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Abstract—Distributed graph systems are becoming extremely popular due to their flexibility, scalability, and robustness in big
graph procassing. In order to improve the performance of the distributed graph systems, caching is a very effective technique to
achieve fast response and reduce the communication cost. Existing works include online and offline caching algorithms. Online
caching algorithms (such as least recently used (LBU) and most recently used (MRU)) are lightweight and flexible, however,
neglect the topological properties of big graphs. Offline caching algorithms {such as node pre-ordered) consider the graph
topology, but are very expensive and heavy. In this paper, we propose a novel caching mechanism, GraphCache (GCache), for
big distributed graphs. GCache consists of an offline phase and an online phase, which inherits the advantages of online and
offline caching algorithms. Specifically, the offline phase provides a caching model based on the bipartite graph clustering and
give efficient algorithms to solve it. The online phase caches and schedules the graph clusters output from the offline phase,
based on the LRU and MRU strategies. GCache can be seamlessly integrated into the state-of-the-art graph processing systems,
e.g., Giraph. Finally, our experimental results demonstrate the feasibility of our proposed caching techniques in speeding up graph

algorithms over distributed big graphs.

Index Terms—Distributed Caching, Large Graph

1 INTRODUCTION

There is a huge amount of information surrounding us that
can be represented in the form of graphs. Examples of these
graphs include social networks, graphs of road networks,
dependency graphs for software, etc. Moreover, the size
of these graphs has rapidly grown and can now reach up
to hundreds of billions of nodes and trillions of edges [1].
For example, the World Wide Web now contains more than
50 billion Web pages and more than one trillion unique
URLs [2]. The de Brujin graph constructed for tackling
genome assembly problems may contain as many as 42°
nodes [3]. Systems such as Pregel [4], GraphX [5] and
Giraph [6] are some of the plethora of graph processing
systems being adopted to process these large graphs. To
enable fast computations on large graphs, these systems
are typically run in a distributed manner.

One of the key performance factors of a distributed
graph system, compared to its centralized counterpart, is the
commpmnication cost. In some cases, the communication cost
can be the bottleneck of the system and suppress the advan-
tages of the distributed graph system (such as parallelized
computing power, storage capability, etc.). Hence, reducing
the communication cost is one of critical issues for the
success of a distributed graph system. We may encounter
this challenge from different aspects, for example, when
we design a communication-free approximate algorithm,
optimize the network infrastructure, and so on. In this
paper, we focus on the caching, that is, caching remote
nodes’ information (nodes in other machines) in local
memory to reduce the communication costs during big
graph processing.

Distributed Graph Caching. Caching is one of effective

mechanisms to reduce remote communications. Whenever
a node needs to access its remote neighbors’ information,
the caching system first checks from its local cache. If
the information is already available in the cache, this
information will be directly fetched. Otherwise, remote
accesses are issued. Obviously, if caching is effective (ie.,
if the hir rario is high), we can avoid a large number of
remote accesses.

Example 1: Figure 1 illustrates an example, where ma-
chine M7 contains nodes {1,2, 3,4, 5,6} in its memory and
their remote neighbors {a, b, c,d} are included in the mem-
ory of machine M,. When we process nodes of Mj, we
usually access their remote neighbors in Ms. We set a cache
in M; to save the remote accesses from {1,2,3,4,5,6}.
Assume that the maximum size of the cache is 2. We can
save remote accesses from nodes {1,2,3}, if we cache
nodes {a,b}, i.e., the hit ratio for nodes {1,2,3} is very
high. In this caching, however, the hit ratio may be zero
for nodes {4,5,6}. O

Existing caching mechanisms for graphs include online
and offline fashions. Typical online works include the works
such as [7], [8], and [9]. These works focus on a replace-
ment strategy to improve the cache hit ratio. Their common
principle is to discard the information that was not needed
for the longest time. Hence, their adopted caching schemes
such as LRU and MRU tend to use the previous access
patterns to predict whether a data item will be accessed
in the future. This fashion makes replacement decision
according to the most recently accessed information.

The advantage of online algorithms is that they are
lightweight and flexible, i.e., an online algorithm takes
only an O(S) time complexity (where S is the cache
size) and the algorithm is triggered whenever needed. This



feature is very suitable for distributed environments. The
shortcoming of online algorithms is that they neglect the
topological structure of graph data. Following Example 1,
the online algorithm may cache nodes {b, ¢}, as this pair
of nodes obtains more remote accesses than any pair of
nodes in {a, &, c,d} according to the MRU or LRU scheme.
However, as shown in Figure 1, it is better to cache nodes
{a,b} or {c,d} than nodes {b,c}. The reason is that re-
mote requests usually come from the nodes {1,2, 3} (resp.
{4,5,6}) simultaneously. In addition, we can alternately
cache nodes {a, b} and {¢,d} to maximize the hit ratio for
nodes {1,2,3,4,5,6}.

Most offline works concentrate on the CPU-based graph
caching schemes, which predefine a total order on nodes
to speed up graph processing [10], [L11], [12], [13], [14]
(i.e., graph algorithms access the nodes in the defined
order.). The predefined order keeps nodes frequently ac-
cessed together stored closely in main memory so that they
are more likely to be loaded into cache together by one
single cache line transfer. The predefined order of nodes
is determined by the topological structure of graph data.
The advantage of offline algorithms is that they consider
the graph structure. The shortcoming of offline algorithms
is that they regard the entire graph as a whole, which
is unsuitable for distributed environments, especially the
node-centric computational model introduced as follows.

Current distributed graph computing frameworks advo-
cate the node-centric computational model [4], [5], [15],
for which no order is posed on nodes to be processed.
The node-centric computational model works very well for
distributed graph algorithms, since nodes under this model
independently update their information and the computation
on a node only depends on its neighbors. This local comput-
ing mode is very suitable for graph algorithms performed
in a distributed environment.

Our Solutions and Contributions. Motivated by the ad-
vantages of online and offline caching algorithms, in this
paper, we propose a novel graph caching scheme (GCache)
for the node-centric computational framework. Specifical-
ly, GCache is inspired by an observation: nodes sharing
similar remote neighbors should be accessed rogether. In
other words, if local nodes can be clustered in a way such
that nodes in the same cluster share many similar remote
neighbors, the caching will be quite effective.

FExample 2: Figure 1 briefly illustrates how GCache is
performed, where the maximum cache size is 2 (ie., the
cache contains at most 2 nodes.). GCache consists of an
offline phase and an online phase. In the offline phase,
GCache groups nodes {1,2, 3,4, b} as one cluster 7 and
nodes {4,5,6,¢c,d} as another cluster Co, based on the
topological structure of the bipartite graph. In the online
phase, GCache processes and caches clusters instead of
nodes. For instance, when we process nodes of Mj, we
process the node set {1,2, 3} of Cy (resp. {4, 5,6} of Us) as
an unit. While we process the node set {1,2,3}, we cache
the node set {a, b} also in £'y. GCache replaces {a,b} with
{e,d} in the cache, while we process the node set {4,5,6}

Fig. 1: Example of the proposed caching algorithm.

The cached node set {a,b} or {e, d} satisfies most requests
from nodes in the same cluster. O

Example 2 shows that GCache consists of an online
phase and an offline phase. The offline phase partitions
the bipartite graph into different clusters. The online phase
caches and schedules remote nodes in each cluster. Based
on this scheme, GCache inherits the advantage of offline
caching algorithms, i.e., GCache clusters nodes based on
the graph structure. GCache also inherits the advantage
of online caching algorithms, ie., GCache can flexibly
replace one cluster with another according to the LRU or
MRU scheme. In this paper, we model the offline phase
as a clustering problem on a bipartite graph. We call the
problem Local Clustering, since the caching only depends
on the local information on a machine. This local feature is
very suitable for the node-centric computational model. Tn
addition, GCache can efficiently solve the local clustering
for a big graph with billions of nodes. Our experiment
shows that GCache is time and communication efficient,
at node-centric computational systems, e.g., Giraph [6].

