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ABSTRACT

While Volatile Organic Compounds (VOC) and ammonia have a
place in our daily lives, their leakage into the environment is harm-
ful to human health. In order to prevent and detect gaseous leaks
of harmful VOCs, a cyber-physical system (CPS) comprised of or-
dinary people or first responders is proposed. This CPS uses small,
low-cost sensors coupled to smart phones or mobile devices with
the necessary computation and communication capabilities. The ef-
ficacy of such a CPS hinges on its ability to address technical chal-
lenges stemming from the fact that identically produced sensors may
produce different results under the same conditions due to sensor
drift, noise, or resolution errors.

The proposed system makes use of time-varying signals pro-
duced by sensors to detect gas leaks. Sensors sample the gas vapor
level in a continuous manner and time-varying sensor data is pro-
cessed using deep neural networks. One of the neural networks (NN)
is an energy efficient Additive Neural Network (AddNet) which can
be implemented in host devices. The second NN is the discrimi-
nator of a GAN and the third a regular convolutional NN. AddNet
produces comparable VOC gas leak detection results to regular con-
volutional networks while reducing area requirements by two thirds.

Index Terms— VOC gas leak detection; sensor drift; additive,
convolutional, and generative adversarial (GAN) neural networks

1. INTRODUCTION

Volatile organic compounds (VOCs) and ammonia can be harmful to
human health. If their indoor concentration exceeds a certain level,
they may trigger asthma and rhinitis. VOC gases are a major con-
tributor to global warming. Additionally, some VOC compounds
such as benzene and toluene are carcinogenic. High concentrations
of ammonia pose a health hazard as well as cause harm to the skin,
eyes, and lungs [1–4]. Exposure to ammonia can occur from a de-
liberate terrorist attack or through an accidental release from farms
or industrial and commercial facilities.

To prevent and detect gaseous leaks of harmful VOCs, we
propose to develop a cyber-physical system (CPS) comprised of
ordinary people or first responders using small, low-cost chemi-
cal sensors coupled to smart phones or mobile devices with the
necessary computation and communication capabilities. Chemi-
cal sensors sample open air in a continuous manner and alert the
first responders whenever they detect VOC and ammonia gas vapor
leaks. Our goal is to detect VOC gas leaks and other dangerous high
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gas vapor concentration levels using un-calibrated low-cost sensors
attached to smart mobile devices.

Chemical gas sensors constitute a potentially low-cost and prac-
tical alternative to conventional but expensive optical devices such
as gas chromatographs and Medium Wave InfraRed (MWIR) cam-
eras. However, lack of stability of measurements (which is called
sensor drift) is an important problem in chemical sensing. Selec-
tivity and sensitivity of chemical sensors decrease over time. As a
result, identically manufactured chemical sensors may generate sig-
nificantly different results when exposed to the same analyte under
identical conditions [5–9].

Sensor drift is mainly attributed to two types of reasons, namely,
the physical changes in the structure of the sensor and the operating
environment. The so-called first-order drift stems from aging and
“poisoning”, an irreversible binding due to external contamination.
The so-called second-order drift is due to external and uncontrol-
lable parameters such as temperature and humidity variations in the
environment. As a result, it may not be a good idea to set a constant
threshold to detect the existence of a gas leak or other dangerous
substances using low-cost chemical sensors. Such sensors are addi-
tionally impacted by changes in the concentration of the gas in open
air due to wind.

Some VOC compounds and ammonia absorb infrared light at
Medium Wave InfraRed (MWIR) and Long Wave InfraRed (LWIR)
bands. LWIR sensors are also able to detect ammonia gas leaks in
open air. However, the distance between the sensor and the source,
and infrared reflections from the background significantly affect the
recorded level [10,11]. Similarly, we can also visualize the existence
of VOC gas vapor using Medium Wave InfraRed (MWIR) cameras
as shown in Fig. 1. While in open air it is not possible to detect
the concentration of the gas using MWIR and LWIR sensors, it is
possible to record a time-varying signal and detect the existence of
the gas leakage by naked eye or using a machine learning algorithm
such as a neural network.

