tion. Also in this figure, we,(f) s the weight-function of
edge en, which is a piece-wise constant function.

Assume that a person P would like to travel from a source
node s = vy to a destination node d = vz ¢n G¢. For a PCSP
query, we consider the following scenario. Given a specific
departure time ts from s and o budget constraint A, P would
like to compute the earliest arrival time point ot d, but takes
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Figure 1: A continuous time-dependent graph.

a toll payment at most A. For an ICSP query, we consider
the following scenario. Given a departure period [tsi,tss]
from s and a budget constraint A, P would like to compute
the earliest arrival time function (with domain [te1, te]) at
d, but takes a toll payment at most A. d

Aninterval query over time-dependent graphs usually com-
putes the time function (also called speed profile [19]), which
is very useful in practice. For example, the answer of an in-
terval query gives the result of any point query by inputting
the starting time point into the time function [24]. There-
fore, an interval CSP also computes the earliest arrival time
function in this paper.

There are some challenges in processing PCSP and ICSP
queries efficiently, as explained below.

Challenges. The CSP query over a static graph is a classi-
cal NP-complete problem [13]. The extension from a static
graph to a time-dependent graph increases the expressivity
of the CSP query. Therefore, it may be more difficult to pro-
cess the CSP query over time-dependent graphs than over
static graphs. We prove that it is NP-complete to process
the PCSP queries over continuous time-dependent graphs.
However, the complexity becomes at least EXPSPACE in
processing an ICSP query over continuous time-dependent
graphs, and there is no polynomial time algorithm that can
approximate the query with guarantee.

Our Approaches. To attack the hard problems, we pro-
pose novel algorithms. Denote StaCSP by an algorithm that
solves the static CSP query. We first show that StaCSP can
easily be extended to process the PCSP queries over contin-
uous time-dependent graphs. To attack the harder problem
(ICSP gueries over continuous time-dependent graphs), we
propose acceleration techniques by exploiting the structural
properties of time-functions. Moreover, we develop parallel
algorithms for the ICSP query that guarantee to scale with
big time-dependent graphs.

Contributions. This paper aims to answer these questions.

(1) We conduct the study on CSP queries over large time-

dependent graphs by incorporating continuous time and weight

functions, and we formally define these problems in Sec-
tion 2. We also study the problem complexities of the CSP
queries in this section.

(2) We build connections between the static CSP query and
the dynamic CSP queries, and adapt the algorithm (StaCSP)
of the static CSP query to processing the dynamic PCSP
query in Section 3. We propose a novel sequential algorithm
(SICSP) to answer the dynamic ICSP query by exploiting
the structural properties of time and weight functions in
Section 3.

(4) We develop two parallel algorithms that guarantee queries
to scale with graphs in Section 4.

(5) Using real road networks, we experimentally verify the
effectiveness and scalability of SICSP (Section 5). We find
the following. (a) SICSP is feasible on large graphs. It takes
17 seconds and 21MB memory on a graph of 5 million nodes
and the process is accelerated by 22 times using 12 machines
by our proposed method. (b) Our two parallel algorithms
are parallel scalable: they are on average 4.3 and 4.6 times
faster on large graphs, when the number of machines in-
creases from 4 to 20.

Related Work., We categorize it as follows:

Shortest path over discrete time-dependent graphs. The sim-
plest model of a time-dependent traffic network is the dis-

crete time-dependent graph (or “timetable” graph). The

timetable associated with each node consists of time-dependent
events (e. g., a vehicle departing from a stop) that happen
at discrete points in time.

A basic version of the model [27] contains a node for every
departure and arrival event, with consecutive departure and
arrival events linked by connection (or travel) edges. Several
path planning algorithms (such as earliest arrival time path,
latest departure time path, and shortest duration time path)
have been proposed for such graphs. Cooke et al. [9] proved
that these queries could be solved with a modified version
of Dijkstra’s algorithm. However, it does not scale well with
the size of the graph and several techniques, such as indexing
have therefore been proposed to improve efficiency [33, 32,
34]. All these studies alm to optimize the time objective, and
the algorithms there are almost the same. For example, our
algorithms can directly solve the problems concerning the
latest departure time path and the shortest duration time
path with minor modifications. Some studies [7, 26] have
aimed to optimize the earliest arrival time and number of
transfers for time-table graphs. Their methods cannot solve
our problem as the other optimized objective is different
(ours i1s the welght-optimal objective).

With respect to the weight-optimal objective, several s-
tudies in the field of operation research consider the weight-
optimal path problem in the context of the discrete time
model [8]. They develop dynamic programming schemes
to obtain the exact solution, but their time complexities
are very high and cannot cope with a large graph. Close
to our work is [35], they define a discrete time function
fi.3(vs, v;) and a discrete welght function w; ;(v;, v;) for each
edge (v, v;), and aim to find the path with the minimum
weight, not the minimum time.

Shortest path over continuous time-dependent graphs.

The drawbacks of the discrete time model are two-fold. First,
this model cannot represent the state of the graph between
two discrete time points, which might yield inaccurate re-
sults. Second, the memory and processing requirements are



high. A more precise way to describe a time-dependent traf-
fic network is to use the continuous time-dependent func-
tion. For the point query, computing the earliest arrival
time can also be done by making a minor modification to
Dijkstra’s algorithm if the first-in-first-out (FIFO) proper-
ty holds at the continuous model [9, 23]. Concerning the
interval query, recent work [19] have studied the shortest
duration time path problem without the FIFO property as
this approach allows to walt at intermediate nodes during
the route. However, it assumes that every edge function still
has the FIFO property, and thus the problem can be easily
solved by a Dijkstra-based algorithm. On the other hand,
the earliest arrival time path cannot be computed by this
algorithm, because the whole graph does not have the FIFO
property.

Other studies [24, 10, 12] have also provided Dijkstra-

based algorithms to solve the problems with the continu-
ous model, and the algorithm in [12] is the most efficient
thereof because it applies the most precise refinement ap-
proach that expands the time interval step-by-step rather
than computing the entire time interval iteratively. Other
research has built different kinds of indices to accelerate the
query, such as time-dependent CH [6] and time-dependent
SHARC [11]. As far as we know, [30] is the only work to
study the bi-criteria shortest path problem over continuous
time-dependent graphs. The algorithm in [30] can give the
exact answer to an ICSP query. However, the algorithm tra-
verses all paths from source to destination, which may take
exponential steps. Our proposed algorithm is efficient by
only computing time functions of destination node rather
than those of intermediate nodes from s to d. Therefore,
our algorithm is nearly 200 times faster than the algorithm
in [30] as shown in the experiments. [36] also studies the
CSP query over time-dependent graphs. But it only gives
exact solutions, and does not propose any approximate al-
gorithms and parallel algorithms.
CSP query over static graphs. The CSP is a classical NP-
complete problem. Handler and Zang [14] proposed a method
for exact CSP processing: one method formulated CSP as
an integer linear programming (ILP) problem, and solved
it with a standard ILP solver. This same methodology was
used by Mehlhorn and Ziegelmann [22]. The state-of-the-
art solution for the exact CSP problem is that proposed
in [15], which we call Sky-Dijk because it follows the general
idea of Dijkstra’s algorithm. To combat the hard problem,
Hansen [15] proposed the first c-approximate solution, which
runs in polynomial time, but has a high complexity. Lorenz
and Raz. [20] reduced this complexity. However, this solu-
tion is much slower than an exact CSP algorithm, as shown
in [18)].