GCache is a general caching scheme for any graph
algorithm implementable in a node-centric computational
model. We optimize GCache for a class of very important
graph algorithms that are used to solve graph comnectivity
problems. Graph connectivity problems refer to finding
connected components (CC) in an undirected graph, finding
strongly connected components (SCC) in a directed graph
and asking if two given nodes are reachable (RE) from cne
to the other in a directed graph. Obviously, the three graph
problems have lots of applications in practice, and many
advanced graph algorithms are based on the three graph
problems. We apply the percolation theory [16] to optimize
GCache. Specifically, we compute a very small probability
p for a large graph by applving the percolation theory. Asa
consequence, we can cache 5 - p edges to achieve the same
effect as we cache 5 edges for graph connectivity problems
(5 is the cache size). For example, if p = 0.01, it means
that the caching size of GCache can be saved 99% without
losing its effect.

The remainder of this paper is organized as follows. We
formally define the problem and give its complexity in



TABLE 1: Notation.

Symbol Description

G the distributed graph
F; a fragment of &G
F.I F.O the border nodes of F;

BV, E-B(XUY, )
G = (X, UY, By)

the meta graph of F;
a cluster of B(V, E)

B(X,,Y:) the edge set of
E(C:,C5) the crossing edges between C'; and C;
N a maximum flow network
flu, ) an edge flow of N
alu,v) an edge cost of N
c(u, v) an edge constraint of N
P a threshold probability
1 '
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Fig. 2: A big graph & is distributed two machines M;
and Ms: (a) the virtual G, (b) the actual &, and (c) the
actual caching of G.

Section 2. In Section 3, we propose the general solution
for the offline phase of GCache. In Section 4, we optimize
the general solution for graph connectivity algorithms.
In Section 5, we introduce the detailed offline phase of
GCache. We discuss the results of performance tests in
Section 6 and the related works in Section 7. Finally, in
Section 8 we draw our conclusions.

2 PROBLEM DEFINITION

We summarize the notations of this paper in Table 1.

2.1 Basic Concepts

Graphs. We consider graphs G = (V. £, L), directed
or undirected, where (1) V is a finite set of nodes; (2)
F CV xV is aset of edges, and; (3) each node v in V
(resp. edge e € E) carries L{v) (resp. L(e)), indicating its
content, as found in knowledge graphs and social netwaorks.
Graph G = (V/,F/, L") is called a subgraph of G if
V/CV, F CFE, and for each node v € V’/ (resp. each
edge e € ), L' (v) = L{v) (resp. L'(e) = L{e)).
Distributed Graphs. Given a number ¢, a strategy P
partitions graph & into disjoint fragments #' = (¥, ..., F.)
such that each F; = (V, E;,L;) is a subgraph of G,
E = Uif\/}l’c] By, V. = |Jicp,q Ve, and F; resides at a
machine M;. Denote by
v F;. T the set of nodes » £ V; such that there is an edge
(v/,v) incoming from a node o' in Fy (¢ # )
+ I3.0 the set of nodes «' such that there exists an edge
(v,v) in E, v € V; and v is in some F;(i # 7); and
« FO =1 F.O FI =] F.I FO =
FOus

i€[l,¢] ic[1,¢]

We refer to nodes in Fi.J U £5.0 as the border nodes
of F; wre. P. If G is an undirected graph, then it holds
that F;.I = F;.0. Without loss of generality, we focus on
the undirecred graph in the following of this paper. For an
edge e = (v,v'), v € F5.0 and v’ € F;.0 (i # ), we refer
to e as a crossing edge of Fy and v’ a virmal node of F;.
Machine A; maintains crossing edges and virtual nodes so
that F; communicates with another fragment residing on
another machine.

For example, in Figure 2, a graph G is partitioned
into two fragments (F} and F3) across two machines,
My, and M;. Figure 2(a) gives a simplified illustration,
whereas Figure 2(b) shows the actual stored fragment in
each machine. As shown in the figure, M; maintains the
crossing edge (b,c) and its virtual node ¢ So does Ma.
Thus, communication exists between F7 and F5, so that
any graph algorithm can be processed over the distributed
graph G.

To define distributed graph caching, we need the follow-
ing definitions. All nodes in Fj; except for the virtual nodes
are referred to as inner nodes of Fy. Similarly, all edges
in F; except for the crossing edges are referred to as inner
edges of I;. All nodes in I} are referred to as local nodes
which include inner and virtual nodes. All edges in F; are
referred to as local edges which include inner and crossing
edges. For example, in Figure 2(b), o and b are inner nodes
of F1, and (a,b) is an inner edge of Fy. Nodes a, b and
¢ are local nodes of Fy. Edges (a,b) and (b,c) are local
edges of Fi.

Note that a crossing edge (v,v’) between F; and F; are
both kept in F; and £}, Node </ is a virtual node of Fj,
and a border node of F}. For an inner edge (v/,v”) of £},
let ©' be a border node of F; and »” an inner node of F}.
Then, for v' in Fy, »" is referred to a remote neighbor of
v” in Fy. For example, in Figure 2 (¢), d and e are remote
neighbors of ¢ in Fj.

Distributed Large Graph Caching. We use N(u) to
denote the neighbor of a node w. Thus, the degree of the
node wu is d(u) = |N{u)|.

Given a graph G(V,F, L) and its partitioning on dis-
tributed machines, we can define a meta graph for each
machine. The following discussion will focus on the meta
graph of each machine.

Definition 1 (Meta Graph on a Machine): A meta
graph on a machine M; is a bipartite graph B(V, E),
where V = X UY and X are virtual nodes in machine
and Y are remote neighbors of X.

For example, in Figure 2(¢), X = {c} and ¥ = {d, e}
for M.

As claimed in the introduction, our aim is to reduce
traffic costs of a distributed graph algorithm. We observe
that the behaviors of distributed graph algorithms are as
follows: nodes sharing similar remote neighbors are usu-
ally accessed together. In other words, if local nodes can
be grouped in a way such that nodes in the same group
share many similar remote neighbors, the caching will be
quite effective. In addition, F; is usually still very large
after & is partitioned. Therefore, local nodes X of F; can



be logically divided into parts (X3, Xo, ..., Xi) such that
nodes in each X; share many similar remote neighbors.

Here each X; corresponds to a cache C; which maintains
X;’s remote neighbors. When nodes of X; request their
remote neighbors, they first check if C; contains the remote
neighbors. If the answer is yes, they fetch the neighbors
from C;; otherwise, they initiate remote requests.

An important factor in a real caching system is that, the
caching system can only cache a limited number of remote
neighbors. To reflect this requirement, we use a parameter
S as the cache size constraint.

Problem Model. Based on the caching mechanism above,
we next give an optimal model for the distributed graph
caching. Given a meta graph B(X U Y, E) and X' C
X, Y C Y, we use E(X',Y") to denote the edge set
between X’ and Y. Now we are ready to give the problem.
In this problem, we hope to maximize the number of remote
accesses which are saved.

We define the local clustering to achieve the maximum
savement of communication costs.

Definifion 2 (Local Clustering (LC)): Given a meta
graph B(X UY, F) and an integer S, find a partitioning
1, Cs, ..., and Uy on the meta graph, such that

« each C; = (X;UY;, E;) is a bipartite graph with X; C

X, Y, OY,

« for each ¢, |¥; < &

o O [ E(X, YY) is maximized.