In this paper, we analyze the time-varying sensor signals using
convolutional, additive neural networks and the discriminator net-
work of a GAN to detect and classify VOC gas leaks and other
dangerous gas emissions. The proposed analysis is applicable to
both Chemically-sensitive Field Effect Transistors (ChemFETs) and
Electrochemical Impedance Spectroscopy (EIS) sensors as they both
produce time-varying signals.

The rest of the paper is organized as follows. Section 2 de-
scribes the machine learning algorithms used in this paper. Section
3 presents experimental results. We use an infrared data set and a
publicly available chemical sensor drift data set obtained at the Uni-
versity of California at San Diego (UCSD) [8]. The paper finishes
by offering a brief set of conclusions in Section 4.
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Fig. 1: An example MWIR band infrared image of VOC gas leak.
Red (green) rectangles contain gas-leak regions (leak-free region).
Image is downloaded from FLIR systems [12].

2. DEEP LEARNING ALGORITHMS

We utilize three kinds of deep neural networks to classify the VOC
gas data. The first one is a regular convolutional neural network
(CNN). The second one is an additive neural network based on ad-
dition and sign operations, and the third one is the discriminator or a
Generative Adversarial Neural (GAN) network.

2.1. Convolutional Neural Network

Convolutional neural networks (or ConvNets) have been exten-
sively used in computer vision [13, 14] and time-series data analy-
sis [15]. In ConvNets, convolution (or correlation) between inputs
and weights is used to extract local features at different scales in sub-
sequent layers. This locality in feature extraction, along with affine
transformation and non-linearity, enables the network to extract
highly abstract features at high levels.

Since both the IR and chemical sensor readings are temporarily
varying, we implemented a one-dimensional convolutional neural
network with three convolutional layers including one dense input
layer, one dense output layer and a binary classifier layer. The num-
ber of filters in the three filters are 16, 32 and 64, respectively. The
size of each filter is 3 with maxpooling of size 5 being used between
the layers. The output of the last maxpooling is subsequently flat-
tened and fed to a dense layer of output size of 64, whose output is
eventually fed to the binary classifier layer. We used rectified linear
units (ReLU) as nonlinear activation in all hidden layers.

2.2. Additive Neural Network

Despite the great success of deep learning algorithms in time-series
analysis, CNNs are computationally expensive. It may not be possi-
ble to implement a CNN in regular mobile devices. Since multiplica-
tion operations consume significant energy, a regular neural network
will fail to pass an energy efficiency constraint as well.

We introduced the notion of a new “product” of two vectors as a
binary operation involving sign, addition and subtraction operations,
and maximum and minimum operations [16, 17]. The new class of
vector products are non-Euclidean operators and the “product” of a
vector with itself can be expressed in terms of the `1 norm of the
vector. As a result, algorithms and methods developed using the
new class of vector products will lend themselves to significantly
more efficient sparse system manipulations. In this regard, let a and
b be two real numbers. A “product” of a and b that we are exploring

is defined initially as follows:

a⊕ b := sgn(a× b)(|a|+ |b|) (1)

where the sgn is the signum function (a = sgn(a)|a|). The operator
⊕ basically performs an addition operation, but the sign of the re-
sult is the same as the sign of a × b. We call the new operator the
multiplication-free operator (mf-op) which can also be represented
as follows:

a⊕ b := sgn(a)b+ sgn(b)a (2)

Let x and y be two vectors in Rd. We define a “vector product”
based on the ⊕ operator as follows, adapting the same notation as
for the scalar case:

x⊕w :=

d∑
i=1

sign(xi × wi)(|xi|+ |wi|), (3)

where x = [x1, . . . , xd]
T ,w = [w1, . . . , wd]

T ∈ Rd. This
“vector product” operation, ⊕, requires no multiplication whatso-
ever. The “vector product” defined in (3) leads to a scaled version of
the `1 norm: x⊕ x = 2||x||1.

