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ABSTRACT ARTICLE HISTORY
Massive Geo-tagged social media data provide new opportunities for dis- Received 14 March 2018
aster risk assessment, prevention, and management. This article presents Accepted 26 November 2018

a proof of concept for assessing wildfire risk using Geo-tagged social
media data, by taking wildfire risk as a function of wildfire hazard and
social-ecological vulnerability. The case study of the United States shows
that the regions with the highest wildfire hazard are concentrated in the
Western, while the most vulnerable areas are mainly distributed in the
Eastern, the Western Coast, and the Southern parts of the nation. Areas
with high wildfire risk are mainly located in the Northwestern and
Southeastern United States. It shows that the wildfire risk level has sig-
nificant linear relationship with population density. Massive and vulner-
able population might result in significant increase in wildfire risk
perception. We conclude that Geo-tagged social media data have great
potential in disaster risk studies.
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Introduction

Social networking based on social media forms a virtual community and communication plat-
form for people to share and exchange information and viewpoints (Kietzmann et al. 2011; Wu
et al. 2016; Li et al. 2017). Because of the popularity of social media platforms and devices
(Albuguerque et al. 2015; Gao, Barbier, and Goolsby 2011; Miles and Morse 2007; Goodchild and
Li 2012; Hong and Ye 2017), the amount of geo-tagged social media data has increased dramat-
ically in recent years (Nicholas and Rowlands 2011; Java et al. 2007; Zhao et al. 2011; Cohen,
Hughes, and White 2007; Burger et al. 2013; Ye et al. 2016; Wang et al. 2016; Wang, Ye, and
Tsou 2016; Wang et al. 2017). Some geo-tagged social media data contain abundant information
of disaster, which provides opportunities for disaster assessment and post-hazard countermeas-
ures (Sakaki, Okazaki, and Matsuo 2012; Smith et al. 2015; Guan and Chen 2014; Wang and Ye
2017). Thus, research on how to use geo-tagged social media data to assess the risk of abrupt
disasters, such as wildfire, is not only essential but also a challenging scientific issue for the
application of big data in disaster risk management.

Mapping wildfire risk is important because wildfires are known to pose a hazard to landscape,
property, and life (Arago et al. 2016). There are many methods for assessing wildfire risk at

CONTACT Xinyue Ye 8 xye@njitedu e Department of Informatics, New Jersey Institute of Technology, Newark, NJ
07102, USA.

© 2019 Informa UK Limited, trading as Taylor & Francis Group



2 @ Y. YUE ET AL.

present, but every method has its pros and cons. Wildfire risk can be evaluated via wildfire-
spread model based on historical wildfire point data (Cutter, Boruff, and Shirley 2003; Reid et al.
2009). However, such data are difficult to obtain, as well as costly and time-consuming (Peters
et al. 2013; Wang et al. 2016; Wang, Ye, and Tsou 2016). Therefore, wildfire risk mapping based
on statistical model by analyzing such factors as solar radiation, topography humidity, altitude,
vegetation types, and population density, which are closely related to wildfire, has been put for-
ward (Lein and Stump 2009; Parisien and Moritz 2009; Keane et al. 2010). But the researchers
heed to evaluate the site conditions constantly and carefully to guarantee the statistical model
works, because such model is usually strictly restricted to the case study site (Peters et al. 2013).
Furthermaore, maps of wildfire risk based on statistical models are usually too coarse for decision
makers (Arago et al. 2016). A third method is to use a wildfire ignition model to determine wild-
fire occurring possibility and the consequent risks (Calkin et al. 2010; Thompson et al. 2011).
However, the simulation results are sometimes problematic due to many unobserved factors that
might affect wildfire. Moreover, most of these studies neglect human perception on the wildfire
hazard (Slavkovikj et al. 2014). In contrast, social media data transmit and collect the information
related to disaster risk perception (Slavkovikj et al. 2014). Therefore, the introduction of social
media data into wildfire risk assessment makes it possible to cope with wildfire timely and effect-
ively. In addition, it can also shed light on the issues such as simulation model uncertainty and
ignorance of human elements in previous studies.