Here, |F(X;,Y:)| is the number of the saved com-
munications for nodes X;, if we cache the Y; nodes.
Thus, >, |E(X;,Y;)| is the total number of the saved
communications. For Xj, its cached nodes are ¥; and
cached edges are edges E'(X;, Y;). In the caching, we also
cache the nodes’ and edges’ attributes, i.e., L(v) and L{e)
for v € ¥; and e € FE{X;,Y;). As we will show later,
GCache consists of an online phase and an offline phase.
The offline phase partitions the meta graph into different
clusters. The online phase caches and schedules ¥; nodes
in each cluster. The caching process is executed along with
graph algorithms. Therefore, the attribute values of cached
Y; nodes are naturally updated by graph algorithms.

Note that, X; and X; (¢ # j) are not necessarily disjoint
with each other, but Y; and Y} should be disjoint. This
point will lead to low network overhead. For example, in
Figure 3, partial overlap of X3 and X5 is better than their
complete separation for the caching. Disjoint ¥; and Y5
consume fewer space costs. Moreover, we have a size-
constraint on ¥; and nothing on X;, which assures in
a cluster '; many nodes of X; have common remote
neighbors in ¥;.

This problem definition is for the offline phase which is
the basis of the online phase.

Note that the local clustering is designed for any graph
algorithm, not some specific graph algorithms. The design
is similar to an index that can support any type of queries.
To achieve this goal, the local clustering assumes that all
nodes are active and have equal access frequencies of their
neighbors across all round of iterations.

__________
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Fig. 3: Example of the constraint on ¥; and nothing on
X

2.2 Problem Complexity

In this subsection, we will show that the optimization
problem (L.C) (given in Definition 2) in our model is NP-
hard.

Theorem 1: The local clustering problem is NP-hard.

3 GENERAL SOLUTION FOR OFFLINE
PHASE oF GCACHE
3.1 Connection to Graph Partitioning

In this subsection, we solve the L.C problem by graph
partitioning (GP) which is defined as follows.

Definition 3 {(Graph Partifioning (GP)): Given a meta
graph B(X UY, E), find a partitioning 1, Ca, ..., Uy on
the meta graph, such that

o {1y each C; = (X; UY;, By) is a bipartite graph with

X;cX, iy,

o () |B(X;,Y5)| = [E(X;,Y5)| for @ # 4, and

+ (3) > |E(C;, C})] is minimized.
where £(C;, C;) denotes the crossing edges between C;
and C;.

There are three differences between GP and LC:

+« In GP, the objective is to minimize the number of

crossing edges between different clusters, whereas in
LC the objective is to maximize the number of inner
edges within clusters.

+ In GP, the partition number is given, whereas in LC

no partition number is given.

« In GP, no size constraint is posed, whereas in L.C we

need to ensure that the size constraint is satisfied.
Next, we solve the first issue, i.e., the different objectives.
The solutions to the second and third issues above (i.e.,
partition number and size constraint) will be introduced
later.

Different Objectives. Given a meta graph B{(X U Y, F),
since its edge set F(X,Y) is fixed, the maximization
of inner edge number equals to the minimization of the
crossing edge number. Ther, the objective of GP and L.C
is the same. In the sequel, we propose a graph partitioning
algorithm by solving the second and third issues.

3.2 Algorithmic Framework

Since the LC problem is NP-hard, our solution to it consists
of the following two greedy steps. In the first step, we get



an initial partitioning P, which should be a lightweight
algorithm e.g., a random partitioning. In the second step,
we advocate the technique of label propagation (LP) to
iteratively refine the initial partitioning P until a halting
condition is satisfied. The reason we adopt LP is that LP can
be easily parallelized, affording a scalable implementation
on a node-centric system. Algorithm 1 is the pseudo-code
of our local clustering framework which consists of two
steps, i.e., initialization (line 2) and refinement (lines 3-6).

Note that L.LP assumes undirected graphs [17]. However,
usually graphs are directed (e.g., social network). To use LP,
we would need to convert a directed graph into undirected
one. The approach is to create an undirected edge between
nodes u and v whenever at least one directed edge exists
between nodes « and v in the directed graph.

Below, we first give the haling condition, and then
introduce the detailed contents of the two steps in the sequel
subsections.

Algorithm 1 LocalClustering(B(V = X UY, E))
1: Make B undirected if B is a directed bipartite graph;
2: P =Obtain an initial solution by a random partitioning;
3. repeat

4. UpdateX(P);

5

6

UpdateY (P);
: until A halting condition is satisfied

Halting Condition. LP usually needs a very large number
of iterations to converge [17] and hence we provide a hallt-
ing condition to guarantee a fast convergence of L.P without
sacrificing the partitioning quality. We take the following
strategy: At a given iteration, we define the score of the par-
titioning for the bipartite graph B as the sum of the current
scores of each node, score(B) = ., _pscore(v,l). The
value of score{v, [) will be explained later in Equation {1).

We consider a partitioning to be in a stable state, when
the score of the bipartite graph B is not improved more than
a given ¢ for more than ~ consecutive iterations. LP halts
when a stable state is reached. Although through € we can
control the trade-off between the cost of executing LP for
more iterations and the improvement obtained by the score
function, with -y it is possible to require a stricter definition
of stability, as the absence of improvement is accepted for
a larger number of iterations.

3.3

In this step, an initial partitioning could be done by random
partitioning (e.g., RANDOM [18]) or other algorithms (e.g.,
METIS [19]). In general, the random partitioning is the
lightest and can handle a very big graph. Thus, we choose
the random method to perform the initial partitioning. One
widely used random partitioning mechanism is that each
node chooses a partition uniformly at random from all &
possible ones. After all the nodes finish their selections, the
number of nodes on each partition will follow the Binomial
distribution B(|n|, ), where n = |V (X,Y)|. Under this
random partitioning, an edge’s two end nodes have the

Initialization Step

probability 1 —% to be on different partitions. The edge cut

therefore will follow the Binomial distribution B(m, 1— ),
where m = |E(X,Y)]|.
Partitioning Number. The random partitioning algorith-
m needs a pre-determined partition number [18], which
however is not required in the LC problem. Thus, we
should select an appropriate partition number. A naive
solution is to first enumerate all valid partitioning numbers,
then run RANDOM under each partitioning number, and
finally choose the best partitioning as the final result. Note
that the best partitioning is the partition with smallest
> |E(C;, C5)]. Obviously, the key to improving the per-
formance of this naive solution is to establish tighter upper
and lower bounds on the partitioning number. The tighter
bound will lead to less enumeration cost. Next, we establish
such bounds on the valid partitioning number k.
According to Definition 2, & has a lower bound [|Y|/ 5]
and an upper bound |Y]. These two bounds imply that
we need to run RANDOM O(]Y]) times, which is very
expensive. A wiser enumeration strategy is siopping the
enumeration when k> \_@J + 1, because in Theo-
rem 2 we prove that there exists an optimal solution when
[y)/8]<k< 2] 41,

Lemma 1 (Monoionicity): Let Q(k) be the minimal
number of crossing edges among all possible k-
partitionings on the meta graph B. When k > L@J +1,
Qk) <Qk+1). 0

Then we have a direct consequence of Lemma 1

Theoren 2 (Opfimal Solution): There is an optimal k-

partitioning when

s <k < 28 4
O
Algorithm. Now we are ready to give the solution based
on RANDOM. The algorithm (shown in Algorithm 2)
takes the bipartite meta graph B and size constraint 5 as
inputs. In the algorithm, we enumerate the values of & from
[[F(X,Y)|/8] to \_%J + 1 based on Theorem 2.