Our work differs from previous works in several ways.
(a) The works on (dizcrete and continuous) time-dependent
graphs advocate the Dijkstra-based algorithms, because all
their algorithms utilize the following property: the earliest
arrival time of a node #; can be computed by the earliest
arrival time of v}s incoming neighbors. However, this prop-
erty no longer holds true for the problems proposed in this
paper. (b) Previous works focus either on the time-optimal
objective or the weight-optimal objective, whereas our prob-
lems concentrate on both time-optimal and weight-optimal
objectives. One study on both optimal objectives is very in-
efficient, as it uses a very naive strategy. (c) All the works on
the static USP query do not consider the dynamic nature of

time-dependent graphs. Therefore, we should propose nov-
el algorithms to process CSP queries over continuous time-
dependent graphs.

2. PROBLEM DEFINITION

In this section, we will present the definition of continu-
ous graph time-dependent graphs, based on which we define
PCSP and ICSP queries.

2.1 Continuous Graph Model

Time-Dependent Graph. A time-dependent graph is a
simple directed graph, denoted as G¢(V, E, F, W) (or G for
short), where V' is the set of nodes; E C V x V is the
set. of edges; and I' and W are two sets of non-negative
value functions. For every edge € = (u,v) € E, there are
two functions: time-function f.(t) € F' and weight-function
w.(t) € W, where t is a time variable. A time function
fe(t) specifies how much time it takes to travel from u to
v, if departing from u at time . A weight function we(t)
specifies how many welghts (e.g., toll fee) it takes to travel
from w to v, if departing from w at time ¢. We define |V| =n
and |E| = m.

Time Function. The edge time function f.(¢) is a con-
tinuous and periodic (with time period T') function, de-
fined as follows: Yk & N, ¥t € [0,T), f.(kT +¢t) = f.(2),
where f. : [0,T) — [1,T.] such that tlLrI% fe(t) = f.(0), for

some fixed integer T: denoting the maximum value of f.(¢).
Without loss of generality, f.(t) can be approximately rep-
resented by a piece-wise linear (PWL) function. In fact,
any continuous function could be approximated by a set of
PWL functions by applying the numerical approximation
method [25]. Since f. is a periodic, continuous PWL func-
tion, it can be represented succinctly by the number K. of
breakpoints defining f.. Let K = 37, . K. denote the num-
ber of breakpoints to represent all the edge-time functions
in th

Figure 1 shows an example of a continuous time-dependent
graph (G; with time function f.(t) and weight function w.(t)
for each edge. In Figure 1{c), f.,(¢) defines the time func-
tions of the edge ez = (v3,v3). The period T and T. of
fz, () are 100 and 40, respectively. f=,(¢) has two break-
points (50, 40) and (80, 10).
FIFO Property. In this paper, we assume that the time func-

tlons have the first-en-first-owt (FIFO) property. The FIFO

property for an edge (u,v) implies that if departing earli-
er from w, one arrives earlier at v. We say G: is a FIFO
graph only if the time function f.(t) of every edge ¢ = (w, v)
has the FIFO property, e, #1 + fe(t1) < &2 + fo(t2) for
t; <tz £ [0,T). For example, consider a road network, for
two cars towards the same road segment, the first one reach-
ing the starting point should leave the end point first. From
the PWL function perspective, f.(¢) will satisfy the FIFO
property only if each of its linear coefficients is LC; > —1 for
i € {1,2,..., K.} and there are no discontinuities at which
fe(t) drops to a lower value. For example, in Figure 1, all
edge time functions have the FIFO property.

Arrival-Time Function. For a node v € V, we use Arr(v)

and Dep(v) to denote the arrival time at v and departure
time from w, respectively. Then, for an edge € = (u,v) € E,
we have Arr(v) = Dep(u) + fe(Dep(u)). As shown in the
problem below, we aim to compute the earliest arrival time
at a destination node d from a source s of G;. Given a path



p from s to d, based on the FIFO property, the waiting at

any node of p is never beneficial to a route algorithm for

the problem. Thus, we let Arr(v) = Dep(v) in this paper.

Let p= {e1 = (w1, v2), €2 = (v, ¥z ), .oy €1 = (U, Vrr1)) be a

given path with the departure time ¢.. Then, we calculate
Arr(v) = Dep(vy) = t.,

Arr(vz) = Arr(v) + fe, (Arr(v)),

Arr(vng1) = Arr(vs) + fe, (Arr(ug)).

The travel time of path p is defined as Tro(p) = Arr(vagi)
—ts. The edge arrival-time function of an edge ¢ € F is
defined as Arr.(t) = ¢+ f.(t), ¥t € [0, 7). Then, the path-
arrtval-time function of a path p = {ey, ..., &) is the compo-
sition Arrp(2) = Arre, (Arre, (- (Arre (£)) << +)) of the
edge-arrival-time functions for the constituent edges. The
path-travel-teme function is then Troy(t) = Arrp(f) — ¢

Weight Function. We assume that weight-function w.(t)
is a piecewise constant function, calculated as follows:

Wi, 0§t<t1
we, 1<tz

we(t) = (0
We, tgfl Sf<to

Here, [0, ;] is the time domain of function w.(t) with &
breakpoints. The value of w, (1 < = < 7) is a constant
and represents the value of we(t) when t € [fs—1,tx]. The
assumption is reasonable. In real applications, the weight
functions are always piecewise constants. For example, in
road networks, the toll fees for traveling through a road are
distinct constant values during day and night. This means
that the weight-function of this road is a piecewise constant
function.

Figure 1 also illustrates the weight-functions for the two
edges 1 = (vi,w;) and e3 = (vy,vs). Let W = EEEEJE
denote the number of breakpoints to represent all the edge-
weilght functions in G;.

Similar to the time function, let p = (e; = (vy,v2),e5 =
(v2,v5), ..., € = (Ui, Vht1)} be a given path with the depar-
ture time ¢;. For any vertex v; € p, we use Wyh(w;) to
denote the weight from v; to v; by path p. Wgh(v;) can be
calculated recursively as follows:

Wah({vi) =0, Arr(v:) = £,
Woh(ve) = Wgh(vi) + we, (Arr (1)),

Wak(vni1) = Wah(vn) 4+ we, (Arr(v)).
The weight of path p is defined as Wgh(p) = Wgh(viy1).
2.2 Problem Statement

Let s and d be the route source and destination nodes in
Gy, let &5 be a starting time point at s, and [¢s,ts2| be a
starting time interval. Let A be a user specified the weight
constraint during the route from s to d. Next, we give the
definition of the problem of PCSP and ICSP queries over
time-dependent graphs.

Definition 1
(PCSP) Given a continuous t¥me-dependent graph G =

(Point Constrained Shortest Path).

(V,E,F,W), a PCSP query Q = (s,d,t;,A) is to find a
path from s to d, represenied as p = {(vo,v1, ...¥ny1}, such
that: (1) s =vg and d = vy, (2)Dep(s) = s, and Arr(d)
i3 the minimum among all the possible paths meeting the
conditions (1) and (2).

Define Arrg(t) as the arrival-time function from s to 4.
Also define Wgha(t) as the weight function from s to d.
Specifically, Arri(t) monitors the arrival time at d of a route
R that departs from s at time ¢. Wgha(¢) monitors the total
weight of R to d from s at time ¢. We then define an ICSP
query over continuous time-dependent graphs.

Definition 2
(ICSP) Given a continuous itme-dependent graph Gy =
(V.E, F\W), an ICSP query Q = (s,d, #s1, tsp, A) is to com-
pute the earliest arrival-time function Arrg(t) from s ie d,

such that (1)t € |te1, te2] and (2) Wohg(i) < AL

From the two definitions, we see that a ICSP query com-
putes the minimum Arrg(t), whereas a PCSP query calcu-
lates the minimum Arrg(t,) for ¢ = ¢,. Thus, the PCSP
query is a special case of the ICSP query.

