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Abstract 28 

River discharge impact on sea surface salinity (SSS) is particularly evident in the western 29 

tropical Atlantic where the Amazon and Orinoco represent two out of the four largest discharges. 30 

This continental discharge is fed by tropical rainfall, which variability is dominated by 31 

meridional (dipole) and ENSO-induced modes that are partitioned between ocean and land. Such 32 

partitioning implies a complex ocean response. While SSS response to local ocean rainfall is 33 

almost instantaneous, its response to land rainfall is delayed by riverine hydrology. Land rainfall 34 

associated with the meridional rainfall mode concentrates mostly over the coastal north-east 35 

Brazil and results in a fast Amazon response. In contrast, ENSO-induced rainfall anomaly 36 

occupies vast inland areas and leads to Amazon discharge response delayed by 3 to 7 months. 37 

Although ocean profile analyses represent well interannual SSS forced by open ocean rainfall, 38 

they don’t resolve well interannual SSS in the plume, which is better represented by ocean 39 

reanalyses. In Simple Ocean Data Assimilation, the plume anomaly persists several months 40 

following the peak of rainfall and is diffused by seasonally accelerating winds in boreal winter. 41 

But, its magnitude is a modest few tenth of PSU and only marginally statistically significant. 42 

Perhaps, such weak correlation of SSS and continental discharge variations is not surprising due 43 

to other factors contributing in this dynamically active area. Significant transient variability not 44 

associated with ocean and land rainfall is a factor explaining why profile analyses don’t resolve 45 

interannual variability of the Amazon plume.  46 

  47 

1. Introduction 48 

A striking feature of the Atlantic Ocean is the appearance of salty pools (>37psu) in the 49 

subtropics due to high evaporation and lack of rainfall. These subtropical sea surface salinity 50 
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(SSS) maxima are separated from lower SSS in the rainy tropics (Dessier and Donguy, 1994), 51 

where SSS is diluted by local ocean rainfall and by rainfall over adjacent land discharged by 52 

tropical rivers. Here we use SSS observations to describe that such rainfall partitioning implies a 53 

complex SSS response. While SSS response to ocean rainfall is almost instantaneous, its 54 

response to land rainfall is delayed by the continental hydrology (Chen et al., 2010).  55 

 56 

The seasonal mixed layer salt storage in the tropical Atlantic is controlled by several seasonally 57 

varying processes (Foltz et al., 2004), among which the high precipitation under the Intertropical 58 

Convergence Zone (ITCZ) and the discharge of major tropical rivers are both important (e.g. 59 

Lentz, 1995). Between 10°S-15ºN SSS is diluted by the seasonally migrating ITCZ and its 60 

southern counterpart (Grodsky and Carton, 2003). This fresh SSS is advected both zonally (by 61 

the seasonally developing North Equatorial Counter Current, NECC, e.g. Carton and Katz, 1990) 62 

and meridionally (through Ekman transport by the trade winds, e.g. Grodsky et al., 2014b; Foltz 63 

et al., 2015). West of 40ºW mixed layer salinity is significantly freshened by the Amazon, whose 64 

discharge peaks in mid-May and decreases to its seasonal minimum in mid-November, reflecting 65 

the seasonal march of the ITCZ and water storage processes over the catchment area (Lentz, 66 

1995). By early boreal fall the Amazon water spreads over a 106 km2 fresh pool west of 40ºW 67 

(Dessier and Donguy, 1994), producing a large area with near-surface barrier layers (e.g. Liu et 68 

al., 2009) capable of affecting local air-sea interactions, even under hurricane winds (e.g. 69 

Grodsky et al., 2012).  70 

 71 

Besides the seasonal variability, tropical Atlantic rainfall and related river discharge vary 72 

interannually. The leading mode of interannual rainfall variability peaks in spring and is 73 
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associated with the tropical Atlantic interhemispheric sea surface temperature (SST) difference 74 

that governs anomalous meridional atmospheric pressure difference and related shifts of the 75 

ITCZ, which in turn affect rainfall and storage redistribution among northern and southern 76 

tributaries of the Amazon (Hastenrath and Heller, 1977; Nobre and Shukla, 1996; Chiang et al., 77 

2002). Variations in the Amazon rainfall are related to the effect of tropical Atlantic SST on the 78 