Algorithm 2 RANDOM based LC algorithm
Input: B(XUY,E), 8
ok« [|Y]/57;
2: while & < \_Lg‘j +1 do
3 Run RAONDOM on B under the partition number
k;
4 k+—k+m
5: end while
6: return The best partitioning found in the loop;

The criterion of determining the best partition P is
that the cut size of P is the smallest among all the
partitions output from Algorithm 2. Note that the cut size
of a partition P is the number of all edge cuts in P. A
random algorithm is efficient to determine the best partition.
AltThough the random algorithm camnot cutput a balanced
partition P, the smallest cut of P guarantees one objective



for the local clustering. Then, the refining phase balances
the initial partition gradually.

The time complexity of  Algorithm 2 s
O(%cost(RAN D OM)). = is actally a tradeoff
between effectiveness and efficiency. A smaller 7 in
general leads to a higher quality solution and consumes
more running time. On the contrary, a larger 7 results in
a lower quality solution but with less rumning time. In the
experiments, we will set different 7 and determine the
optimal one.

3.4 Refinement Step

Size-constraint. In this step, we refine the initial partition-
ing, in which the issue of size-constraint should be solved.
Specifically, we propose the sequel refining mechanism.
For convenience, we use the labeling instead of partition-
ing in the following explanation. The nodes in one partition
are assigned with the same label and different partitions
have different labels. For convenience, we call the node
in X X node and node in Y ¥ node. The refinement runs
iteratively, and it could be divided into two parts, Updaze
X and Update Y. Here we briefly introduce these two parts.
+ In Update X, we fix the labels of ¥ nodes, and then
a greedy strategy is applied to caleulate the optimal
labels for X nodes.
« In Update ¥, we fix the labels of X nodes, and then
calculate the optimal labels for ¥ nodes by solving
the maximum-cost maximum-flow problem.

3.4.1 Update X

In this step, we fix the labels of ¥ nodes and refine the
label for each X node. We greedily refine the label: for
each node v in X, we choose the most popular label from
its neighbors in Y. If there exists more than one the most
popular labels, we randomly select one. More formally, an
X node x shows the preference to label [ with a high score:

score(z,l) = Z &lex(y), ) (1)

YEN ()

where 4 is the Kronecker delta, and o is the labeling
function such that a(y) = [ if label [ is assigned to node .
The node x updates its label to the label {,, that maximizes
its score according to the update function:

by = argmax; score(x,l) (2)

Obviously, we can achieve this step in linear time and
this step will reach the optimal labels for X nodes under
the case that all Y nodes’ labels are fixed.

3.4.2 UpdateY

In this step, we will fix the labeling of X nodes and refine
the labels of Y nodes. Compared with Update X, here we
need to take into account the size restrictions, which makes
it more difficult. We first show how to model this problem
as the maximum-cost maximum-flow (MCMF).

Definition 4 (Maximum Flow Problem): Given a di-
rected graph & = (V, E) with source s £ V and sink

Y
A PPN

S : !

Ao

1

Fig. 4: Flow network model N, of Update Y nodes.

t € V, where edge (u,v) € £ has capacity c(u,v) > 0.
A flow is a mapping f : E — RY, denoted by f{u,v),
subject to the following two constraints:

« Capacity constraints: f(u,v) < o(u, v)

« Flow  conservation: 3., e f(u,v) =

Y urtwuwyer (v, u) for each v 5 s, ¢

The maximum flow problem is to maximize |f| =
E’UZ(S,’-‘J)EE f(s,'u).

Definition 5 (MCMF Model): Given a flow network,

that is, a directed graph & = (V, E) with source s € V
and sink ¢ € V, where edge (u,v) € £ has capacity
e(u,v) > 0 and cost a(u,v) > 0. The maximum-cost
maximum-flow problem is to find a maximum flow f :
E — K such that the total cost of the flow is maximized:
E(u,u)gE a(ua ’U) : f(ua U)'
Model. Let L. = {ly,ls,...,{;} denote the labels of X
nodes. After Update Y, each node in Y is assigned with a
label (say [;) from [, which means that » € Y joins the
cluster with label {;. Let E'(l; — v) be the number of edges
between v and nodes in X that have labels [;.

In our model, the network N, is constructed in the
following manner (see Figure 4):

1) Except for the unique source node (s) and a unique
sink node (¢), two groups composing the intermediate
nodes: the first group is the label set I and the second
group is Y.

2) From each label I; to each node v in Y, there is a
directed edge e assigned with the unit capacity. The
cost of e is assigned as F(I; — v). From each node
in Y to the sink, there is an edge with unit capacity
and zero cost. From the source to each label, there is
an edge with capacity § and zero cost.

The motivation behind the construction above is as
follows: Since each node in Y can be labeled by any label
in L, there is a directed edge ({;,2) from each {; € L to
each node v € Y. f(l;,v) = 1 means that the edge from
label [; to node » has unit flow, which implies that v will
be labeled as [;. Note that each node in Y can have only
one label, and each label cannot be assigned to more than
S nodes in Y. Hence, «(s,l;) = & for each ; € I and
cfv,t) =1foreachw e Y,

Lemma 2: Any integral maximum flow in network N,
corresponds to a valid labeling solution to B{X UY, ) and
the cost of the flow is the number of inner-partition edges.
0



Theorem 3: Any feasible labeling solution corresponds
to a maximum flow, whose cost is equal to the number of
inner edges in the labeling solution. [

From the theorem above, we could see that the maximum
integral flow with the maximum cost is corresponding
to the labeling solution with the maximum mumber of
inner edges. Notice that in N, each edge has an integral
capacity, so there exists an integral maximum flow with
the maximum cost and many algorithms can solve this
problem, for example, the FordCFulkerson algorithm [20].
The algorithm is very efficient, as the algorithm applied
only to a bipartite graph (e.g., Figure 4).

Theorem 4: Given a bipartite graph B(V, £) on ma-
chine M, the time complexity of the refinement step is
O(E| + f|E|), where f is the maximum flow of the
network N,. Therefore, the total time complexity of L.C
is O(|E| + f|E| + Heost(RANDOM)). D

3.5 Extending to Gverlapping Clusters

Recall that a good caching strategy should assure that
different clusters overlap in X nodes and disjoin Y nodes.
The proposed algorithm so far leads to completely disjoint
clusters in X nodes and Y nodes. Thus, we need to extend
the proposed algorithm to obtain overlapping clusters only
in X nodes.

In the above algorithm, an X node label identifies a sin-
gle cluster to which the node belongs. To find overlapping
clusters, we need to allow a node label to contain more
than one cluster identifier.

Specifically, we could label each X node z with a
set of pairs (g,b), where ¢ is a cluster identifier and 5
is a belonging coefficient, indicating the strength of z’s
membership of cluster ¢, such that all belonging coefficients
for # sum to 1. Each update step would set x’s label
to the union of its neighbors’ labels, sum the belonging
coefficients of the clusters over all neighbors and normalize.
More precisely, assuming a function bs(c, z) that maps an
X node z and cluster identifier ¢ to its belonging coefficient
in updating iteration ¢,

ZyEN(E) btfl (Ca y)
|V ()| ’

bi(c,z) = €)

where N (z) denotes the set of neighbors of .

In the algorithm, the label of a node in iteration ¢ is
always based on its neighbors’ labels in iteration ¢ — 1.