For example, we initiate an ICSP query against the time-
dependent graph in Figure 1(a) with time and weight con-
straints: s = vy, d = wva, [fs1,%s2] = [0,30], A = 80. The
optimal Arrg() and Wghg(t) are shown in Figure 1(d)!.

Definition 3 (Path Retrieval). Given a time depen-
dent graph Gy = (V, E, F,W), a query Q@ = (5,4d,1s1, ts3, A)
is to find a path from s {o d, represented as p = {vo, vy,
Ung1), such that: (1) s = vg and d = vay1; (2) T <
Dep(s) < tsz; (3) Wah(p) < A; and (4) Arr(d) i the min-
imum among all possible paths meeting the conditions (1),

(2) and (8).
2.3 Problem Complexity

In terms of the problem complexities associated with two

queries, we propose the following theorems.

Theorem 1. It is NP-complete to answer an ICSP query
over continuous time-dependent graphs.

The proof can be found in the full version of this paper [1].

Theorem 2. The complexity lower bound of an ITCSP
query over continuous time-dependent graphs is EXPSPACE.
In partiewlar, it takes QQ(n) memory costs to answer the
query and there is no polynomial time algorithm that can
approzimate it with any ratio bound. When every f.(t) s a
constant function, the approvimation ratio is constant.

The proof can be found in the full version of this paper [1].

3. ALGORITHMS FOR CSP QUERIES
This section will propose algorithms for PCSP and ICSP
queries over continuous time-dependent graphs.

Solution of PCSP Queries. Denote StaCSP by an algo-
rithm that solves the static CSP query. We first give a good
result for POSP queries based on the principle of StaCSP.

Theorem 3. 5taC5P solves the PCSP query Q: = (s,d,
ts, A) over a condinuous time-dependent graph Ge.

For convenience, the two functions in this ficure show a domain
not restricted by [0, 30].

{(Interval Constrained Shortest Path).
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The proof can be found in the full version of this paper [1].

Solution of ICSP Queries. As shown in Theorem 2, it
may take exponential time and space costs to process an IC-
SP query over continuous time-dependent graphs. To speed
up the ICSP query, we first exploit the structural properties
of the functions Arrg(t) and Wghg(¢) in this section. We
then propose efficient algorithms to compute the minimum
Arrg(t) and Wghg(t) based on the structural properties.

Note that once we obtain the minimum Arra(i) and Wgha(?),

we can compute the valid earliest arrival time function by
Wagha(t) < A, Therefore, we only propose how to compute
the minimum Arra(t) and Wghg(t) in the rest of this study.

3.1 Main Idea of Our Solution

3.1.1 Arrival-time and Weight Functions

Since both the time and weight functions are continuous,
we construct the arrival-time and weight functions for n-
ode d of G instead of scalar values (as in previous works)
for the discrete functions. Given node d, the arrival-time
function and weight function of d are denoted by Arra(t)
and Wgha(t), respectively. Recall that the query is @ =
(s,d,ta1,t52,A). Arrg(¢) monitors the arrival time at d of
a route R that departs from s at time ¢. Wghy(t) mon-
itors the total weight of K to d from s at time £. Thus,
the two functions of d can be denoted by a pair Fy(t) =
(Arra(t), Wgha(t)). The domain of Arrg(t) (resp. Wgha(t))
is the departure time from s within the interval [¢,1, ¢53]. For
example, Arrz(20) = 30 means that a route R starts from s
at time 20 and arrives at d at time 30. Weighty(20) = 600
means the total weight taken by R from s to d is 600.

3.1.2  Structural Properties of Arry(t)

The earliest arrival time function from s to 4, Arra(t),
is a PWL function since all input, arrival-time functions are
assumed to be PWL functions and the function operators
used to compute Arra(¢) do not change the linearity of the
result. We are interested in the breakpoints on the curve
Arrg(t) that connect its different linear pleces. We differ-
entiate between two types of breakpoints. First, a break-
point may represent the intersection between two pieces of
arrival-time functions on different paths, referred to I point.
Second, a breakpoint may represent a breakpoint on one of
the arrival-time functions for a path from s to d, referred to
O-point. Figure 2(a) depicts an arrangement of the arrival-
time functions for two paths and identifies the I-points and
O-points. From this figure, we observe: (1) Once we ob-
taln all O-points, we can establish Arrg(¢) by connecting
two neighboring O-points on the same path. (2) The I-
points are the results (intersections) by these connections

and need not be computed explicitly in order to establish
Arrg(t). Based on this observation, we only show how to
determine O-points as follows.

Every O-point corresponds to a breakpoint on the arrival-
time function, Arr,(¢), for some path p from s to d. Each
breakpoint on the Arr,(¢) function is the result of a break-
point between two linear pieces of arrival-time functions on
an edge of p introduced because of a compound operation
for computing Arry(t). In the following lemma, we demon-
strate that every breakpoint of an edge arrival-time function
can create at most one O-point on Arr,(t).

Lemma 1. Suppose P is the set of all paths that go through
edge e = (u,v) € B and f.(t) 15 the arrival-time function
for e and has K. breakpoints. Then, every path-arrival time
function Arry(t), p € P, creates, a mazimum total of K.
O-points on Arrg(t), i.e., each breakpoint &; of f-(f) creates
only one O-point on Arry(t).

Consider the following representation of the PWTL function
fe(2):
att+ F1, 0<t<ts

azt+ fBa, t <t <ty
o=14" 2)

ax t+ Br., trk,_1 St<trg, =T

For every breakpoint t;,i = 1,..., K. of f.(t), consider
path p; to be the concatenation of a path with the latest
starting time (LST) from s, which arrives at v at time g,
link {u, v), and a path with an earliest arrival time (EAT)
to d, which starts from v at time o’t; + 5;. Additionally,
recall that the starting time interval from s is [te1, ts2]. A
PCSP query with a starting time t;5 will return an arrival
time of {4 at d. Based on the FIFO property, any departure
within the interval [¢s1,tsn] will arrive at 4 before the time
ta.

Based on Lemma 1 and the FIFO property, ¢ will create
O-points only within the rectangular region with four corner
points as: (ts1, FAT), (LST, EAT), (ts1,%2) and (LST, ts)
(Figure 3{a)). To compute the related O-points of ¢;, we
first enumerate the path set P ., from s to w and the path
set P, g from v to d. Thereafter, for every ps« € Psu, we
compute the departure time Dep by traversing ps,. from u
at time ¢ to s. Similarly, we compute the arrival time Arr
by traversing p. g from u at time a't; + B to d. Finally, we
obtain all the related O-points of #; as (Dep, Arr). In order
to make sure that each (Dep, Arr) is on the final Arra (i), we
also calculate the weight WG H of the route departing from
s at time Dep to d at time Arr. (Dep, Arr) is an O-point of
Arra(t) if (Arr, WG H) is not dominated by any other pair
(with a smaller arrival time and weight) with the same Dep.

For all O-points of Arry(t), we classify the O-points on the
same path into one group G P and sort them in the ascending
order of their departure times. In every - P, we connect each
pair of neighboring O-points by a linear piece, which is one
part of Arrg(t). We then can obtain the complete Arra(t).
We naturally obtain all I-points, which are the intersection
points of two different pieces.

3.1.3  Structural Properties of W ghy(t)

All breakpoints of W ghqa(#), referred to W-points, are only
created from the breakpoints of w.(#) of every edge e € G;.
Thus, the W-points of Wghg(#) are similar to the O-points
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Figure 3: An illustration of the rectangle containing
O-points and W-points.

of Arra(t). Wgha(t) does not have breakpoints that are
similar to the I-points of Arr;(t), since all pieces of Wgha(t)
are horizontal and cannot intersect.