The “vector product” shown above can be used in operations that
are analogous to correlation. In traditional ANNs, neurons perform
inner products to compute the correlation between the input vector
with the weights of the neuron. We define a new neuron by replac-
ing the inner-product of a classical neuron by the “vector product”
defined using (1) or (2). A neuron in a classical neural network is
represented by the activation function

f(xTw + b), (4)

where f() is the nonlinear activation function, w ∈ Rd, b ∈ R de-
note the weights and the bias, respectively, and x ∈ Rd is the input
vector. We define a new neuron by replacing the affine transform of
a traditional neuron using the mf-op as follows:

f(α(x⊕w) + b), (5)

where w ∈ Rd, and α, b ∈ R denote the weights, the scaling co-
efficient and the bias, respectively. The neural network in which
each neuron is represented by the activation function defined in Eqn.
(4), is called Additive Neural Network (AddNet). In this work, we
refer to Multi-Layer Perceptron (MLP) networks which implement
the mf-operator as MLP-AddNets. Likewise, we refer to ConvNets
which implement the mf-operator as Conv-AddNets. The proof of
AddNet with linear and/or ReLU activation function satisfying the
universal approximation property over the space of Lebesgue inte-
grable functions can be found in [18]. Most neural network struc-
tures can be easily converted into an additive network structure by
just replacing ordinary neurons with the activation functions defined
using the mf-op. It is possible to train the AddNet using the standard
back-propagation and related optimization algorithms.

Since response normalization is commonplace in deep neural
network architectures [13,19], we realized that normalization is also
important in the case of AddNet, since addition results in responses
of larger variances than ordinary multiplication when dealing with
values smaller than unity in magnitude. In this regard, we normalize
the output of the ith feature map of a convolutional layer by a scalar
αi =

||wi||1
H×C where wi is the i-th filter in the filter bank, H the 1-D

spatial size of the filter and C the depth of the filter (number of input
channels). This normalization factor was used in the binary-weight
Neural Network proposed in [20]. Thus, we perform only one multi-
plication per neuron instead ofH×C multiplications. Alternatively,
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one can use other normalization techniques, such as batch normal-
ization [19].

Furthermore, since the signum function is not suitable for back-
propagation, we redefined the derivative of the signum function in
the operator to be that of the hyperbolic tangent function. Since the
hyperbolic tangent function acts linearly close to zero, this makes
the derivative smooth for small values.

2.3. Discriminator of GAN as Classifier

Generative Adversarial Networks (GAN) have become the bench-
mark in image synthesis [21, 22]. A typical GAN has a generative
network and a discriminator network. In a standard application of
GAN the generator network is used to synthesize artificial images
from noise vectors, and the discriminator network is used to train the
generator. In this paper, our aim is not to synthesize data but to make
use of the adversarial nature of GAN training to obtain a discrimina-
tor network capable of classifying the input with an unbalanced set
of training data. As the recordings of gas leak data may fall short of
the clean air recordings for this purpose, we have the generator of the
GAN compensate the data set with smaller number of data instances
by producing “artificial” gas leak data during training.

In this regard, we perform a two-phase training of the GAN.
First, we carry out unsupervised adversarial training of both the dis-
criminator and the generator using the data of one of the classes and
random noise. Let xi represent the ith vector of one of the classes.
In this case, xi’s denote the gas leak recordings. Let z be a random
noise vector, e.g. Gaussian noise or uniform noise. Let D be the
discriminator and G be the generator, each of which has parameters
sets θD and θG, respectively. In the adversarial stage, we seek to
optimize the following loss function:

max
θD

min
θG

∑
i

log(D(xi)) +
∑
i

log(1−D(G(zi)) (6)

where D(xi) is the prediction result of the discriminator. The pre-
diction output D(xi) should be close to 1 because xi is “real”. The
generator G produces “fake” data signals from noise vector zi, and
D(G(zi)) should be close to zero because G(zi) is an artificial data
instance. Once training the first stage is accomplished, we move on
to the second stage of supervised training of the entire training data,
in which the cost function we seek to minimize is the regular binary
cross entropy function CE expressed as follows:

CE := − 1

N

(∑
i

(1− ti)log(1−D(xi)) + tilog(D(xi))
)