In the algorithm, we require to retain more than one
cluster identifier in each label without maintaining all of
them. Qur algorithm uses the belonging coefficients for this
purpose: during each update step, we first build the node
label as above and then delete the pairs whose belonging
coefficient is less than some threshold. We set this threshold
as a reciprocal, 1/p, where p is the parameter of the
algorithm. Since the belonging coefficients in each label
sum to 1, p represents the maximum number of clusters to
which any node can belong to.

After removing pairs from the node label, we renormalize
it by multiplying the belonging coefficient of each left pair

by a constant so that they sum to 1. This process continues
till the halting condition is satisfied.

The extended algorithm generalizes the above proposed
algorithm. When g < 2 they are essentially the same: the
label of a node can contain only one cluster identifier, each
update step retaining the identifier used by the maximum
number of neighbors. In the experiment, we set p = 4, i.e.,
a node belongs at most 4 clusters.

The next section will introduce how to optimize the
general caching algorithm.

4 OPTIMIZED GENERAL SOLUTION FOR
GRAPH CONNECTIVITY PROBLEMS

Graph connectivity problems are important and fundamen-
tal in the field of graph algorithms, since many advanced
graph algorithms need to solve the graph comnectivity
problems firstly. Generally speaking, graph connectivity
problems include finding connected components (CC) in an
undirected graph, finding strongly connected components
(SCC) in a directed graph and asking if two given nodes
are reachable (RE) from one to the other in a directed
graph. Obviously, the three graph problems have plenty
of applications in practice, and many advanced graph
algorithms are based on the three graph problems. In this
section, we aim to optimize the general solutions for the
graph connectivity problems.

Many graph algorithms can be utilized to solve the graph
connectivity problems. The general caching methods could
reduce communication costs when these algorithms are per-
formed in a distributed environment. We can further reduce
the communications greatly by exploring the properties of
graph connectivity problems. Our main idea is to apply the
percolation theory [16] to the general caching schemes. The
motivation of applying percolation theory is that both graph
connectivity problems and percolation theory emphasize on
the connected properties of a graph.

First, we define a typical percolation model to understand
the percolation theory easily. Tmagine a 2-dimensional grid
of nodes, large enough so that the effects from its bound-
aries are negligible. Edges are drawn between neighbor
nodes. Each edge can be open with probability p, or closed
with probability 1 — p. A cluster is defined as a group
of nodes connected by open edges. Percolation theory
analyzes the statistical and geometrical properties of these
clusters as the probability p varies. We say that a cluster
percolates the grid if it extends from one side of the grid
to the opposite side. The size of such a cluster, termed
the giant cluster, is proportional to the size of the grid.
As p increases, the emergence of the giant cluster for the
first time marks the threshold point where the grid becomes
connected from one boundary to the opposite boundary. The
value of p at this point is called the threshold probabiliry,
denoted by pe.

Optimized Strategy. Given an instance [ = (B,S5) of
the LC problem, we obtain the cached edges F; after the
general caching scheme is applied to I. Given a threshold
probability p, of I, we pick out each edge e € E7 with
probability p, and obtain a new cached edge set Io.. If p;



is small enough that |£,| will be much smaller than |E7|.
In other words, we can cache |Ey| - p edges to achieve the
same effect as we cache | Er| edges for graph connectivity
problems.

To utilize the caching capability, we intend to cache more

edges to reduce the communication costs further. We take
the following strategy: In the general solution, we set the
cache size constraint to 5/ p;. After the general solution, we
select each edge with probability p, and cache the selected
edges for [ = (B, 5).
Calculating Threshold Probability p,. Below, we show
how to compute the threshold probability for a big graph.
The real-world graphs often follow the power-law distribu-
tion [21]. Thus, we compute the threshold probability for
a power-law graph.

For a graph of size N, N — oo, with connectivity
distribution P(k), the percolation theory shows that its
threshold probability is given by:

1

a—1

P = “)

2
where o = % is the ratio of the second to first moment
of the distribution of the actual graph.
Based on the calculation, we can obtain:

1 Li,_; (e~ /")

= . (5
a—1 Li; o(e /%) — Li, 1(e /%) @)

P =

where Li-(z) =3, i—i

5 ONLINE PHASE OF GCACHE

The last two sections show the offline phase which outputs
clusters C; = (X;UY;, £5). In each cluster, we have | Y;| <
S, where 5 is the constraint of cache size. This section
introduces the online phase, in which ¥;s in the cache are
replaced with other ¥;s according to an eviction policy.

The online phase is based on the cluster-based processing
principle: rodes in the same cluster should be processed
together. Below we show the principle.

Online Phase of GCache. Given a meta graph B{X U
Y, E) on machine M, the offline phase outputs % clusters
C; = (X UYL Ey) for 1T < 4 < ko In the node-centric
computational model, a graph algorithm processes a C; as
an unit and the % clusters as an order, based on the cluster-
based processing principle. Given a graph algorithm A,
W.L.O.G, we can assume that the cluster order processed
by Ag is Cl, CQ, sy Ck

While A, is running, we first put ¥7,%5,...,Y; in the
cache such that |Y7|+|¥a|+...+| ¥ < § and |Y1|+|Ya|+
v +|Yir1| = 5. The cache is full at the moment and an
eviction policy is invoked. The eviction replaces an Y; (7 <
¢) with Y74 such that the size constraint is still satisfied.
The eviction policy can extend any existing replacement
scheme (e.g., LRU and MRU) but treats a cluster as an
unit. For example, the cluster-based LRU discards the least
recently used Y; first. This algerithm requires keeping track
of what was used when, which is expensive if one wants to

is the 7-th polylogarithm of z.

{0
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Fig. 5: BExamples of the online processes for SSSP, CC, PR and

SI: (a) the distributed graph ¢, (b) & with cached Y nodes, (c)

the illustration for SSSP, CC and PR, and (d) the illustration for
SL

make sure the algorithm always discards the least recently
used ;. The least recently use can be measured by the
total number of remote requests to the nodes in Y.

We use examples to show how the online phase is
performed for typical graph algorithms. We consider four
categories of graph algorithms: sequential traversal-based,
parallel traversal-based, random walk-based, and localiz-
able graph algorithms [22]. Table 2 shows typical algo-
rithms in each category.

Example 3: We select one typical graph algorithm (i.e.,
SSSP, CC, PR, ST) in each category to show how the online
phase is executed for such algorithm. Figure 5(a) shows a
graph G distributed to three machines My, Ms and M.
We use M, to show the offline and online phases. In M,
nodes {1,2,3,4} are local nodes, and nodes {5,8,9} are
remote nodes. In the offline phase, GCache outputs two
clusters for My, € = X; UY; = {1,2,3,4} U {5} and
Co = Xo UYo = 2,4} U{8,9}. In Figure 5(b), the dotted
nodes denote the possible cached nodes. In the figure, if
node 5 is cached, it has two copies in M7 and My, Assume
that the cache size constraint is 2 for M, i.e., the cache of
M maintains at most two nodes.

Online phase for SSSP. Assume that node 1 is the source,
and the Dijkstra algorithm is performed. First, node 1 needs
to request nodes {2, 3.4, 5} in which 5 is a remote node.
GCache then caches node 5 and its current distance value
(o). Note that GCache only caches node 5, though it can
cache two nodes. This is because the online phase caches
clusters instead of nodes. Second, we continue computing
SSSP for graph consisted of nodes {1,2,3,4,5} given in
Figure 5{c). The shortest-distance from node 1 to node
5 is 1. After that, the distance of 1 is sent to node 5
in Ms. Third, nodes {24} need to request remote nodes
{8,9}. GCache then caches nodes {8, 9} in replace of
node 5. Fourth, we compute the SSSP for graph shown
in Figure 5(d), and we obtain the shortest-distances 2 both



TABLE 2: Four categories of graph algorithms.