For every breakpoint ¢;,i = 1, ..., of w.(¢) of an edge € =
(w,v) € G, #; will create W-points within the rectangular
region with four corner points as: (1, Winin ), (LST, Winin),
(#s1, Winae) and (LST, Wias). Here, LST is the latest s-
tarting time of the route from s which arrives at v at time
t3; Winin is the smallest welght of the route starting from s
within the time interval [ts1, LST] to d with a time no later
than ¢z, passing through edge (u, v); and Wi,ax is the largest
weight of the route starting from s within the time interval
[ts1, LST] to d with a time no later than s, passing through
edge (¢, v). Figure 3(b) shows such a rectangle. To compute
the related W-points of t;, we first enumerate the path set
P, from s to u and the path set P, 4 from v to d. There-
after, for every ps.u € Psw, we compute the weight WG H,
of a route by traversing ps from u at time ¢ to s. At the
same time, we also compute the weight WG Hy of a route
by traversing p., ¢ from v at time ot + Bi to d. Thus, we
obtaln the total weight WGH, = WGH, + WGH; +w.(#)
of the route E from s to d passing through e = (%, ). Sure-
ly we obtain the departure time Dep and arrival time Arr
of K. Finally, we can obtain all the related W-points of #
as (Dep, WG H,). (Dep, WGH,) could be a final point of
Wghg(t) if its (Arr, WGH,) is a skyline point among al-
1 the points (i.e., not dominated) with the same departure
time Dep. We can obtain complete pieces of Wgha(t) by
connecting the W-points with the same WG H,.

3.1.4 Acceleration Techniques

Theorem 2 tells us that it takes at lsast 2° memory to
compute the minimum Arrg(¢) and Wgha(t), and there is
no polynomial-time approximation algorithm with a guar-
antee. This negative result forces us to resort to heuristic
strategies. We minimize both Arri(t) and Wgha(é) at the
same time, which is too expensive. Our heuristic strate-
gy sets its first priority as minimizing Arra(f) and then to
minimize Wgha(t). Intuitively, the heuristic strategy first
computes fast routes (from s to d), among which the route
with the least weight is selected.

To establish Arrq(t), the heuristic scheme first computes
O-points with Arr as small as possible. Among such points,
the heuristic scheme selects the skyline points as the final
O-points. Thereafter, Arra(¢) is constructed according to
the scheme proposed in the previous subsection. Similarly,
to construct Wghq(t), we compute the W-points with small
values for the earliest arrival time, and we then select the
skyline W-points.

For a t; of f.(¢), the heuristic scheme only selects the
point (L.ST, EAT) (the lower-right corner of the rectangle

in Figure 3(a)) as its candidate O-point. There are two
reasons for this approach. First, (LST, FAT) can achieve
the smallest arrival time for ¢;. Second, for any other point
(Dep, EAT) of the rectangle with Dep < LST, the depar-
ture time Dep might have a related smaller arrival time than
LST, though (Dep, FAT) also achieves the smallest arrival
time EAT. Similarly, we construct Wgha(¢) by computing
(LST, EAT). In particular, the heuristic strategy works as
follows:

Heuristic Strategy. All the possible O-points on Arra(t)
could be captured by computing, for every breakpoint at
time & on the edge-time function f=(¢) of each edge e =
(w,v), the latest stating time (LST) at s for arriving at « at
time t;, and the earliest arrival time (EAT) at d for depar-
ture time f.(#;) at v. The point (LST, FAT) is a potential
O-point on Arrg(t). In order to make sure that (LST, EAT)
is on the final Arry(¢), we also calculate the weight WGH
of the route departing from s at time LST to d at time
EAT and obtain a point of Arrg(¢) as (LST, WGH). I
(BAT,WGH) is not dominated by any other pair with the
same LST, (LST,EAT) is an O-point of Arrs(z). Similar-
ly, all the W-points of Wgha(t) can be computed, for every
breakpoint at time ¢; on the edge-weight function w.(¢) of
each edge e = (u,v), as (LST, WGH). (LST,WGH) could
be a final point of Wgha(t) if (Arr, WG H) is a skyline point
among all the points with the same LST.

Although we adopt a heuristic strategy, the query quality
is very high, as shown in the experiments. Furthermore, the
heuristic strategy results in a very fast query response time.

3.2 Algorithm Details

Based on the heuristic strategy, we propose two efficient
procedures that compute the minimum Arra(¢) and Wghga(t).
The two procedures are denoted as ICSP_Arr and ICSP_Wgh.
In this section, we show how to perform |CSP_Arr whose
pseudo-codes are illustrated in Algorithm 1.

ICSP_Arr uses a list L to malntain the O-points of Arra(t).
In particular, ICSP_Arr consists of three phases: (1) calculate
the O-points of Arrg(t), (2) validate them to obtain the final
O-points, and (3) construct Arrg(t).

Phase 1: Calculate the O-points of Arrg(t) (lines 3-
8). To compute the candidate O-points of Arra(t), for each
breakpoint of each edge € = (u, v), ICSP_Arr first determines
the latest departure time LST by the Dijkstra-based algo-
rithm from u on each time #; of f.(¢) to s, and the earliest
arrival time EAT by the Dijkstra-based algorithm from »
at time f.(t;) to d (lines 5-6). Let the two shortest paths
be SP; and SP;. ICSP_Arr then computes the weight of the
path from s to d by summarizing the weights of SP, SF,
and e (line 7). Finally, ICSP_Arr adds the information of
every computed point to L as candidate O-polints (line 8).

Phase 2: Validate the Candidate O-points (lines 9-
18). To validate every candidate O-point T; of L, ICSP_Arr
verifies whether T; is dominated by a point (on some path
P from s to d) with the same departure time as I;. Note
that P must contain several candidate O-points in L. To
achieve this aim, ICSP_Arr first classifies the points of L
on the same path into one group and obtains a partition
of L (line 9). ICSP_Art easily obtains the classification, as
the paths have been determined in computing the candi-
date O-points. After the classification, ICSP_Arr validates
every candidate O-point T; of I by comparing the informa-



Algorithm 1: ICSP_Arr

Algorithm 2: ArrTime

Input: Gu(V, E), Q(v., 04,81, te2, &)
Output: {Arra(¢)} of d
Arrg(ty = NULL;
List Lj;
for every edge e = (u,v) € E do
for i =0 to |f(e)| do
LST = ReverseDijkstra(u,s, t;);
EAT = Digkstra(v, d, f.(t.));
Determine the weight WG H of the corresponding path
from s to d through (u,v);
E InsertToList(L, T = {LST, EAT, WGH});

B k@ NH

9 Classify the points of L on the same path into one group and
obtain a partition of T;
10 for each T; = {LST;, EAT,, WGH;} in L do

11 Sort points T; of each group of L in the ascending order of
|LST; — LS8T;|;

12 for each group GP in L except for the group including T
do

13 for each T; = {L8T; , BAT; WGH,} of GFP as the

order do
14 Determine the path P related to GP;
15 Determine the weight W1 of P from s at time
LST, to d at time Arr,(LST,);
16 if Arr (L8T;) < BAT; ond WT <« WG&EH, then
17 Remove O-point T; = {L8T;, EAT, WGH,}
L from L;
18 Break;

19 for each group GPof L do
20 Sort points T; = (LST;, EAT:) in the ascending order of

LS&T;;

21 for each two neighbor points T and T, in the sorted GP
do

22 | AddLinearPiece(Arra(t), T3, T});

tion of T; with that of the points in other groups (paths,
line 10). Before the comparison, ICSP_Arr sorts each of the
other groups (Ps in the ascending order of |LST; — LST}|
for T} and T} in GP (line 11), so that the comparison s-
tarts from the points close to T;. It then compares T; with
the points in each sorted GP in ascending order (lines 12-
13). In this process, ICSP_Art obtains the path P from s at
time LST; to d at time FAT, (line 14). Thereafter, it ob-
tains the weight WT of this route and the compared point
(Arr (LST),WT) (line 15). ICSP_Arr removes T; if it is
dominated by (Arr,(LST;), WT) (lines 16-17). Note that
once a T; is removed, ICSP_Arr jumps out of traversing GP
and starts for another group of L (line 18), because only
one point in each path can be dominated. Finally, ICSP_Arr
obtains true O-points from L.