Social media data have been successfully applied to many disaster management cases (Gao,
Barbier, and Goolsby 2011; Miles and Morse 2007; Ghosh and Guha 2013). For example, social
media data analytics has provided real-time monitoring and management for wildfire in California
(Sutton, Palen, and Shklovski 2008). Emergency rescue troops and institutions achieve great success
by applying social media data to maonitor the earthquake in real time and make decisions during
Haiti earthquake in 2010 (Yates and Paguette 2011). In Japan, social media data play an important
role in interpersonal communication and post-hazard management by delivering emergency alert
and searching for missing people during the tsunami in 2011 (Gao, Barbier, and Goolsby 2011).
However, there are still limitations in the use of social media data in disaster management. First,
social media data are unevenly distributed in space under the influence of population density,
income level, and social economic status (Xiao, Huang, and Wu 2015). Meanwhile, social media
data have uncertainties of both locational information (Gao, Barbier, and Goolsby 2011) and mes-
sage contents (Alexander 2014). Moreover, most studies focus on disaster emergency response
instead of risk assessment. Though there are many challenges in hazard mapping using social
media contents, it can still provide ample opportunities to the rapid assessment of disaster risks
(Tsou 2015). However, what is urgently needed is to give more in-depth discussions regarding the
aspect of concepts and methods of disaster risk assessment based on social media.

Therefore, we use Tweets as an example to present a proof of concept about assessing haz-
ard-inducing risks and social-ecological vulnerability using social media data. We adopt the
United States as the case study to evaluate the spatial wildfire risk. The structure of the article
follows: Part | outlines the mativation; Part Il gives a detailed introduction of the data sources
and research methods; Part Ill illustrates the research results; Part IV discusses the findings; Part
V presents the conclusion.

Data and method
Data sotrces

The Tweets in this research refer to those related to wildfire recorded on Twitter from 29 July
2015 (the first wildfire occurrence) to 29 August 2015 (the most severe wildfire occurrence
period) within the United States. To minimize the impact of uncertainties of tweets location and
contents on the study results, we have formulated the following principles in the data collection.
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First of all, the principle of high-density data collection is considered. Considering that wildfire
and flame spread are hazard processes with strong dynamic nature and timeliness, it is necessary
to collect high-density data for the sake of applying social media data to manitor the wildfire. In
this article, we consider ane minute as an interval to continuously collect the related records on
Twitter. Second, the principle of geo-tagged tweets priority is highlighted. Many users refuse to
reveal their geo-position information after taking privacy and other factors into account, there-
fore most tweets do not contain geographical coordinates. As such, we only use those with geo-
graphical coordinate information. Third, keyword-based filtering is essential in retrieving the
relevant information (Bahir and Peled 2013). To further reduce the content uncertainty of wildfire
on Twitter, we apply multiple keywords to the collected data. These keywords include: (1)
“Wildfire,” (2) “Rocky fire” OR “rocky wildfire,” (3) “Fire evacuation,” (4) “Fire closure.” These key-
words are selected on the basis of knowledge related to wildfire and associated government
response following wildfire occurrence. In addition, we inspect every record to confirm that the
data obtained from Twitter are related to wildfire and each tweet is unique.

As a result, 64,990 tweets with geographic information reflect the spatial distribution of wild-
fire hazards. Every tweet record includes the following contents: (1) Tweet ID (the unique identifi-
cation of a tweet); (2) User_from_ID (the author ID of a tweet); (3) Text (the tweet content which
includes 140 bytes at most); (4) CREATED_AT (the time when the tweet is posted on Twitter); (5)
FOLLOWERS_COUNT(the number of followers); (6) COORDINATE (X and Y coordinates of the
posted tweet); (7) CITY (the city of the posted tweet); (8) GEOCODE_TYPE, including GPS (it
reflects the accurate geographic position where the tweet is posted), null (the system fails to get
any position information of the posted tweet), and user Profile (the user provides the geo-
graphic location).