(7)

where ti ∈ {0, 1} denotes the true class of xi.
When there are multiple classes we can still use the discrimina-

tor of a GAN. Let us assume that there are N -classes. In this case,
the one-hot encoded label for each input is an N -dimensional vec-
tor, with all entries equal to zero, except for the kth entry, where k is
the true class. During training, the discriminator (or classifier) will
minimize the cross-entropy of the softmax layer applied at the out-
put layer (N logits). The generator parameters θG will try to attack
the kth output node by trying to push the sigmoidal response of that
node to unity by minimizing the cross entropy CEG of that node,
which is expressed as:

CEG(node k) = −log(D(G(z)) (8)

where z is a noise vector input to the generator network G of GAN.
The discriminator parameters θD in turn will counteract the genera-
tor by trying to push the sigmoidal response of the fake examples to

zero by minimizing the cross entropy CED given by

CED(node k) = −log(1−D(G(z)) (9)

Notice that in Eq. 8 and Eq. 9, we consider the sigmoidal output of
the logits, instead of the softmax response, as we reduce the problem
into a two-class adversarial optimization. Therefore, for each data
point, only one output node will be attacked at a time. In practice,
since we do a mini-batch update, we take the average of the loss
functions and minimize the loss functions based on the mini-batch
gradients.

3. DATASETS AND EXPERIMENTAL RESULTS

3.1. Infrared VOC Dataset

Our first data set consists of infrared imaging signals of VOC gas
leaks in open air and clean air recordings. Specifically, we have two
classes of discrete-time signals corresponding to VOC gas leaks and
clean air, respectively. Each signal is a time series containing 50
samples corresponding to two seconds of recording with a sampling
rate of 25 measurements per second. The recorded value varies in
open air due to background temperature variations. When there is
no leak, the variance is much smaller compared to the VOC gas leak
in which case the gas molecules absorb the IR light. We gathered
about 30,000 VOC gas leak and 30,000 clean air data instances.

The dynamic range of the recorded signal values varies accord-
ing to the background temperature and the sensors are uncalibrated
in practice. Therefore, we used min-max normalization to scale sig-
nal data points between 0 and 1. The normalized signal x̂ is obtained
as follows

x̂[n] =
x[n]−min(x)

max(x)−min(x) , n = 0, 1, ... , 49 (10)

where max(x) and min(x) represent the maximum and minimum
values of a given infrared signal x, respectively.

An infrared image of the gas leak is shown in Fig. 1. The image
is obtained using an MWIR camera produced by FLIR systems [12].
VOC gas absorbs the infrared light appearing as a white cloud in the
black-hot mode infrared image as shown in Fig. 1.

We used the same architecture described in Sec. 2.1 for the reg-
ular CNN and Sec. 2.2 for the AddNet. We divided our data set
into three disjoint sets. The training data consists of 8,000 record-
ings of each class. Another set of 8,000 recordings of each class are
used as the validation data set. The rest of the data was reserved
for testing. We trained our networks using the RMSProp optimizer
algorithm [23]. We tested whether using dropout helps achieve bet-
ter results [24]. We used a dropout rate of 50%. As for the GAN
approach, our generator is a MLP with one hidden layer of size
256. The regular convolutional neural network and AddNet exhibit
comparable results. We obtained an accuracy of 99.8% for no-gas
data and 99.7% for gas-leak data for a regular ConvNet. AddNet
achieved a recognition rate of 98.9% for no-gas data and 99.3% for
gas-leak data.

In the second set of experiments, we assumed that we have an
unbalanced data set. In practice, we may not have VOC or ammonia
gas leak recordings as clean air. We trained the models with only
50 recordings of gas leak signals against 8,000 recordings of clean
air recordings. The test data set contains 14,000 recording instances
of VOC gas leaks and clean air recordings. Classification results are
also summarized in Table 1. AddNet produces the best results but the
discriminator of the GAN Network is also quite close to AddNet.
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Model
No-gas

Accuracy
Gas-leak
Accuracy

Total
Accuracy

ConvNet
(dropout 50%)

98.3% 95.8% 97.1%

ConvNet
no dropout

98.0% 94.2% 96.1%

AddNet
(dropout 50%)

98.2% 96.0% 97.1%

AddNet
(no dropout)

99.1% 97.3% 98.2%

Discriminator
of GAN

99.0% 97.1% 98.1%

Table 1: Accuracy results for infrared VOC data. Classifiers are
trained with only 50 VOC gas leak recordings vs 8000 clean air
recordings.