Hadley cell and the corresponding subsidence over the Amazon. This variability peaks in the 79 

March-May season immediately preceding the peak of Amazon discharge (e.g. Espinoza et al., 80 

2009). The strongest recent interannual event is related to the 2009 anomalous cooling of tropical 81 

North Atlantic SST and related southward shifts of the ITCZ (Foltz et al., 2012). Besides 82 

interannual events, the interhemispheric mode also experiences decade-scale oscillations driven 83 

by the wind-evaporation-SST feedback (Xie and Carton, 2004). The strength of Atlantic SST 84 

influence on the Amazon is comparable in magnitude to Pacific SST influence (Yoon and Zeng, 85 

2010). 86 

 87 

Besides the interhemispheric mode, the tropical Atlantic rainfall also experiences El-Nino 88 

Southern Oscillations (ENSO) induced variations (Kousky et al., 1984) that extend in a spatially 89 

coherent pattern over the tropical South America and Atlantic (Ropelewski and Halpert, 1987; 90 

Chiang et al., 2002). Interannual Amazon rainfall induced by changes in Pacific SST peaks in the 91 

November–March season and leads the seasonal Amazon discharge peak (May – June) by 92 

several months (Espinoza et al., 2016). The origin of the ENSO impact is linked to Pacific SST 93 

effect on the atmospheric Walker Cell (Gill, 1980; see also Sasaki et al., 2015 and references 94 

therein). During El Niño, an enhanced convection over warm eastern equatorial Pacific is 95 

accompanied by corresponding enhancement of downstream atmospheric descent over the 96 
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Atlantic sector, which in turn caps local convection and decreases rainfall. The two rainfall 97 

modes are not completely independent because tropical Pacific SST influences the north tropical 98 

Atlantic through atmospheric teleconnections and thus affects the meridional SST gradient in the 99 

tropical Atlantic that shifts the ITCZ (Nobre and Shukla, 1996, Enfield and Mayer, 1997). 100 

 101 

As evidenced above, Pacific and Atlantic SST may affect the sea surface salinity (SSS) in the 102 

Amazon plume via its influences on the Amazon rainfall and discharge. Through EOF 103 

decomposition of ocean data assimilation simulations, Tyaquiçã et al. (2017) have shown that the 104 

leading mode of anomalous SSS in the Amazon plume presents an ENSO-induced response that 105 

lags behind the Amazon rainfall by ~3 months. Although ENSO-induced variations explain 106 

about 50% of observed SSS variability in the Amazon plume (Zeng et al., 2008), other factors 107 

contribute as well. They include cross-shore winds that modify offshore freshwater dispersal 108 

(Molleri et al., 2010) and appear to be related to the tropical Atlantic meridional SST mode 109 

(Fournier et al., 2017). It is also probable that interannual variability in regional surface currents 110 

not associated with local winds (Grodsky et al., 2014a) may account for the remaining portion of 111 

interannual SSS variability.  112 

 113 

Interannual rainfall in the tropical Atlantic is dominated by the two leading modes that extend 114 

over adjacent land and have differing impacts on variations of the Amazon discharge. This paper 115 

explores if observed SSS allows for distinguishing between impacts of the two rainfall modes as 116 

well as between the delayed SSS response to Amazon discharge and the quasi-instantaneous 117 

response to ocean rainfall. 118 

 119 
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2. Data and Methods 120 

Ocean rainfall, evaporation, SST, and winds are characterized using the Era-Interim reanalysis of 121 

atmospheric parameters produced by the ECMWF (Dee et al., 2011). The ERA-Interim data used 122 

in this study are monthly averages on a 1° regular grid available at ( 123 

https://www.ecmwf.int/en/research/climate‐reanalysis/reanalysis‐datasets/era‐interim ) . Monthly 124 

land rainfall is characterized by the Global Precipitation Climatology Project (GPCP v.2.3, e.g. 125 

Adler et al., 2003) combined gauge/satellite rainfall analysis 126 

(http://eagle1.umd.edu/GPCP_ICDR/GPCPmonthlyV2.3.pdf ) available on a regular 2.5o grid at 127 

(http://gpcp.umd.edu/ ). 128 

 129 

For near surface salinity data, two ‘Argo+’ data-only analyses available through 130 

(http://www.argo.ucsd.edu/Gridded_fields.html) are examined.  The Japan Agency for Marine-131 