MODIS Normalized Difference Vegetation Index (NDVI) is selected as the indicator to reflect
the vegetation growth state and evaluate the ecological system’s vulnerability, because vegeta-
tion is an essential condition for the formation and spread of wildfires. In this article, the MODIS
NDVI Monthly L3 Global 1 km product from 2010 to 2014 is used. First, the annual average NDVI
is calculated. Second, the average NDVI data during 2010-2014 are obtained by applying the
weighting method (calculation via field calculator) to enclose it in the wildfire risk assess-
ment grid.

In this article, the grid serves as the assessment unit. Usually, the size of the grid is deter-
mined according to the spatial size of the study area, the characteristics of driving factors, and
the accuracy of data sources (Jordaan, Jordaan, and Procter 2011; Alam 2011). In essence, it is
used to determine a threshold which can achieve better balance between data spatial precision
and data volume (Cutter, Boruff, and Shirley 2003). By analyzing the computational workload and
mapping effects of grid at three scales, namely 1km x 1km, 10km x10km, and 100km x
100km in the United States, we find that 1km x 1km grids will consume a large amount of
computation, but such a size is much smaller than the average spatial range of wildfire.
However, the area of 100km x 100km will exaggerate the impact range of a wildfire hazard.
Relatively speaking, a 10km x 10km grid has moderate computational workload, and it can also
ideally reflect the spatial distribution characteristics of wildfire hazards. Albuquerque et al. (2015)
found that tweets messages near (up to 10 km) severely flooded areas have a much higher prob-
ability of being related to floods. Given this, we select a 10 x 10km grid to serve as the assess-
ment unit in the space. Table 1 introduces the datasets used in this research.

Wildfire risk evaluation method

The United Nations office for Disaster Risk Reduction (UN/ISDR 2002) defines the disaster risk as
a negative outcome or loss possibility caused by the interaction between hazard and social eco-
logical vulnerability, namely, Risk =Hazard x Vulnerability (Yates and Paquette 2011; Dilley et al.
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Table 1. Data sources.

Data name Contents Source
Tweets Wildfire data of USA from 29 July  http:/fvision.sdsu.edu/hdma/smart/
to 29 August 2015
Administrative  State boundary of USA Census Bureau
division USA in 2014 (https://www.census.gov/geo/maps-data/data/chf/cbf_counties.html,
accessed 29 December 2015)
Population Population estimate of USA Census Bureau, Population Division
USA in 2014 (https://www.census.gov/popest/data/datasets.html,
accessed 29 December 2015)
NDVI MODIS NDVI 2012-2014 MODIS Web (http://modis.gsfcnasa.gov/data/dataprod/mod13.php,
{1km x Tkm) accessed 23 January 2015}

2005; Hardy 2005; Chen, Blong, and Jacobson 2003). In this article, we follow the model pro-
posed by UN/ISDR to build the following wildfire risk model:

Ri = Hi x Vi m

where, R; refers to the wildfire risk index within the grid i, H; refers to the result after wild fire
hazard-inducing risk index is normalized within the grid J, and V; refers to the social-ecological
vulnerability index within the grid i.

Natural breaks method (Jenks 1967) is applied to classify R; into five levels: extremely slight
wildfire risk, slight wildfire risk, moderate wildfire risk, severe wildfire risk, and extremely severe
wildfire risk. Relative risk is widely used when data are inadequate for understanding the abso-
lute level of risk (Dilley et al. 2005; Zhou et al. 2015). The division of wildfire risk into subsets
gives the possibility of obtaining relatively homogeneous classes in terms of the level of wildfire
tisk. Furthermore, Kernel Density Estimation (Silverman 1986; Sheather 2004) is conducted
according to R; at the grid scale to reveal the spatial pattern of wildfire risk.