Category

Algorithms

Sequential traversal-based

single source shortest path (SSSP), breadth-first search (BFS), depth-first search (DFS), keyword search (KWS)

Parallel traversal-based

connected components (CC), label propagation (LP)

Random walk-based

pagerank (PR), simrank (SR)

Localizable algorithms

subgraph isomorphism (SI), Clique

to nodes 8 and 9. Finally, the distance of 2 is sent to M3
in which the Dijkstra algorithm continued to be performed.
Online phase for connected component (CC). We use
a standard sequential traversal (e.g., DFS) to compute the
local connected components for M and determine v.éd for
each node v in M;. We create a “root” node v, carrying
the minimum node id as »,.2d (i.e., node 1), and link all
the nodes in M, to v,, and set their ids as v,.id. These
can be completed in one pass of the graph in M; via
DFS. Therefore, we have the following steps. First, GCache
caches node 5 and the node list (from A3) with the same
id as that of node 3, since node 5 is first requested by DFS.
Second, we compute CC for graph shown in Figure 5{¢).
Note that all nodes in this graph have their ids as 1, since
the graph is connected. Then the node list with id 1 is sent
to Ms. Third, GCache caches nodes {8,9} in replace of
node 5. Fourth, we compute CC for graph in Figure 5(d),
and we also obtain the node ids as 1. Finally, the nodes
with id 1 are sent to Ms.

Online phase for pagerank (PR). Every node » in M,
is assigned to an initial value, which is its initial rank. We
compute a new rank for node v by combining its previous
rank and the aggregation of the ranks of its neighbors.
We then send the new rank of v to its neighbors, and
set the new rank of v to be held for the next iteration.
The termination condition is based on the pre-determined
number of supersteps, and all nodes will terminate at the
same time. It is important to notice that all nodes are active
sending their updated ranks to their neighbors, because such
rank values have impacts on the ranks of their neighbors,
and their neighbors neighbors, ete. Based on this process,
the online phase for PR is similar to that for SSSP.
Online phase for subgraph isomorphism (SI). Figure 5(e)
shows a query graph ¢ and assume that the answers are two
triangles given in Figure 5(f). First, the query ¢ partially
matches edge (2, 4). Query ¢ then probes remote node 5 in
Ms or remote nodes {8, 9} in M3 to find the third matched
node. Second, GCache caches nodes {8, 9} instead of node
5. This is because nodes {8,9} are two nodes which are
more than one node. Third, query ¢ matches the graph
in Figure 5(d) and obtains two answers. Fourth, GCache
caches node 5 in replace of nodes {8,9}. Finally, query
g cannot find any match over graph in Figure 5(a). The
matching process terminates for M. g

6 PERFORMANCE EVALUATION

In this section, we report the effectiveness and efficiency
test results of our newly proposed techniques. As mentioned
before, We implement GCache on a node-centric compu-
tational system. We select Apache Giraph 1.1.0 [6] which
is an open-source alternative to the proprietary Pregel. Our

hardware environment is a cluster of 17 machines in a high-
speed kilomega network, where one machine is selected
as the master and the remaining machines are selected as
computational nodes. Each machine has 2 Tntel Xeon E5345
CPUs and 32GB memory, and is running CentOS Linux
5.6. The cache size constraint of each machine is set to
128M, 256M, 512M, 1G and 2G; the default value is 512M.
All programs are coded in Java.

We evaluate our proposed scheme, GCache, in compar-
ison with 3 the state-of-the-art algorithms, using 8 large
graphs.

Implementation of GCache on Giraph. The implemen-
tation of the online phase of GCache is straightforward on
Giraph. Here, we introduce how to implement the offline
phase of GCache over Giraph. First, each machine A
fetches all its remote neighbors in its memory to construct
its meta graph B(V, ). Second, we implement each step
of Algorithm 1 entirely in M. Consequently, every machine
can perform Algorithm 1 in parallel without any commu-
nication. The parameters used in the halting condition are
set as follows: ¢ = 0.001 and ~ = 5.

Programming Model. Note that Giraph only sends mes-
sages from a machine to another machine. However, a
machine may request values from another machine, such
as computing CC and SI. To copy with this issue, we
implement the request-respond functionality in Giraph as
follows:

The request-respond paradigm supports all the func-
tionality of Pregel. Tn addition, it supplements the node-
to-node message channel with a request-respond message
channel. In a superstep, a node » in machine AM; may call
request(x) in its compute() function to request to node u
in machine M; for its attribute valve a(u) (which will
be used in the next superstep). After compute() is called
for all active nodes, the node-to-node messages are first
exchanged. Then, machine M; sends the request set to
machine Mj. Finally, M; collects the requests and sends a
response set to M;.

TABLE 3: Four categories of graph datasets.

Categoty Graph datasets ([V], [E])
Social network Liveloumal (LT} (4.84M 68.47TM), Google+ (28.94M 462.99M)
Web graph Wikilink (Wiki)(11.19M 340.24M), Pld-arc (42.88M 623.05M)

Random graph (RG] RO1 (50M, 2B), RO2 (100M, 3.58)

Power law graph (00 PG1 (100M, 1B), PG2 (200M, 4B)

Experimental setting,

(1) Datasets: The eight datasets (including 4 real and 4
synthetic graphs) we tested are with at least 4 million
nodes and 60 million edges as shown in Table 3. Here,
Livelournal (LI)! and Google+ (GO+)* are online social

1. http://snap.stanford.edu/
2. www.cs.berkeley.edv/ stevgong/dataset.html



networks, Wikilink (Wikiy® and Fld-are (Fld)* are two large
WWeb praphs. Wikilink is the hyperlink graph inside the
English "Wikipedia, and Fld-are is a hypetlink graph crawled
in 2012 "We use the RE-MAT [23] to generate two random
graphs RG1 and RG2, and two power-law graphs PO1
and PGZ. Each graph is mniformly distributed to the 16
machines [18].

{2) Compared Algorithms: Tn cumpate with GCache, we
adapt the CPFlJ-based caching algorithms to a distribited
scenatio. Recall that the CPU-based caching algorithms
predefine a total order for all the nodes of a graph. In
the adaption, we order the X nodes of the bipartite graph
H{X. Y as the CPUbased caching algorithms in the
offline phase. During the online phase, we cache the related
¥ nodes as the order of X nodes and then replace the
cached nodes as the LEU o MEU drategsy. The difference
between this adapted scheme and GCache is as follows.
GCache processes a cluster as an it in sther offline or
online phase, wheteas the adapted schermne treats all the X
nodes as an unit in the offiine phase and each ¥ node as
an unit in the online phase. Mote that the default eviction
policy is the LEUT in the following evaluations.

Specifically, we implement two state-of-the-art CPU-
based caching algorithrms, MINLA [11], Gorder [10] and
a partitioning algorithm METIS [19], in terms of caching
effectiveness, MINLA is the node ordering m for the Min-
irmum Linear Arrangement problem, which is to minmize

wwiese | ™z — w(w) | Gorder is also a graph

ting, which is to find the optimal perrmtation ¢ among
al nodes in a given graph & by keeping nodes that
will be frequently accessed together locally in a window
of size w. We have tried MINLA and Gorder for the
distributed graph, but neither of them can be scalable to
deal with large graphs effectively. Instead, we use the
sirmilated anmealing technique to compute the result, which
has good scalability and shows comparable petformance.
METIS [19 is a widely-used graph partition algorithm
which divides graph into partitions to mininmize edge-oit
which is the mimber of edges that cross different partitions.
METIS cannot be applisd to our problem, sinee it doss not
satisfy the size constraint. To remedy this, we plug METIS
into Algorithm 2 to take place of RANDOM, and then
select the optimal partition safisfiing the size constraint.
The optimal pattition can be applied to our problem.