Earth Science and Technology (JAMSTEC) employs 2-dimensional optimal interpolation of 132 

Argo floats, ocean mooring data, and CTD casts on pressure surfaces for monthly analysis of 133 

temperature and salinity on a global 1°x1° grid from January 2001-ongoing (Hosoda et al., 134 

2008). The Scripps Institute of Oceanography analysis (SCRIPPS) is based only on Argo data. 135 

By decomposing data into climatology and monthly anomaly fields, this analysis is able to 136 

resolve finer spatial scales for monthly analysis on a global 1°x1° grid from January 2004-137 

ongoing (Roemmich and Gilson, 2009). As a proxy for SSS, the shallowest level salinity is used 138 

for each analysis, from which anomalies are calculated by subtracting the corresponding monthly 139 

seasonal cycle.  140 

 141 
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Although the two analyses resolve low SSS in the Amazon plume, it appears that its interannual 142 

variability is not resolved well. For a better representation of high variable Amazon plume SSS, 143 

the Simple Ocean Data Assimilation (SODA version 3) is used. Particular run used in this study 144 

(SODA 3.4.2, http://www.atmos.umd.edu/~ocean/index_files/soda3.4.2_mn_download.htm ) is 145 

driven by Era-Interim surface forcing and monthly river discharge (Dai et al., 2009) spans 1980-146 

2015.  147 

 148 

Observed monthly discharge at Obidos station is used as a simple proxy for Amazon discharge. 149 

It is compared to the combined Amazon–Tocantins River discharge evaluated as a sum of 150 

discharges of the Amazon (at Obidos), Tapajos, Xingu, and Tocantins. The Amazon discharge, 151 

its main southern tributary discharges, as well as the Orinoco discharge (since 2003) are 152 

available at (http://www.ore-hybam.org ). For the earlier period, the Dai (2016) Orinoco 153 

discharge is used (https://doi.org/10.5065/D6V69H1T ). The downstream Tocantins discharge at 154 

Tucurui is available from the Brazil's national grid operator website 155 

(http://www.ons.org.br/Paginas/resultados-da-operacao/historico-da-156 

operacao/dados_hidrologicos_vazoes.aspx ).  157 

 158 

Pacific and Atlantic SST is characterized by the NINO3 and the Atlantic Meridional Mode 159 

(AMM, Chiang and Vimont, 2004) indices available at 160 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino3/ and 161 

https://www.esrl.noaa.gov/psd/data/timeseries/monthly/AMM/ammsst.data, respectively. 162 

 163 
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Satellite SSS is monthly Level 3 Aquarius version 5.0 SSS (August 2011 through June 2015) 164 

obtained from the NASA Goddard Space Flight Center on a 1°x1° grid 165 

(https://oceandata.sci.gsfc.nasa.gov/Aquarius/Mapped/Monthly/1deg/V5.0_SSS/ ). It has a 166 

characteristic accuracy of 0.2 psu for monthly averages (see Lee, 2016 for more detailed 167 

accuracy analysis).  The Soil Moisture Active Passive (SMAP) salinity mission that followed the 168 

AQUARIUS salinity mission began salinity observations in late March, 2015.  Monthly 169 

0.25°x0.25° SMAP (version 2) SSS used in this paper is distributed by the Remote Sensing 170 

Systems (Meissner and Wentz, 2016) and available at ftp://ftp.remss.com/smap/SSS/L3/V02.0 .  171 

 172 

3. Results 173 

3.1 Anomalous rainfall variability modes 174 

The surface flux component affecting ocean mixed layer salinity is the surface freshwater flux, 175 

ሺ𝑃 െ 𝐸ሻ ∗ 𝑆, that is proportional to the precipitation -minus-evaporation difference, PmE. In the 176 

tropical Atlantic, the variability of anomalous PmE is dominated by the two leading zonally 177 

elongated modes (Figure 1a). Both modes are dominated by precipitation (with evaporation 178 

playing a secondary role) and are repeatedly referred as simply rainfall modes.  179 

 180 

The first EOF reflects a dipole rainfall pattern resulting from meridional shifts of the ITCZ 181 

forced by the interhemispheric SST difference in the tropical Atlantic (Nobre and Shukla, 1996). 182 