Wildfire hazard evaluation

Hazard refers to the source of danger causing the disaster (UN/ISDR 2002; Chen, Blong, and
Jacobson 2003). In terms of wildfire, there are two kinds of hazard evaluation methods. One is to
estimate fire hazard by simulating wildfire occurrence frequency (Peters et al. 2013; Chuvieco
et al. 2014). However, this method proves to be data-intensive and time-consuming (Wang et al.
2016; Wang, Ye, and Tsou 2016; Lein and Stump 2009). Ancther one considers the fire occur-
rence possibility as the standard for wildfire hazard (Scott, Thompson, and Calkin 2013). Some
studies directly apply the regional wildfire occurrence times in a specific period to indicate wild-
fire hazard (Jordaan, Jordaan, and Procter 2011). The the geographical location plays an import-
ant role as this may allow for assessing the density and physical boundaries of the disaster
(Bahir and Peled 2013). Considering that the tweets in every grid reflect the wildfire occurrence
possibility, scale, and intensity, we adopt the quantity of wildfire as the index for wildfire haz-
ard evaluation.

However, wildfire hazard is not just a kind of natural hazard. In other words, human factors
will inadvertently make a significant contribution to wildfire occurrence. According to Syphard
et al. (2007), people can affect the wildfire frequency and spatial distribution rules. Moreover,
wildfires accident is more likely to be found and reported in regions with large population dens-
ity. Therefore, many records are published on Twitter due to the larger population and easier
information retrieval and exchange regardless of the physical distance from the site where a
wildfire occurs. According to Guan and Chen (2014), the tweeting activities are remarkably posi-
tively related to the population density. Therefore, we apply the standardized wildfire hazard
index to reflect the wildfire danger, by dividing the quantity of wildfire records in every grid by
the corresponding population number. The formula about the standardized wildfire hazard index
(Hsd) is shown as follows
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Tri-Trmin
f——
Trmax-Trmin

(i=1,2,...n) 2)

where, Hi refers to the wildfire hazard index in the grid i; Trmax refers to the maximum value
after record quantity on Twitter is revised in the grid i; and Trmin refers to the minimum value
after records quantity on Twitter is revised in the grid j;

Ti

Trr':ﬁ(i:1,2,...n) (3)

where Tri refers to the result after record quantity on Twitter is revised in the grid §; 7i refers to
the record quantity on Twitter in the grid i; Pi refers to the population number in the grid i.

Social-ecological vulnerability
As one of the core variables in the risk assessment, the social-ecological vulnerability mainly
refers to the evaluation for the social and economic factors and potential losses of ecological
assets (Chen, Blong, and Jacobson 2003; Zhou et al. 2014). Syphard et al. (2007) point out that
biological variable is the most important index in the wildfire risk assessment. Other vulnerable
factors, such as terrain, house, population, and infrastructure, are also incuded (Chen, Blong, and
Jacobson 2003; Xu et al. 2005). We argue that, compared with property factors, population and
vegetation are the main life entities. To evaluate the vulnerability of population and ecological
system, we select population density and vegetation index as the main indicators. Therein, the
population density can reflect both population concentration and exposure levels in a certain
region, and the vegetation index will be used for inspecting the vegetation growth state and
coverage degree.

In this article, we apply the NDVI and the normalized population density to serve as the
evaluation index for social and ecological vulnerability. The formula is as follows:

- % (Psdi -+ NDVIsdi)(i = 1,2, .n) “

where Vi refers to the social-ecological system vulnerability in the grid i and Psdi refers to the
result when the population quantity is normalized in the grid i. NDVisdi refers to the result when
NDVI is normalized in the grid i. Considering that weight of index has little influence on the dis-
aster risk, these two indexes will be combined via equal weights; as a result, the final calculation
formula is obtained (Cutter, Boruff, and Shirley 2003; Shook 1997; Johnson et al. 2012; Reid
et al. 2009).
The formula of the index normalization is shown as follows:
Xi-Xmin

Xsdi :m(l = 1,2,..”) (5)

where Xsdi refers to the result when certain index is normalized in the grid J; Xi refers to certain
index in the grid §; Xmin refers to the minimum value of certain index in the grid /; Xmax refers
to the maximum value of certain index in the grid i; and Psdi and NDVisdi refer to the results
when the population number and NDVI are normalized.