Phase 3: Construct Arrg(¢) (lines 19-22). This phase
is easy, since |CSP_Arr has obtained all breakpoints to build
Arra(t). First, for the breakpoints in each group (path),
ICSP_Arr sorts them in the ascending order of LST; (line
21) such that ICSP_Arr can add a linear piece of Arra(t)
between two consecutive breakpoints (lines 21-22).

Example 2. Figure 2(b) dlustrates an exzample of how
{CSP Arr is performed. Recall that Figure 2(a) gives al-
{ O-points and I-points of two paths. [CSP_Arr calculates
all (LST, EAT) as candidate O-points, which have small-
er arrival times than those in Figure 2(a). After validating
all (LST,EAT ), ICSP Arr obtains the true O-poinis of t-
wo paths as shown in Figure 2(b), t.e., 01, Oz, Os, Os of
path Py and Og, Og, O11, O13 of path Pz. {CSP_Arr con-
neets the pair of neighboring O-points on the same path and
then outputs the approximation function Arrg(t), i.e., the

Input: (Arra(t), Wgha(t)) of L(d), Q

Output: Dep(s), Arr{d)

Construct a time list T'L and a weight list WL,

for each pair (Arrg(t), Waghqa(2)) in L{d) do
Based on Wgha(t), determine constant weights with
values smaller than A and insert them into WL;
Based on WL, determine the smallest and largest
time points [£5, t];
if [tslg tgg] M [tm tb] # (;25 then

I_ Insert Min(Arr{¢s: ), Arr(t,)) into TL;

Wk

ioy

5

6

7 Determine the smallest time point ¢y in T'L;
8 Dep(s) = Arr7'(tr);

9 Arr(d) = t;

0 return (Dep(s), Arr(d));

path formed by O1, Oz, Os, Os approzimates P1 and the
path formed by Og, O, O11, O3 approzimates Po. From
this example, we observe that after the hewristic method is
applied, the approzimation function Arrg(t) has 12 fewer
breakpoints {O-potnts and [-points) in Figure 2(b) than those
in Figure 2(a). This result shows that the heuristic method
is effective. O

ICSP_Wgh uses similar steps to ICSP_Arr to calculate Wgha(t).

Thus, we omit the detailed description of ICSP_Wgh.

Theorem 4.

o The time complexity of ICSP_Arr is O(K(m+ nlogn)
+K2(log K+ m+n)), where K is the total number of
breakpoints of f.(¢) in G:. The memory complexity of
ICSP_Arr is O(m).

o The time complexity of ICSP Wgh is O(W?(n +m) +
Wi{m+mnlogn)+W log W), where W is the total num-
ber of breakpoints of w.(t) in Gr. The memory com-

plexity of ICSP_wgh is O(m).

The proof can be found in the full version of this paper [1].

Path Retrieval. Now that we obtain the smallest func-
tions Arrg(t) and Wgha(t), we can compute the earliest ar-
rival time Arr(d) and its related departure time Dep(s), by
inputting & = (s,d,%1,ts0, A) into Arrg(t) and Woha(t).
Specifically, Algorithm 2 shows how to compute Arr(d) and
Dep(s). Note that the input L{d) is the list of pair of func-
tions (Arra(z), Weha(#)). Based on the fixed departure time
ts = Dep(s), we can use the PCSP query @ = (s,4d, 1, A)
to retrieve the path for the ICSP query.

4. PARALLEL ICSP QUERY

ICSP queries may be cost-prohibitive over big time depen-
dent graphs G:. Therefore we develop parallel algorithms for
the ICSP queries that guarantee to scale with big G:.

4.1 Parallel Scalability

To characterize the effectiveness of parallelism, we advo-
cate a notion of parallel scalability following [17]. Consider a
problem I posed on a graph G¢. We denote by #(|]|, |Z]) the
running time of the best sequential algorithm for solving I
on (7. For a parallel algorithm, we denote by T(|1|, |G|, 7s)



the time it takes to solve I on (¢ by using n; machines,
taking ns as a parameter.

Parallel Scalability. An algorithm is parallel scalable if,

7(1,1G), ) = o LIS 4 oy
g

That is, the parallel algorithm achieves a linear reduc-
tion in sequential running time, plus a “bookkeeping” cost
Of(ns|I)') that is independent of |G|, for a constant {.

A parallel scalable algorithm guarantees that the more
machines that are used, the less time it takes to solve I on
&+, Hence, given a big graph &Gy, it is feasible to efficiently
process I over (¢ by adding machines when needed.

4.2 Parallel Algorithms

To parallelize the ICSP query, we should parallelize the
sequel algorithm |CSP_Arr {Algorithm 1). In this section,
we propose two parallel algorithms (denoted as T_Arr and
F_Arr), each of which works with a master M, and n, slaves
(machines).

The proposed schemes consist of two parallelisms, time-
parallelism and fragment-parallelism. T_Arr utilizes the fol-
lowing time-parallelism: T_Arr creates a partition scheme of
the time period T over multiple slaves once for all, so that it
is performed on all partitioned time sub-intervals in paral-
lel. F_Arr utilizes the following fragment-parallelism: F_Arr
creates a partition scheme of ¢ over multiple slaves once
for all, so that it is performed on these fragments in parallel.

We first show how T_Arr is executed, and we then intro-
duce F_Arr.

4.2.1 Time-based Parallel Algorithm T _Arr

We first distribute G¢ to n, slaves in two steps: (1) Each
slave maintains a copy of G¢. The copy only contains the
node and edge sets of ¢ instead of its edge-time and edge-
weight functions. (2) T_Arr partitions the time period T
of functions into ns disjointed subintervals, and the edge-
time and edge-weight functions of the ith subinterval are
distributed to &, in the ith slave. Note that the length of
each subinterval should be equal so that the distribution is
balanced.

Based on the partition, T_Arr works as follows: (1) The
master M. posts Q) to each slave. (2) Each slave M; then
invokes ICSP_Arr to compute the partial function of the min-
imum Arrg(¢t) and sends the answer to M. (3) Once all the
slaves have sent their partial functions to M., the master
computes Arrg(f) of G; as the union of all the partial func-
tions.

Note that the slave M; contains all the nodes and edges of
¢, and every edge e holds its ith partial time-function fi(£).
The main idea of ICSP_Arr is to compute the shortest-paths
for every breakpoint of fi(¢). Therefore, ICSP_Arr outputs
O-points originated from the breakpoints of f2(¢). In other
words, the partial function computed in M; is originated
from f (). After unifying all the partial functions, we could
obtain the complete Arry(#).

For T_Arr, we have the following theorem.

Theorem 5. T _Arr is parallel scalable for graph G: tak-
ing time O(t(Qﬂ—ff) + 1), where H{Q, F:) is the running time
of ICSP_Arr.

The proof can be found in the full version of this paper [1].

4.2.2  Fragment-based Parallel Algorithm F_Arr

We first partition &; into n; fragments and distribute
them to the slaves. To maximize parallelism, a partition
scheme should guarantee that, (1) each of n, slaves man-
ages a small fragment of approximately equal size, and (2)
a query can be evaluated locally at each fragment without
incurring inter-fragment communication. We propose such
a scheme.