The correspondence between this rainfall mode and the tropical Atlantic SST is illustrated by the 183 

correlation map (Figure 1a) and by almost in-phase (to within 1 month) lagged correlation of the 184 

first rainfall mode principal component time series (PC1) with the AMM index (Figure 2a). The 185 

strongest ‘negative’ interannual event in the first rainfall mode (Figure 1c) is associated with the 186 
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occupies vast inland areas extending into the middle Amazon. Due to water storage, this 241 

extended pattern causes a phase delay in the corresponding rainfall–discharge relationship (Chen 242 

et al., 2010). The bottom of lagged correlation between the anomalous Amazon discharge and 243 

the NINO3 has rather wide shape. It reflects weaker rainfall caused by warmer Pacific SST that 244 

results in anomalous Amazon discharge lagging behind the NINO3 by 3 to 7 months (Figure 2d). 245 

Because of the spatially large pattern of anomalous rainfall (Figure 3a), most of the Amazon 246 

discharge anomaly is accounted for by Obidos volume transport while the inclusion of southern 247 

tributaries plays a minor role (Figure 2d).  248 

 249 

In contrast to ENSO-induced rainfall pattern, AMM-induced dipole rainfall pattern concentrates 250 

over coastal northeastern South America (Figure 3b) implying a shorter transport time to river 251 

mouths and thus a smaller rainfall-discharge delay. It also implies a stronger relative contribution 252 

of southern tributaries of the Amazon and the Tocantins River. For the meridional rainfall mode, 253 

the combined Amazon discharge displays only a minor (~ 1month) lag behind rainfall PC1. The 254 

inclusion of anomalous discharge produced by southern tributaries of the Amazon increases the 255 

magnitude of rainfall-discharge correlation (Figure 2c). This is in contrast with ENSO-induced 256 

Amazon discharge variability for which tributaries have a little impact (Figure 2d). Note also that 257 

AMM-induced Amazon and Orinoco discharge variations are out of phase (Figure 2c) in line 258 

with the meridional dipole pattern (Figure 3a).  259 

 260 

3.1 SSS response to anomalous rainfall 261 

Next, we will examine tropical Atlantic SSS response to the leading rainfall modes. A complex 262 

SSS response is anticipated due to the combination of freshwater forcing from ocean rainfall and 263 
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corresponding shifts of the Amazon rainfall (Figure 3a), which predominantly occupy the lower 310 

Amazon basin and lead to almost in-phase changes of the Amazon discharge (Figure 2c). 311 

Although such discharge variations should have produced corresponding variations of the plume 312 

SSS, they are not observed either in Figures 5a, c or at larger temporal lags (not shown). This 313 

indirectly indicates that interannual SSS of high variable plume area is not adequately resolved 314 

by either of the two profile analyses. Interestingly, both analyses suggest an SSS freshening 315 

northeast of the Lesser Antilles (Figures 5a, c) in response to northward shift of the ITCZ, a 316 

feature that will be discussed later. 317 

 318 

In response to positive (El Nino) phase of the second rainfall mode, which corresponds to 319 

depressed rainfall in the tropical Atlantic and Amazon basin (Figure 1b), the open ocean SSS 320 

increases by ~0.2 psu/PCunit in a zonally elongated pattern located just north of the equator, 321 

which is spatially collocated with the second rainfall mode (Figures 5b, d and Figure 1b). Again, 322 

higher plume SSS (otherwise expected due to decreased Amazon discharge, Figure 2d) is not 323 

present either in Figures 5 b,d or at larger lags (not shown). 324 

 325 

Satellite SSS During the AQUARIUS satellite period (SEP2011-MAY2015), the two rainfall 326 

modes had a complex behavior including a mission-long trend-like change. The meridional 327 

rainfall mode was shifting towards its negative state (Figure 1c) associated with a southward 328 

shift of the ITCZ. This shift is forced by the SST-induced meridional gradient of atmospheric 329 

pressure and is also reflected in the negative AMM tendency (Figure 6c). Southward shift of the 330 

ITCZ enhances rain over the lower Amazon River (Figure 3a) and leads to a quasi-instantaneous 331 

increase in its discharge (Figure 2c). This effect was opposed by decreasing tendency in ENSO-332 
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south pole of the meridional rainfall mode (Figure 1a) is not present during this particular period. 356 