The caching effectiveness iz measured by the perceniage
af saved communication cosf which equals to —ﬂ‘—‘gi (also
referred to as hit ratie), wheee 05 and O, are the COTTIT-
mication costs of a graph algonthm without and with the
caching strategy. The caching efficiency is measured by
the processing fime of a graph algorithom after the caching
scheme is appliad.

Mote that we perform the locdl graph elustering algorithm
for everv machine of the 16 machines in parallel. The
processing time and corrminication costs inelude the tetal
time and commmuication costs over all the 16 machines.

3, hitp:ibonect, urd- kohlene.der
4, wehdataeorornons, oty foe petlinkg raph
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Fig, 6: Determine the value of v i Algorithm 2.

e use the munber of commmmnication messages to measure
colmrrication costs, The total messages include messages
between the master and the slaves, as well as the messages
between the slaves,

{3) Applied Algoritfms: "We apply 10 graph algorithms to

test the caching mechanism. The 10 graph algorithms are
classified into four categories, ie., sequential traversal-
based, parallel traversal-based, randem walk-baszed, and
localizable graph algerithims, which are lsted in Table 2
Specifically, sequential traversal-based algorithms contain
sngle source shortest path (S55P) by the Dijestra al-
gotithm [20], breadthfirst search (BES) [20], depth-first
search (DES) [20], and keyword search (E'WSE) by the
BANES algorithm [24]. Paralle] traversal-based algorithms
contain connected component (CC) detection [25] and label
propagation [26]. Randem walk-based algorithms contain
pagerank (PR [2Y] and simrank (SRY [28]. Localizable
graph algorithms contain subgraph isemerphism (51 by
the WF algorithm [29] and Clique [20]. All of them are
fimdamental for graph computing and provide the basis for
the design of other advanced graph algorithms. For the
aceuracy of the results, except for PR, we repeat these
dlgorthms 10 times when nmning the experiments and
tepott the tested measures. PageRank algorithm is stopped
after 50 iterations in every dataset. These graph algorithms
are naturally parallelized ower Giraph, ie., implementing
the algotithms as the node-centric computing mode.

{4) Determine Parameiers: To petform GCache, we

should determine the parameter w in Algotithm 2 The
value of m could contrel the balance of the efficiency
of GCache and the effectivensss of GCache, With five
differert o, Hgire 6(a) reports the percentages of the saved
comimmication costs of GCache on the 8 graphs for the
PageRank algorithm. Figure 6ib) gives the running time of
GiCache on the 8 praphs with respect to five different o,
The walues of m are set to 2, 4, 8, 16 and 32 respectively.
Az expected, the saved commurication costs become fewer
as w increases, whereas GCache becomes more afficient
as m prows. We observer when w is from 2 to 8, the saved
colmrrications decrease slowly, and when o is fom B
to 32, the saved comminications decrease fast: when o is
from 2 to 8, the running time decreaszes slowly, and when
m iz from B to 32, the numing time decreases fast. Tlns,
when m reaches 8, GCache has the best balanee betwesn
efficiency and effectiveness. In the following experiments,
we zet moto B,
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Hg 7 Percentage of the saved conummication costs of
caching schemes on the 10 graph algorithms.

Experimental results.

Exp-1: Fpure 7 dernonstrates the percentages of the saved
commrmrication costs of GCache, MINLA, Gorder and
METIS on 8 graphs for 10 graph algorithms, There are
in total B0 (8 » 10) pairs of graph algerithrns and graph
datasets in the experiment. The ten graph algorithms are
petformed online. We feed LEU into the first five al-

i1

gotithms and MREU into the last five algorithms. These
figires are classified into four categories as those for graph
algotithms, Specifically, Figares 7(a)-7(d) show the results
on the sequential traversal-based algorithms; Hgures 7ie)
and 7ify show the results on the parallel traversal-based
algorthms, Fignres 7ig) and 7ih) show the results on the
tandorm walk-based algorthms, Hpures 7(1) and 7030 shew
the results on the localizable graph algorithms.

As shown in these figires, GCache saves most com-
munic ation ¢osts compared to MINLA and Gorder oser 80
cases, in every testing, For exarple, in Hgure 7id), the
average saved communication costs of GCache are 5.8,
5.2 and 4.6 times as large as those of METIS, MINLA
and Gorder. Besides, we have the following observations,
{a) In general, the saved traffic costs by GCache become
more sgnificant as the graph sze increases. Compared with
Flickr and Liveloumnal, the other 6 datasets are noch larger
with at least 30 million nodes and 400 million edges. Given
the relative amall cache size, only limited graph information
can be located within the cache and hence the effect of the
cache usage becomes more significant for large graphs. But
exceptions exist for sorne graph algorithims, ez, DES. (b)
GCache shows dmilar communication behaviours within
the same category and different comrmmication behaviours
on different categories, For instanee, Clique and 150 are
localizable algotithms and hence one-hop neighbor caching
saves most traffic costs needed to perform clique and
IS0, 555F and EK'WE are BFS-like praph algerithrms, and
so GCache behaves similar perfurmanees tendency for
EF3, 553F and KWS algotithms. (o) GCache behaves
the best performance for both LR and MET policies,
which demonstrates that the cluster-baszed offline and online
algorthims are suitable for any existing eviction policy.
Exp-2: In thiz sxperiment, we compare GCache with
a state-of-the-art algoritm [31] (dencted by Combing)
that replicates high depres nodes and combines messages
duting comrmurications. "We also compate with the scheme
without ary optimization, denoted by Mone, We select one
typical graph algorithm from each category, 1.8, S55F, CC,
PR and 51 Hgure & reports the actual runming time and
commtrication costs of GCache, Combine and Mone on
each typical graph algorthm. From the four results, we
observer (a) GCache is the fastest and lightest followed
by Combing and Mone, This is because GTache caches
any posable bottleneck node and combine any expensive
messages duting communications, wheteas Combing only
replicates high degree nodes and packets partial messages.
(by The benefit obtained by GCache is obvious, though it
needs an offiine process that clusters nodes. For examnple,
GiCache is two orders faster than Mong on all 4 typical
algotithms and & datasets, However, GCache needs only
one offline process and can suppott many online graph
algotithrms. In addition, as shown in Figure 10, the running:
time of the offline process is much smaller than those of
some online graph algorithme.

Exp-2: Figre & plots the percentages of the saved com-
munication costs of GCache on 8 graphs with respect to
vatious cache sizes, Four typical graph algotithms (BES, 51,
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Hg & Communication costs and running time of graph
algorithins after the caching schemes are applied.

FE and CC) are selected in the testing since they behave
vatious algotithimic propetties. As expected, GTache saves
more comnminication costs as the cache size increases, As
shown m Figare %), 51 hardly incurs traffic costs at all
& datasets, when the cache size reaches 2G. The reason
15 that 51 15 a localizable algorithm. All graph algorithms
save fewer conmprinication costs on EG1 and EG2, snee
the randorm graph is denser and the algorithms comverge
fast.