In (1), a fragment does not only include a substructure of
(G¢, but also includes the edge-functions (time and weight)
assoclated with the substructure. Thus, the balance should
consider both substructures and their edge-functions.

To achieve this goal, we construct a static graph G.(V;,
E.) from G.(V;, By) as follows: V, = V; and B, = E;. Each
edge e; € B, has a weight of A(e,) = kie:) + w(e:), where
es = e for e; € Fy. Here, k(e:) and w(e,) are the numbers
of the breakpoints of functions f.(Z) and w.(¢), respectively.
Then, we partition G: into balanced fragments as follows.

Balanced Fragments. Each slave M; manages a fragment
I, which contains the subgraph G; of G (Vi, E:) induced by

a set V; of nodes, such that | JV; = V; (i € [1,n,]) and the
size of F; is bounded by ¢- %

) , for a small constant
c.

Intuitively, each balanced fragment F; of ¢+ includes al-
most the same sized subgraph as well as the same number of
breakpoints. Based on this definition, we can use an existing
balanced graph partition strategy (e.g., [31]) to perform on
(i ; and obtain the static F;. Then, F; is associated with edge
functions. Specifically, [31] uses multilevel label propagation
to iteratively coarsen a graph until the coarsened graph is
small enough, and then uses a high quality off-the-shelf par-
titioning algorithm to generate the final partitioning on the
coarsened graph.

To achieve (2), F_Arr should be parallel scalable. Unfor-
tunately, we have a negative theorem for this goal.

Theorem 6. Any exact sequential algorithm for the IC-
SP query over continuous time-dependent graphs cannot have
a fragment-based parallel scalable version.

The proof can be found in the full version of this paper [1].

We cannot have a parallel scalable algorithm from an ex-
act algorithm. We however develop a parallel scalable algo-
rithm by resorting to heuristic techniques. Specifically, we
add more heuristics to ICSP_Arr to make it parallel scalable.
We first show which steps of ICSP_Arr should be parallelized.

In ICSP_Arr, steps 5 and 6 take O(m + nlogn) time by
running the Dijkstra-based algorithms, and other steps take
O(1) time when K are considered as constants. Thus, F_Arr
parallelizes the most expensive steps 5 and 6 of ICSP_Arr.
Based on the proof of Theorem 6, we know that there is no
parallel scalable algorithm for steps 5 or 6 of ICSP_Arr.

We solve the problem by adding heuristics to steps 5 and
6. We first define some key concepts before giving the par-
allel scalable algorithm (F_Arr).

For an edge € € (G, we define U/{e) as the upper bound of
fo(t) and L{e) as the lower bound of f.(¢). For a time-
dependent graph G: = (Vi, By, fo(t)), we also define the
static graphs Gu(Vi, By, Fy) as Vi, = Vi, B, = E: and
Fu(e) = U(e), and Gi(V,, E, F}) as Vi = Vi, E; = E; and
Fi(e) = L{e). Intuitively, for an edge e € Gu, Fulew)
maintains the upper bound of the time-function of e; € G,.
Similarly, for an edge e € G, Fi(e;) maintains the lower
bound of the time-function of e; € G..
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Figure 4: A partitioned graph &, and its summary
graph 5.,

We partition G, {resp. (i) to obtain balanced fragments
over slaves. For two fragments F; and F; (i #£ j), we refer a
node u € F; to a border node of F; if u has a neighbor v in
F;. The edge between two border nodes is a erossing edge.
F_Arr is performed over the partitioned &, and G,.

Figure 4 gives a graph &, partitioned into two fragments
Fy and F5. Node az is a border node of F}, since az has a
neighbor & in Fy. Edge (as, bi) is a crossing edge from Fy
and Fy.

Algorithm 3: F_Arr
Input: ¢, (), master M., n; slaves My,..., M, _
Output: {Arrg(#)} of d
1 /*executed at master M.*/
2 Perform steps 1-4 of ICSP_Arr;
a:- T57 =Shortest_Path(w, s, ;);

4 EAT =Shortest Path{v, d, f.(t:));
5 Perform steps 7-23 of ICSP_Arr;

Now, we show the detailed steps of F_Arr in Algorithm 2
which works as follows. At master M., F_Arr performs all
the steps of ICSP_Arr except for steps 5 and 6, which are
parallelized over the slaves. Either step 5 or 6 is parallelized
through the procedure Shortest_Path that approximates the
true values of LST and EAT (lines 3 and 4). Based on the

approximations (ﬁ and E/A-T), we perform ICSP_Arr to
approximate Arrg(t). In the following, we first show how
Shortest_Path is executed, after which we analyze the com-
plete process of F_Arr.

Procedure Shortest_Path. The main idea of Shortest_Path
is as follows. Shortest Path parallelizes the Dijkstra-based
algorithm over the static graphs &, and G instead of the
time-dependent graph G.. Intuitively, ., and G maintain
the upper and lower bounds of the travel time over ¢, and
thus Shortest Path returns the upper and lower bounds of
the true value returned by step 5 (or step 6) in ICSP_Arr.
Shortest_Path then uses the bounds to approximate the true
value. We prove that Shortest Path is parallel scalable.

Shortest_Path inputs a query (Qsp which consists of two n-
odes (z, y) of G and a starting time ¢, from =. Shortest_Path
also inputs static graphs G and &i. Shortest_Path outputs
arrival time Arry at y. Shortest Path is executed over the
master M, and ns slaves M; (i € [1,ns]). Algorithm 3 shows
the detailed steps of Shortest Path.

Over M., Shortest_Path works as follows. (1) M. posts
Jsp to each slave M; (line 2). (2) After M. receives answers
from every slave (line 3), M. constructs two summary graphs

Algorithm 4: Shortest_Path

Input: Qsp = (z,y, ts), partitioned G, and &y
Output: Arry

/¥executed at master M */

Post Q.p to each slave M,

if every slave M; returns the answer then

Construct two summary graphs SG,, and SG; based
on all the answers;

Over SG,, (resp. SG;), compute the
shortest-distance SD,, (resp. 51);) from z to y;

UP =ty +5D,, LB = t, + SDi;
RS e,
2 k)

o o e

=]

7 return

8 /*executed at each slave in parallel over &,; (resp.
Gi*/

9 if M; contains z then
10 Compute the shortest-distance SD; from = to each
border node b of M;;
11 Send the set {(b, SDy)} to M.;

12 else if M; contains y then

13 Compute the shortest-distance SDy from y to each
border node b of Mj;

14 Send the set {(b,SDy)} to M.;

15 else

16 Compute the shortest-distance 5D, » between each

palr of border nodes a and b of M;;
17 | Send the set {(a,b,5D,5)} to Me;

Su = (Vi, B, W) and 5, = (V2, E5, W3) based on all the
answers (line 4). Note that = and y are nodes of S, (resp.
St). (3) Over 5. (resp. S5i), M. computes the shortest-
distance SD,, (resp. SD;) from z to y (line 5). (4) Finally,
M, calculates upper and lower bounds of Arry, as UP =
te+ SD,, LB =t, + 5D, and outputs the average le’—‘g
to approximate Arry (lines 6 and 7).

Therefore, we know that graphs S5, = (¥, F1,W;) and
S = (Va, By, W3) are important to Shortest Path. Below,
we formally define S,;. 5 can be defined similarly as S.,.