A minor freshening along the northwestern shelf of South America may be attributed to the 357 

above mentioned modest increase of Amazon discharge. A salinification tendency northeast of 358 

the Lesser Antilles (Figure 6a) may be attributed to changes in the wind-driven ocean circulation 359 

in response to strengthening off-shore winds (Figure 1a). Based on Molleri et al. (2010) 360 

hypothesis, Fournier et al. (2017) have demonstrated that strengthening northeasterly trades 361 

(coincident with anomalous cooling of SST in the north tropical Atlantic and southward shift of 362 

the ITCZ) significantly contract the spatial dispersion of the Amazon/Orinoco plume by 363 

suppressing the export pathway that delivers fresh water into the north subtropical Atlantic 364 

northeast of the Lesser Antilles, and vice versa. Missing Amazon fresh water in this area results 365 

in apparent contraction of the plume and corresponding up to 0.8 psu (mission long) 366 

salinification in the 60W-50W, 20N-30N sector (Figure 6a).  367 

 368 

Among interesting features present in Figure 6a (but not well understood yet) is a freshening of 369 

the northeastern subtropical Atlantic. Like the Lesser Antilles salt feature, this fresh subtropical 370 

feature can be also attributed to an acceleration of northeasterly trade winds, which during the 371 

AQUARIUS mission occurred in a pattern corresponding to the negative phase of EOF1 (Figure 372 

1a). On the southeastern periphery of the north subtropical salinity maximum, the anomalously 373 

strong northwestward Ekman transport associated with enhanced northeasterly trade winds 374 

shrinks the SSS maximum area and thus decreases local salinity. 375 

 376 

During the successor, SMAP salinity mission (since late March 2015-onward), the major SST 377 

tendencies in the tropical Pacific and Atlantic have been reversing in comparison to the earlier 378 
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AQUARIUS period (Figure 6c). Probably, this transition in tendencies reflects the long term 379 

AMM variation supported by the wind-evaporation-SST feedback (e.g. Xie and Carton, 2004). 380 

As a consequence of this reversal, the low latitude cross Atlantic salinification tendency present 381 

during the AQUARIUS period (Figure 6a) has been replaced by a corresponding SSS freshening 382 

tendency during the SMAP period (Figure 6b). The latter freshening tendency depicts the ocean 383 

response to increasing ENSO-induced Atlantic rainfall during the recent cooling of Pacific SST. 384 

Amazon plume SSS also freshened during the SMAP period (Figure 6b) as a result of the 385 

Amazon discharge increase after the 2015 El Nino drought.  386 

 387 

Ocean reanalysis salinity Because temporal variability of SSS in the plume is not completely 388 

represented by profile analyses, an ocean data reanalysis, which combines observations with 389 

model physics forced by observed variations of the Amazon discharge, is explored. As a proxy 390 

for the SSS, the shallowest level (~5m) salinity from the SODA3.4.2 (driven by ERA-I 391 

atmospheric fluxes, also used above for the EOF analysis in Figure 1) is employed.  As expected, 392 

the northward shift of the ITCZ produces a quasi-instantaneous SSS response in the open ocean 393 

that resembles observation-based SSS response, is statistically significant and spatially coherent 394 

with rainfall EOF1 (compare Figure 7a with Figures 5a,c). In addition to correlation patterns 395 

present in observations, SODA-based correlations also show a higher plume salinity, which is 396 

expected in response to weaker Amazon discharge during northward excursions of the ITCZ. 397 

While the SSS pattern associated with the open ocean rainfall is stronger at small lags and 398 

gradually disappears in time (almost vanishes in 8 months after the spring peak of meridional 399 

rainfall, Figures 7a,b,c,d), the anomalous salty plume persists and reaches maximal areal extent 400 

at 8 month lag (Figure 7c). This persistence time is determined by the annual life span of the 401 
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 494 

4. Summary 495 

Because spatial patterns of interannual rainfall are almost equally partitioned between ocean and 496 

land, such partitioning results in a complex SSS response. While SSS response to ocean rainfall 497 

is almost instantaneous, its response to land rainfall is delayed by the river hydrology. Such 498 

delay is stronger for ENSO-induced rainfall that affects a vast portion of the Amazon drainage 499 

area. Resulting Amazon discharge variation lags behind the NINO3 by 3 to 7 months and is 500 

accounted for by the volume transport at Obidos. In contrast, the meridional rainfall mode 501 

occupies only the lower Amazon drainage area of near coastal northeastern South America. As a 502 

result, meridional mode induced variations of the Amazon discharge have a minor (~1 month) 503 

delay behind the peak of rainfall, but are not totally accounted for by Obidos transport and 504 

require contributions from the major southern tributaries and the Tocantins River.   505 