Exp-4: In this experiment, we report the mnning time of the
offiine phase on different datasets and cache sizes. Recall
that the offline phase consists of two steps, 1.2, a random
partitioning and a relabeling step, We use Whole to denote
the whole process, First to denote the first step; Second
to dencte the second step. Hgure 10 reports results from
which we know the following (a) All the bars increase
as the datasets become larger. All the bars decrease as the
cache sze mereases, This isbecause a large cache size leads
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to a small mumber of clusters. (b Whole is sfficient, &g,
less then 10005 on the graph with 100M nodes. Second
dominates the whole costs, since First employs a randun
pattitioning which is very efficient compared to Second,
Exp-3: In this experiment, we examine the ophimization

mechanisms of GUache for graph connectivity algorithms,

We refer to the optimization mechanism as GCache-con.
The used graph connectivity algorithims include connected
components (CC) [25], reachability (REY [32] and label
propagation (LPY [26]. Figure 11(a) shows the percentages
of the saved comprunication costs of GCache-con on
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Fig. 12: Performance of GCache on vatious machine
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CC, RE and LP with respect to B datasets. As chewn
in the figure, GCache-con saves mote communication
oosts based on the optimization. Compared to GCache,
the saved percentage of GUache-con increases by 45% on
average. This is berause GCache-con orly needs cache a
very stmall portion of edges to guarantee the conmectivity.
GCache-con saves mote traffies than GCache at the cost
of longsr time to perform the optimization mechanism.
However the cost is not large as reported in Hgure 11(0),
from which we know that GCache-con nns less twice as
rch as GCache.

Exp-6: Finally, we examine the scalability of GCache
with respect to machine number. Hgure 120a) reports the
peteentages of the saved communication costs of GCache
by running the PageRank on & datasets. The percentage
grows with the rising of machine mumber, owing to that
more machines ineur lager netwotk ovethead and certain-
ly leads to a better caching effect. Figure 12(0) plots
the processing time of GCache with respect to machine
mumnber. Generally, the running time is reduced by adding
motre machines due to a higher parallelism. However, the
decrease of time cost is not completely proportional to the
increase of machine number. The main reazon is that the
clustering: tasks are not balanced on all machines. This
examination concludes that the effectivensss and efficiency
of our caching algorithm, GCache, are well scalable to the
mumber of computational machines.

7 RELATED WORK

e review pervious works on the distributed graph pro-
cessing and graph caching metheds.

Offline Graph Caching, Curtent wotks of offline graph
caching concentrate upen the CPU-baszed caching algo-
rithins which hawve been studied in recent years [10], [11],
(140, [12]1, [14], [32]. There are works on specific graph
agorithims to improve the CPU cache performance. Park
et al. propose several schemes to optimize the cache per-
formance of Prim, Floyd-Warshall, and Biparttite matching
algorithims in [33]. Howewver, these strategies are designed
for some specific graph algotithms, and can not be used
to support any graph algorithmes in general. Some existine
wotks improve the ability of graph caching by graph
ordering and node clustering, Auroux et al. propose to
teorder the node [Tz by BES [12]. Banerjee et al. propose a
nede ordering method by the depth-first traversal method to

improve the efficiency of the graph exploning [12]. Zhang
et al. [14] improve the cache utilization for graph analytics
by breaking the wertices into sepinents that fit in last lesel
cache. The techniques of graph ordeting proposed in [11]
and [10] are to find the optimal permmtation among all
nodes in a given graph & by keeping nodes that will be fre-
quently accessed together locally, Though the approaches
of graph ordeting can handel many graph algorithms, their
distributed wersions have lower caching capability than our
proposed algorithm as shown in the experiments.

Omline Graph Caching, There are works desipgned for spe-
cific graph queries, 2.5, [34], [33] for subgraph/supergraph
queries and [36], [37], [38] for SPAR QL queries. Their
methods are not universal ke GCache for any graph
algorthrm. Other typical online graph caching includes the
wotks such as [7], [8] and [%]. The authors of [7] and [§]
advocate the traditional replacerment strategs to improve the
cache hit ratio, such as LEU and MR The work [9] not
only combines LR or MR inte its algorithm, but also
consders graph partiton-aware strategies. The cormmon
principle of these orline works 15 to discard the nodes that
was not needed for the longest time, Henee | their adopted
caching schemes tend to use the previous access pattemns to
predict whether a data item will be accessed in the fiture.
This fashion makes replacement decision according to the
most recently accessed information. GCache exfends the
LET and MEU achernes in the online phase on the basis
of the offline phase. Therefore, GCache is more effective
than the mere online algorithm.

Graph Clustering, The goal of graph clustering, also
called comrmmity detecticn or graph pattitioning, is to
identify clusters of densely linked nodes given only the
graph itzelf [3%], The vast majority of algonthms optinmize
a fimction that captures the edge density of the cluster
(a set of nodes), for instarce, conductance or moedularity.
There have been extenstve works to study graph clustering
and there are many classical works, ez, METIS [19. A
detailed introduction to the algorthms of graph clustering
can be fomd in a survey [40]. The technique of label
propagation (L) has been applied to cormmunity detection
and praph graph pattitioning [17], [26]. Howewver, the
algorthims in these works cannot directly solve our model,
since thers are several differences betwesn our model and
the general partitioning problem In our model, we consider
the maximmum sze restriction and the unfixed partitioning
munber that are not defined for the general partitioning
problem. Bwen though we adapt METIS to owr problemn,
as shown in the experiment, o algorithm GCache needs
240 seconds to process the GO+ graph, whereas METIS
takes more than 100000 seconds (=27 hours) at the same
graph

Parallel and Distributed Graph Processing, Sewveral par-
allel models have been stdied for graphs, eg, PRAWM [41],
B5SP and MapReduce [42]. [43] proposes a lypergraph
partitioning to medel corrmudeation wohune, Howewer,
this model only suits to parallel sparse matrix vector multi-
plication and is not desipgned for general graph applications.



Due to the challenges posed by parallel graph processing,
PRAM and MapReduce are not suitable for large graph
processing as discussed in [4]. BSP is widely regarded as
the most popular model to handle large graphs. Pregel [4]
implements BSP with node-centric programming, where
a superstep executes a user-defined function at each n-
ode in parallel. Popular Pregel-like systems also include
GraphX [5], GRACE [18], GPS [15], ete. GRACE [18]
provides an operator-level, iterative programming model to
enhance synchronous BSP with asynchronous execution.
GraphX [5] recasts graph computation in its distributed
dataflow framework as a sequence of join and group-by
stages punctuated by map operations over Spark platform.
GPS [15] implements Pregel with extended APTs and
partition strategies. Mizan [44], a middleware for Pregel,
between the users’ code and the computing infrastructure
can reduce graph computations and communications. [45]
optimized the Pregel-like systems by transferring com-
putation loads from heavy machines to light machines.
[46] shows the algorithmic behaviours of parallel graph
analytics. A variety of parallel algorithms exist for the
graph problems such as SCC [47], minimum spanning
tree [48], maximum matching [49], and graph coloring [50].
These algorithms are designed for the PRAM model or
are implemented in the Pregel-like systems. Our proposed
caching scheme, GCache, can be seamlessly integrated
into the above graph systems and can speed up the above
parallel graph algorithms.

8 CONCLUSION

This paper studies distributed graph caching to reduce
communication costs of graph algorithms. Different from
traditional online and offline caching algorithms, we pro-
pose a hybrid caching scheme (GCache) consisted of an
offline and online phase. We model the offline phase by
the local clustering on a hipartite graph. We employ a
greedy labeling algorithm to solve the local clustering. We
also integrate a maximum-cost maximum-flow model in the
local clustering to solve the problem of the cache size con-
straint. Moreover we optimize the offline phase for graph
connectivity problems. In the online phase, we cache and
process a cluster as an unit by extending traditional eviction
policies. Extensive experimental results demonstrate that
our methods can scale to web-scale graphs for basic graph
algorithms. In the future, we will study an incremental
caching mechanism for distributed graphs in the dynamic
world.
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