In summary, the research framework as specified in the article is shown in Figure 1.

Results
Wildfire hazard

The distribution of wildfire hazard is shown in Figure 2. The wildfire hazard level is divided
into extremely severe, severe, moderate, slight, and extremely slight, of which their
area ratios account for 2.38%, 4.75%, 7.77%, 18.44%, and 66.66% respectively. It shows that
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Stepl. Filtering
-filter tweets using keywords including wildfires

Step2. Geocoding
-Assigns the coordinate of latitude and longitude to each record in the
tweets and visualize each event as point on the map

Step 3. Risk assessing

-Basic assessing unit: 10kmx10km grid

-Conceptual model: Risk = Hazard x Vulnerability

-Wildfire risk index(WFI)= Wildfire hazard ( WFH ) x Social-ecological
Vulnerability(SEV)

-WFH=Normalized(record number of tweets in each unit/population in
each unit)

-SEV=(Population Vulnerability+Vegetation Vulnerability)/2

-Population Vulnerability=Normalized population index

-Vegetation Vulnerability=Normalized NDVI

v

Step 4. Spatial Analysis-Wildfire risk index(W FI)
-Wildfire risk grading(Natural Breaks(Jenks))
-Kernel density estimation

-Statistical analysis

Figure 1. Research framework.

there is an overall relatively low wildfire hazard level. However, the regions of wildfire
hazard over moderate level hold 14.90% of total areas, and spatial distribution are highly
concentrated.

The regions facing with moderate wildfire hazard level and above are mainly located in the
states such as Washington, Montana, Idaho, Oregon, Nebraska, Texas, Arizona, and California. On
the whole, the regions with the highest hazard level are relatively concentrated in the West. Our
results highly coincide with prior research and observations (Westetling et al. 2006; Westerling
2016; NIFC 2017). This proves that the wildfire disaster records based on twitter can effectively
reveal the spatial patterns of wildfire hazard.

But our results, to a certain extent, are different from some other studies. For example,
Fitzmorris (2010) finds that Southern California in particular is at high risk of wildfires, but our
results show that the wildfire hazard level in Southern California is not as expected. These differ-
ences might be due to the fact that the wildfire records of tweets used in our study is very lim-
ited {only one month) to reveal the distribution pattern of wildfire. But our results indicate that
tweets have great potential for revealing the spatial-temporal patterns of wildfire hazard. So if
more tweets are collected, we can reveal more robust spatial distribution of wildfires in the
United States.
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Figure 2. Spatial distribution of wildfire hazard.
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Figure 3. Social-ecological vulnerability distribution of wildfire disaster.

Social-ecological vulnerability to wildfire

The spatial distribution of social-ecological vulnerability to wildfire is shown in Figure 3.
Therein, areas with extremely severe, severe, and moderate social-ecological vulnerability lev-
els account for 1439%, 30.1%, and 24% respectively. Areas with slight and extremely slight
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social-ecological vulnerability levels account for 31.7% totally. Indubitably, the social-ecological
vulnerability level is relatively high. The most vulnerable areas are mainly distributed in the
East, the Western Coast, and the South.

Since only population density and NDVI are applied to serve as the vulnerability indicators,
the spatial pattern of social-ecological vulherability lavel reflects the potential exposure of popu-
lation and vegetation to wildfire. The wildfires mainly distribute in the West and rare occur in
the East. However, because of the high social-ecological vulnerability in the eastern region, if a
wildfire occurs, it may lead to a great loss of population, property, and ecological assets. For
example, NASA (2017) has reported several wildfires in the southeastern and eastern United
States in 2017. The West Mims Fire on Flotida/Georgia Border has been reported on 6 April and
fully out on 22 June, leading to dramatic damages to property and ecological assets.