S, = (Wi, By, Wi) Is defined from the partitioned G as
follows: (a) The node set Vi consists of z, ¥ and the border
nodes of G,. (b) The edge set F: consists of four types of
edge sets By, By, By and By, ie., E1 = E, U By \J By UE,.
(b1) For every edge €. = (z,us) € £z, © and u, are In the
same fragment F; of (¢, and u, is a border node of F;. Its
weight Wi (e.) is the shortest-distance from z to u, within
;. (b2) E, and its weight function are defined similarly as
E.. (b3) For every edge ez = (%a, va) € Fa, us and v, are
border nodes of the same fragment F; and neither « nor y
are in F;. Tts weight Wi(e,) is the shortest-distance from
Ug to v, within F;. (b4) For every edge e € B}, e is a
crossing edge e. € G, Its weight Wi(ep) is Fu(e.).

Simply speaking, the summary graph is constructed from
the partitioned graph, only maintaining the source node, the
destination node and the border nodes of each fragment.

For example, Figure 4(b) shows the summary graph 5. of
the partitioned &4 in Figure 4(a). S, is constructed from
Gy as follows: z has edges to border nodes az and a4 of
Fy with edge weights 2 and 2; S, kesps the crossing edges
(as, b1) and (as, b2) of Gu; y also connects to the border
nodes by and by of F5. Note that S, does not contain nodes
a1 and ag, because they are not the mentioned nodes above.



Subsequently, over n; slaves, Shortest Path computes the
node set V1, the edge set F; and the edge-weight set W, of
S, (resp. Si) in parallel, which works as follows. (1) When
slave M; contains @ (line 9), we perform line 10 and obtain
E, (line 11). (2) When slave M; contains y (line 12), we
perform line 13 and obtain Ey, (line 14). (3) When slave M;
contains neither z nor ¥ (line 15), we perform line 16 and
obtain E, (line 17). After the three phases, we also obtain
B, and can construct Sy (resp. Si) in the master.

Theorem 7. F_Arris parallel scalable {with running time
O(t(QTG*) + ns)), where t{Q, Gt) is the running time of 1C-
SP Arr.

The proof can be found in the full version of this paper [1].

5. PERFORMANCE EVALUATION

Specifically, we evaluate the scalability and parallel s-
calability of ICSP queries over continuous time-dependent
graphs. For scalability, we use one machine that has 2 Intel
Xeon E5345 CPUs, 32GB memory, and runs CentOS Linux
5.6. For parallel scalability, we use a cluster of 21 machines
in a high-speed kilomega network, where one machine is s-
elected as the master and the remaining 20 machines are
selected as slaves. Each slave has the same configuration as
the one in the scalability. All programs are coded in Java.

5.1 Experimental Settings

Datasets. We employ the following real time-dependent
road networks.

CDU: We use a real taxi trajectory dataset collected by Didil
Chuxing [3] in Chengdu, China, which is published through
its GATA initiative [4]. Each taxi trajectory of this dataset
is represented by a sequence of time-stamped points, each
of which contains the information of latitude, longitude and
altitude. The taxi trajectories were recorded by different
taxi GPS loggers, and have a variety of sampling rates, i.e.,
every 2-4 seconds per point. The dataset is collected in a
period of over two months (from October 2016 to Novermber
20186).

To map the trajectories to road network, we use the latest
city boundaries [2] and extract its road network out of the
national road network of China from Geofabrik via Osmcon-
vert [5]. The road network is represented as an undirected
graph with 214,440 nodes and 466,330 edges. For each edge
e of the road network, we obtain its time-function f.(t) from
the real time-stamped points associated with it.

W-US': This network describes a Western USA road network,
and it includes 6,262,104 nodes and 15,248,146 edges. A
node represents an intersection or a road endpoint, and an
edge represents a road segment.

We generate time-dependent graphs using W-US dataset
as follows. We first generate the travel time according to
the road length. The travel time for an edge (v, v} is greater
if the road represented by (w,v) is longer. To simulate a
real traffic case, we compute the betweenness centrality for
every edge in (z; and sort all the edges in descending order
of betweenness. The time domain is set as T = [0,2,000],
l.e., the departure time ¢ can be selected from [0, 2,000]
for any node in a graph. Here, 2,000 means 2,000 time u-
nits. For every w.(t), we split the time domain T into k

Table 1: Approximation ratios of SICSP

[ Distance (d.) (10 [ 15 [ 90 | 26 | 50|
| Approximation ratio [12]15[21] 28 [ 35 |
[ Time interval {1.) 7400 | 600 | 500 | 1,000 | 1,200 |
| Approximation ratio [13[17[21] 28 | 32 |
|

|

|

|

[ No. of segments of f2(t) (n;) [ 5 [ 10 [ 156 [ 20 | 25
| Approximation ratio 1518 ]21] 28 | 33
[ No. of segments of w(3) (nw) [ 5 [ 10 [ 15 | 20 [ 25
| Appraximation ratio [16[18[21] 25 [ 25

subintervals and assign a constant value randomly for ev-
ery subinterval and then it is a plecewise constant func-
tion. For every f.(t), the time domain T is also random-
ly divided into &k subintervals ([to, £1], [t1, %2, -, [Ee—1, T&]),
where to and t; are the start and end of the time domain
T, respectively. The value of f.(to) is first generated as
a random number from [0, f], where f is a number to re-
strict the maximum value of f.(¢). Within each subin-
terval [te—1,e] (1 < z < k), f.(t) Is a linear function
FE(), FE(ta1) = £5(teos) and FE(t,) is generated as
a random number from [maz(0, fZ(to—1) — Lits), |, where
Aty = ty—ty—1. Then, the time function f=(¢) is guaranteed
to be non-negative and FIFQO.

Algorithms. We evaluate the proposed algorithms for 1C-
SP queries over time-dependent graphs. Specifically, we e-
valuate the sequential algorithm (SICSP) and compare it
with the forward label setting (FLS) algorithm in [30] We e
valuate the time-parallelism based algorithm (PICSP-T) and
the fragment-parallelism based algorithm (PICSP-F).

Metrics. We are interested in the following aspects for eval-
uating the performances of SICSP, PICSP-T and PICSP-F:
(1) the impact of the number of nodes (|V4|); (2) the impact
of the mumber of edges (|E:|); (3) the impact of distances
(ds) between the source and destination; (4) the impact of
the length ({;) of the starting time interval [tq1,¢s2] (Le.,
ls = tsz — ts1); and (5) the impact of the average numbers
(ny and ny) of segments of f.(¢) and w.(¢). For PICSP-T
and PICSP-F, we also study the impact of the number of
slaves (n,). The parameters requiring evaluation are: (1)
querying time; (2) memory overhead; and (3) the approxi-
mation ratio of the heuristic method (i.e., SICSP, PICSP-T
and PICSP-F).

The approximation ratio is computed as follows. FLS re-
turns the exact function Arrg(t), and a heuristic method
returns an approximation function Arrj(t). We random-
ly select w time points # (1 < i < w) from the starting
time interval [te1, ts2] and we then obtain w function values
for Arrg(t) (resp. Arri(t)): Arrg(t:) for 1 <4 < w (resp.
Arri(t;) for 1 < ¢ < w). Based on the function values, we

:
compute the approximation ratio as (> ;. , EZEEZ’; )/ w. We

set w = 40 In the following experiments.

Experimental Results.

Exp-1: Approximation Ratio of SICSP. We first. eval-
uate the approximation ratios of SICSP on the CDU graph
by varying ds from 10 to 30, Is from 400 to 1,200, and ry
and ny from b to 25. Table 1 reports the results from which
we find the following. (1) The approximation ratios increase
when d. and n; increase, and the largest approximation ra-
tios are 3.5 and 3.3. (2) In contrast, the approximation
ratios do not increase strictly as I; and n, grow, and the
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approwimation ratios are hoth around 3. (2) The findingsin
(1) and (2) show that SICSP returns very amall {constant)
approeiimation ratics in practics for the real traffies, despite
that the algorithmm is hewuristic.