 506 

Temporal regression of anomalous SSS with the two leading principal components of anomalous 507 

rainfall is consistent for the JAMSTEC and SCRIPPS in-situ profile analyses and depicts an 508 

expected surface-forced SSS response that maximizes quasi-instantaneously with rainfall (a 509 

minor few month lag is present) and closely corresponds to its spatial patterns.  During positive 510 

phases of the meridional (dipole) rainfall mode (corresponding to northward shifts of the ITCZ), 511 

the SSS decreases in the 5N-10N corridor and increases off the eastern tip of South America. 512 

The magnitude of SSS anomaly ~0.15 psu/PCunit suggests up to 0.5 psu interannual variation. 513 

ENSO-induced rainfall is represented by the second mode that describes in-phase variations of 514 

tropical Atlantic rainfall in spatially coherent zonally elongated pattern crossing the basin. 515 
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During El Nino, the anomalous surface freshwater forcing associated with depressed tropical 516 

Atlantic rainfall increases local SSS by ~0.2 psu/PCunit.  517 

 518 

Although both rainfall modes imprint on anomalous Amazon discharge, the effect of varying 519 

discharge on the plume SSS is not present in either of in-situ profile analyses. The latter is better 520 

represented by SODA3 ocean reanalysis due to embedded physics forced by observed variations 521 

of the Amazon discharge. SODA reveals that Amazon plume SSS anomalies are present during 8 522 

months following the meridional mode rainfall peak and during almost 1 year after the ENSO 523 

mode rainfall peak. Longer persistence of ENSO-induced plume SSS is explained by the 524 

memory associated with the Amazon hydrology and the corresponding delay of the Amazon 525 

discharge behind the rainfall. The magnitude of consistent response of plume SSS evaluated 526 

from temporal regression with time series of principal components of the ocean rainfall modes is 527 

a modest few tenth of PSU and only marginally statistically important. Perhaps, such relatively 528 

weak correlation is not surprising given a variety of other factors contributing in this dynamically 529 

active area. It may also explain why profile analyses, which are based on random in-situ casts, 530 

don’t sample well temporal variability of the plume properties.  531 

 532 

During the satellite SSS epoch, the two rainfall modes had a complex behavior, including 533 

mission-long trend-like changes. During the earlier AQUARIUS period (SEP2011-MAY2015), 534 

the ITCZ was shifting southward. This ITCZ shift resulted in a corresponding enhancement of 535 

rainfall over the lower Amazon River. Concurrently, the effect of warming eastern equatorial 536 

Pacific SST forced a decrease of ENSO-induced rainfall in the Atlantic sector. Compensating 537 

impacts of Pacific and Atlantic SSTs resulted in rather stable Amazon discharge with weak 538 
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increase dominated by the meridional rainfall mode. As a result of these compensating changes, 539 

the AQUARIUS mission long anomalous SSS tendency is concentrated in the cross-basin 540 

tropical Atlantic salinification pattern located just north of the equator (~0.15 psu/year or ~0.6 541 

psu mission long) that reflects the combined, in phase effect of increasing Pacific SST and 542 

cooling north tropical Atlantic SST on the open ocean rainfall. During the successor, SMAP 543 

salinity mission (since late March 2015-onward), the major SST tendencies in the tropical Pacific 544 

and Atlantic have been reversing in comparison to the AQUARIUS period. As a consequence of 545 

this reversal, the low latitude cross Atlantic salinification tendency present in the AQUARIUS 546 

SSS has been replaced by a freshening tendency in the SMAP SSS, which depicts the open ocean 547 

response to increasing ENSO-induced Atlantic rainfall during the recent cooling of Pacific SST. 548 

In distinction from the AQUARIUS period when the Amazon plume didn’t show any noticeable 549 

SSS trend, the later SMAP period includes a freshening tendency in the plume in response to the 550 

increase of Amazon discharge after the 2015 El Nino drought. 551 

 552 
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