Spatial distribution of wildfire risk

The distribution of wildfire risk is shown in Figure 4. Areas with extremely savere, severe, moder-
ate, slight, and extremely slight wildfire risk levels account for 0.66%, 2.5%, 7.5%, 15.55%, and
73.78%. It is obvious that the overall level of wildfire risks is relatively low. The regions faced
with moderate risk level and above are mainly distributed in Washington, Oregon, North
Carolina, and California. Therein, the extremely severe and severe wildfire risk level regions
include Washington, Arizona, Texas, Arkansas, North Carolina, Kentucky, New York, and Alabama.
These results are basically consistent with Thompson et al. (2011)

To better reflect the spatial distribution of wildfire risk level, kernel density analysis is con-
ducted based on the wildfire risk index as shown in Figure 5. It shows that areas with high wild-
fire risk are mainly located in the Northwest and Southeast. However, a higher risk level does
not necessatily lead to more disasters. The East is more humid than the West, so it not condu-
cive to wildfires. As a result, no major wildfires have occurred in the East. While in the West,
much more wildfire disasters occurred because of the dry climate. For example, Alaska,

Risk Level

B Extremely slight (560)
= Slight (118) -~
Moderate (57) 0 500 1,000 km L
1 Severe (19) [ T
B Extremely severe (5) ==

Figure 4. Spatial distribution of wildfire risk.
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Figure 5. Kernel density distribution of wildfire risk.

California, Oregon, and Washington have suffered from the wildfires most in 2015 (The
Telegraph 2015). More recently, the most destructive wildfires have been observed in California,
Oragon, Washington, Idaho, and Montana in the West (The Reuters 2017). All these wildfire distri-
bution patterns are consistent with our results except for the East.

At the same time, the overall wildfire risk lavel is relatively low. However, Westerling et al.
(2006) discover that the large-scale forest wildfire frequency has been unceasingly increasing
since 1970s compared with that in the last 10years, and Westetling (2016) also finds that there
has been an obviously increasing frequency of wildfire from 1973 to 2012, as well as the size of
the bumed ragion. Thus, wildfire has become an urgent problem to be solved. With the warming
climate, the risk level of wildfire may not be lower than our results.

The reason for above differences is that the tweets data about wildfire risk are only based on
a short time span, so the result cannot better reflect the spatial distribution of wildfire risk level
for the long run. Despite this, the research results still have an important and realistic signifi-
cance for revealing the wildfire risk distribution. Once the tweets about wildfire could be accu-
mulated for a longer period in the future, the results will become more reliable to provide the
scientific and powerful supports for the effective prevention and response of wildfire risk.

Population and vegetation at risk

The population at risk of wildfire hazard is obtained (Figure &). Population under extremely
severe and severe wildfire threat only accounts for 7.13% totally and dispersedly distributed.
However, wildfire is also likely to cause serious life losses because many large and medium size
cities are located in these regions, such as Fayetteville, Columbus, and Seattle. Population at the
moderate wildfire risk level account for 7.77% with relatively dispersed distribution, where
Washington DC is included. Population at the extremely slight and slight wildfire risk accounts
for 18.44% and 66.66%, respectively. Although the wildfire risk is relatively low in these regions,
the population density is higher than the other wildfire affected regions. Moreover, large
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Hazard Level

B Extremely slight A {
Slight Population density ' &
Moderate - -

s * Relatively low -
evere * moderate 0 1,000 2,000 km
B Extremely severe % Relatively high

Figure 6. Population distribution influenced by wildfire hazard.

populous cities, such as Los Angeles, Santiago, Las Vegas, San Antonio, Houston, Chicago,
Newhaven, and Miami, are located in these regions, which has significantly increased the possi-
bility of potential life and property losses.

Fitzmorris {(2010) mention that because of urban sprawl, every year countless homes in the
greater Los Angeles area are damaged or destroyed by wildfires. More recently, it reports that 27
large fires have bumed nearly 180,000 acres across the West, forceing thousands of local resi-
dents to relocate (USA TODAY 2017). In California, the La Tuna fire near Burbank has burned
nearly 7200 acres, becoming the largest fire ever recorded in Los Angeles in terms of area size
(The Atlantic 2017). All these wildfires pose a great threat to the safety of human beings and
property. Therefore, massive and vulnerable population might result in significant increase in
potential life and property losses.