Exp-2: EBcalability of SICSP. Thiz set of experiments
evaluate the scalakility of SIC5P, compared to FLS.

Yarying d.. We vary d. fom 10 to 20 on the CDU graph.
In this test, we set I, = 800, oy = 18 and n, = 18 To
generate the distance of § | we fix a sowree and perform a
BEFS zsarch in { hops to obtain a set of destinations.  As
shown in Figare &, (1) SICSP is very efficient (e g, 2.330n
average) and conswmes little memory overhead (eg, 6ME
o average). [n contrast, FLS takes f00s, and even worse
yet, conswmes nearly 1003 B of memory overhead. () SICSP
COMEImes more e and mermory overhead as d: incoreases,
gince a longer distanes needs more computations in 51CSP.
FLS iz not affeeted by changes in d. because FLS computes
the arrival and weight funetions from s to all other nodes.
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Figure 6 Impact of the length of time interval [t 4:a).

Varping I We vary I fromm 400 to 1,200 on the CDU gragh.
T this test, we sst de = 20, 727 = 15 a2l 2 = 146 Az showm
in Figure 6, (1) SICSP iz 200 times faster than FLS and
consumes 171 000 the memory overhead of FLS. (%) Both
the queryring tirme and memory overhead of SIC5F and FLS
are not affected, since both F-0£) and we(£) donot change.
Varping rep oand iwe. We vary both oy oand e from 8§ to
25 on the TDU graph. In this test, we =t d: = 20 and
.= &00. As shown in Figure 7, (1) the querring time and
memory overhead of SICSF inerease along with the mamber
of segments {ie, »; and 7). This iz becauss SICSP runs
more Dijkstra-based alegprithms when »; and ., increass.
(2) ICSP-T increases more rapidly than ICSP-W, sines the
change in 17y has 2 bigepr impact on Arez(#) than the chanes
n i
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Warying |Vi|. We vary |V fromn 1 million to 8 million, where
graphs with 1 million to & million are generated from the W-
118 dataset. In this tast, we set d; = 20 L = 800, n; = 18
aned 70 = 16, As shown in Fipare & (1) the querying time
and memory overhead of SICSF are always less than those of
FLS. SICSF is nearly 300 times faster than FLS. The mermory
overhead of SIC5P 15 nearly 5,000 tirmes less than thak of
FLS. (2) The querfing time and memory overhead of SICSP
increase margihally when the number of nodes increases.
Varying | Es|. We vary | By from 20 to 320 by fiwing | V3| =11
on the WIS dataset. In this test, we set d, = 20, I, = 800,
reg = 15 and iy, = 15, As shown in Figure 8, {1) the query-
ing titme and memory overhead of SICSP inoreass shehtly
and are £.83 and 4.3ME at the graph with & million edees.
{23 The querving time and memory overhead of FLS grow
exponentially, and are beyond 1,000z and 103 E at the graph
with & million edges.

The results in Exp-1 and Exp-2 justify that 5I1C5P isvery
effirient. and lightweight, and seales well with all metrics.
Fartherrnors, 1C5F has very stnall appeoximation ratios, de-
gpite that 3IC5F iz a heuristic alporithem.

Exp-3: Bcalability of PICSP-T and PICSP-F. Thiz ==t of
experiments evaluates the scalahility of parallel algorithrm-
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ske on the CDU dataset, size on the W-US dataset,

3, PICSP-T and PICSP-F. In partioilar, we only report the
querying time hecause neither FICSP- T nor FICSP-F ineurs
inter-fragment communications.

Yarting d. and {o. We vary d. fom 1040 30 and & from 400
to 1,200 on the CDU graph. In this sething, we st 2y = 18
and ree = 18, and the muanker of slaves is set a5 e = 12
As shown in Figares 10 and 11, (1) the querying time of
FICSP-F iz always less than that of PICSP-T, when d: and
{. take in all values Thizis kecauss PICSP-F only computes
shortest-distances between the border nodes of slaves, while
FICSP-T still caleulates shortest-distance for every pair of
nodes of G (%) The querying times of PICSP-F and PICSP-
T inarease when J: hareases, while the querying titne does
not change as {; grows.

Varying |Vi| and [ £y We vary | ¥ from 1M ta S and |BY|
frorn 20 to 33N on the W-TE dataset. In this sstting, we
st de = 20,8 = 800, my = 18, e = 15, and the monker
of slaves iz =2t as ., = 12 As shown in Figares 12 and 12,
(1) the querying time of both FICSF-T and FICSP-F scales
well with | ¥ and | E|, but PIC5P-F increasss more stwoothly
than PICSP-T. (2) On |Vy|, PICSP-T and PICSP-F outperfor-
rn SICEP by 7.3 tirnes and 22 times on average, respectively,
when 12 slaves are used to ancelerate the process.

Warting number of slaves. We vary the number of slaves fom
4 to 20 on the CDU and W-U3 datassts. In this sstting, we

st d: = 20 L = 800, oy = 18, 7 = 18 Asshown in
Figure 14 on the CDU datasst, (1) FICSF-T and FICSP-
F acale well with the increase of slaves: fir FICSP-T, the
irmprovernent is 4.3 (resp. 2.0) times when the munber of
dlaves increases from 4 to 200 {2) As shown in Figare 15 on
the W-TI5 dataset, (1) PICSP-T and PIC5P-F also scale well
when the munker of slaves inoreases: for PICSP-T, the im-
provement is 4 3 {resp. 4. &) times when the number of slaves
increases from 4 to 20 The two results verifir Theorsms &
anel 7.

Table 2! Approcimation ratios of PICSP-F

[ Dristance (da) [ JTIs] 20 ] % [ & |
| Approsdmation ratio [Tr (2635 48 | £6 |
[ Tirne interval (I [ III|ECD|EDD|1DCD|1,2|II|
| Approidmation ratio [21 2835 29 ] 58 |
[Mo. of segments of R8I () [ £ JID I8 ] @ [ 25 ]
| Approsdmation ratio [1Ta2s]as] 43 ] £5 1]
[ Mo of segrnents of we(# Gry) | 5 ] 1D [1I5] & ] %]
| Approsdmation ratio [E1 28388 41 [ 49 |

Exp-4: Approximation Ratio of PICSP-F. Finally, we
evaluate the approximation ratics of FICSP-F on the CDU
graph by varying d: from 10 to 30, { from 400 to 1200,
72y and 7, from 5 to 28, since we add ICSF heuristics to
make PICSP-F parallel scalakble. Tahle 2 reports the results
frorm which we find the following, (1) The approsimation
ratics ncrease when gz, Iz, 27 and ma, inoresse, and the ay-
erage approximation ratios of these pararmeters are all 3.5
{2y The approximation ratics of PICSP-F are 1.2 times a=s
those of SIC5P on average, which explains why it 1= worth-
while to add heuristios to make PICSP-F parallel acalable.
The remults in Exp-2 show that PICSP-F always outperforms
PICSP-T. Therefors, we only need FICSP-F in practice.

The results in Exp-2 and Exp-d justify the parallel scalar
bulity of PICSP-F and PICSP-T.

6, CONCLUSION

We have proposed a dimamic C8F query by extending
the traditional static constrained shortest path to the time-
dependent graphs. We have also studied important msues in
connection with the dynamic C3F query, from cornplexaty
to alpprithrms to applications. The novelty of this work lies
inits adaption of static alporithens to solving new problerms,
hewristic tachniques (plugeing strustural properties of time
and weight functions into the shortest path alepprithm), and
parallel sralahle alporithins to cope with big Sme-dependent
graphs. Our experimental study has verified the fazbility
of our proposed alpprithins in real-life graphs.
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