We further analyze the correlation between wildfire risk level and population density. The partial
correlation coefficient is 0.520, larger than the correlation coefficient (0.517). Thus, linear relationship
exists between wildfire risk level and population density. The probability value of partial correlation
coefficient is 0, which is smaller than the significance level (0.05 or 0.01). it shows that the wildfire
risk level has significant linear relationship with population density. Syphard et al (2007) also find
highly significant relationships exist between population density and fire. This suggests that the
level of wildfire risk may also be determined by the vulnerability degree of demographic factors, in
addition to wildfire hazard itself (UN/ISDR 2002; Cutter, Boruff, and Shirley 2003; Zhou et al. 2014;
Zhou et al. 2015).

The vegetation distribution under wildfire threat is obtained through spatial overay of the
wildfire hazard layerwith vegetation coverage (Figure 7). Vegetation affacted by the extremealy
severe and severe wildfire hazard level is distributed in a dispersed way with a small area pro-
portion. However, regions under the moderate wildfire hazard level are distributed in a more
continuous way. Some regions have a relatively high vegetation coverage level, such as
Tallahassee, Olympia, and Medford. Regions with the slight hazard level are distributed in a dis-
persed and continuous way where 21 grids have a higher vegetation coverage lavel, such as
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Figure 7. Vegetation distribution influenced by wildfire hazard.

Lino, Missoula, and Jacksonville. It shows that the wildfire hazard levels in the vast majority of
high-vegetation-coverad areas are not high, except the Northwest. Although the vegetation
coverage level in the East is very high, there are few fires as a result of the plentiful rain and
damp air. But in some regions of the West where the weather is hot, the air is dry, and the rain-
fall is small, although the vegetation coverage level is not very high, the wildfires are
very fraquent.

We further examine the correlation between wildfire hazard level and the vegetation coverage
level, finding that the partial correlation coefficient is 0.051. It is larger than the correlation coef-
ficient (0.047), which indicates the linear relationship between the wildfire hazard and vegetation
coverage. However, the probability value of partial correlation coefficient is only 0.156, larger
than the significance level (0.05 or 0.01). Given this, the wildfire hazard level has nonsignificant
linear relationship with the vegetation coverage level.

Population and vegetation are not only the targets of wildfire but also play a decisive role in
the occurrence and development of wildfires. According to Syphard et al. (2007), people can
affect the wildfire frequency and spatial distribution rules, but such land surface features as
vegetation determines the spread of wildfire. In conclusion, for the occurrence of wildfire disas-
ters, human factors are of vital importance. Thus, how to strengthen the awareness about wild-
fire hazards and guide people to reduce the improper behaviors that will cause wildfire is of
great importance to wildfire prevention and alleviation.

Discussion

Through applying geo-tagged social media big data to assess the risk of disasters, this article
develops a conceptual framework. By taking wildfire in the United States as an example, we
demonstrate the feasibility of the proposed framework and associated methods, by adopting
one-month tweets data. Results of this article demonstrate that social media data have great
potential in revealing the spatial patterns of disaster risk.
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Two key steps are included in the wildfire hazard evaluation based on tweets. First of all, tweets
associated with specific wildfires are gleaned based on keywords which are places where wildfires
occurr. Through the multi-level keyword searching, high density screening is made for tweets to
maximize a more complete representation of wildfire hazard distribution. Furthermore, we adopt
the methods dealing with the tweets screening rules and population distribution effects used by
Wang et al. (2016) and Wang, Ye, and Tsou (2016). Such methods can to some extent deal with
the poor authenticity of wildfire frequency simulation (Peters et al. 2013; Chuvieco et al. 2014), as
well as the data acquisition difficulty of wildfire occurrence. Our results show that the geo-tagged
social media data have strong timeliness and good authenticity in evaluating disaster risks.

The vulnerability is one of the core variables in the risk assessment. Although a lot of vulner-
ability factors are used in the wildfire risk assessment (Chen, Blong, and Jacohson 2003, 2011; Xu
et al. 2005), the safety of human and ecological assets are more crucial. Therefore, population
density and NDVI are applied to evaluate the social-ecological vulnerability. However, our pro-
posed social-ecological vulnerability index may have some limitations. As for the population, the
mere use of population density may not reveal its spatial distribution accurately. For example,
Guan and Chen (2014) point out that the residential areas and traffic networks are regions with
large flow density. So, Jiao et al. (2015) make a meticulous treatment of the population distribu-
tion according to the spatial distribution of population activity. In addition, Alexander (2014)
argue that the economic conditions, age, education level, and capacity factors will also exert
impaortant influence on the population vulnerability. As for ecological systems, we select NDVI as
the index without distinguishing the influence of vegetation type and flammability on the vul-
nerability of ecological system. However, Jiao et al. (2015) state that the vegetation type illus-
trates a great difference upon the wildfire risk, show that the vegetation type is of most
significance on wildfire occurrence. For example, some kinds of vegetation are more inflam-
mable. Therefore, it is necessary to take more factors into account besides population and vege-
tation. For example, Cutter, Boruff, and Shirley (2003) develop a social vulnerability index at the
county level for the United States using 42 variables, while Wigtil et al. (2016) select 26 sociceco-
nomic and demographic variables to create the social vulnerability index for the wildfire
risk assessment.

Our research reveals that population has larger impact on the wildfire risks than NDVI, which
means that different weights should be assigned to NDVI and population. However, Dong show
that the variation of factor weights has little influence on the disaster risk assessment. Many
other studies also apply the equal index weights to calculate the vulnerability index based on
multiple indexes (Cutter, Boruff, and Shirley 2003; Shock 1997; Johnson et al. 2012; Reid et al.
2009). Given this, we apply the calculation method of index weight in this article.

In summary, our research can be improved in the following aspects. Although the results of the
wildfire risk distribution in the United States largely coincide with the other researchers’, some differ-
ences still exist. This is mainly due to spatial and temporal coverage of tweets data used by different
scholars. Therefore, it is very important to accumulate long-term wildfire data on Twitter to dig
deeper into the spatial-temporal pattern of wildfire risks. Considering that the tweets are point data
and wildfire has the characteristics of both point and sphere, it is needed to combine wildfire spread
maodels to make more accurate evaluation for the influence range of wildfire in the future studies.
From the perspective of vulnerability, it is necessary to strengthen the analysis of the formation
mechanism from the wildfire hazard bearing body, such as population, vegetation, and buildings.

Conclusion

The geo-tagged social media data are increasingly being used for enhancing disaster risk assess-
ment and assisting disaster management. After putting forward the framework applying social
media data to assess wildfire risks, we discuss the wildfire hazard, social-ecological vulnerability,
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and the methods about wildfire risk assessment in this article. The following findings
are concluded.

The spatial-temporal pattern of wildfire risks can be assessed by our proposed framework.
The wildfire risk level has significant linear relationship with population density via considering
the population density influence. On the contrary, the linear relationship between wildfire risk
level and NDVI is not significant. Hence, the wildfire risk level is higher with a larger population
size under the same disaster-inducing hazard level.

The socdial-ecological vulnerability level of wildfire is relatively high, and the main regions
involved are the states such as Washington, Oregon, Arizona, Texas, Arkansas, North Carolina,
and Kentucky. While the overall level of wildfire risks is relatively low, the regions which are
faced with moderate risk level and above are mainly distributed in Washington, Oregon, North
Carolina, and California. Therein, the severe wildfire risk level and above are mainly distributed in
Washington, Arizona, Texas, Arkansas, North Carolina, Kentucky, New York, and Alabama.

Our results show that social media data have a huge potential for disaster risk assessment
and management. Mare accurate and detailed wildfire risk assessment results can be aobtained
with more tweets about wildfires for a longer period. This research can help promote the devel-
opment of disaster science and risk prevention as long as we further explore and integrate the
multi-source big data.
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