We also investigated pruning the weights in both AddNet and
ConvNet during inference. In this regard, we discard the magnitudes
of the smallest weights in magnitude while keeping their sign infor-
mation. We keep the bias coefficients and the coefficients of the last
layer intact. Results of different pruning rates are given in Table 2.
Apparently, in AddNet, we can discard the magnitude information
of the weights up to a high rate (67.4%) without severely degrading
performance. On the other hand, the magnitude information is quite
critical in the case of a regular ConvNet. These results clearly show
the advantages of AddNet, which not only occupies less space in the
memory of a mobile device but also consumes less energy because
it performs much fewer arithmetical operations during inference.

Model
accuracy

Weight Compression
Rate (smallest K%)

0 16.1 19.7 67.4 76.8 86.6

AddNet 98.9 97.2 97.9 98.0 97.1 61.3

ConvNet 99.8 67.4 − − − −

Table 2: Effect of compressing weights of both AddNet and Con-
vNet by discarding the magnitude of the smallest K% while keep-
ing the sign information. ConvNet cannot produce any reasonable
results after 16.1% compression rate. The compression rate is esti-
mated by allocating 32 bits to intact weight values and 1 bit for every
binarized weight factor.

3.2. Chemical Gas Sensor Array Drift Dataset

The second set of experiments is carried out using the publicly avail-
able chemical VOC gas sensor drift data set obtained by Vergara
et al. [8]. The data set was obtained by exposing an array of 16
different chemical sensors to 6 different types of gas mixtures (am-
monia, acetone, ethylene, ethanol, toluene and acetaldehyde) at dif-
ferent concentration levels. Each data record is a vector time series.
Vectors contain 8 feature parameters extracted from the sensor time
series signals during a gas release experiment, conducted over a pe-
riod of 3 years at UCSD. The feature parameters include maximal
resistance change and its normalized value during an experiment.
Other 6 parameters are maxima and minima of exponential moving

average (emaα) transform values with α set to 0.1, 0.01 and 0.001.
Since there are 16 sensors, a total of 16 × 8 = 128 feature values
are recorded per experiment. The data set is divided into 10 batches
ordered chronologically. Full details about the experiment and the
data set can be found in [8].

We carried out our classification tasks by training our neural net-
works for N = 5 batches and test on the successive batches. This is
identical to the sensor drift estimation approach given in [8]. As fea-
ture values have huge variances, we opted to use the signed square
root scalar-valued normalization of every feature value. We trained
a multi-layer perceptron (MLP) of two hidden layers, each of which
has 512 output units, and an output layer. We trained the network for
100 epochs using RMSProp optimizer [23]. We applied a dropout of
rate 20% and used a batch size of 128. In order to augment the data,
we added zero-mean Gaussian noise with standard deviation of 0.1.

A numerical comparison of the proposed methods to the SVM-
classifier ensemble used in [8] is given in Table 3. In general,
the AddNet-MLP, the MLP and the multi-class GAN discriminator
produce better sensor drift estimation results than the SVM based
method.

Batch ID
SVM

Classifier
Ensemble [8]

MLP
AddNet-

MLP
Disc.

of GAN

Batch 3 87.8 98.6 98.6 98.3
Batch 4 90.6 83.8 75.1 71.4
Batch 5 72.1 99.5 99.4 98.4
Batch 6 44.5 74.9 75.9 72.3
Batch 7 42.5 59.8 57.4 61.5
Batch 8 29.9 34.0 34.0 62.3
Batch 9 59.8 31.6 38.9 63.2
Batch 10 39.7 47.3 54.3 43.8

Table 3: Comparative accuracy (in %) results between the different
models when training on batches 1 and 2 and testing on batches 3-10

4. CONCLUSIONS

In this paper we described a cyber-physical system (CPS) for detect-
ing VOC gas leaks. The CPS is comprised of ordinary people or
first responders using small, low-cost sensors attached to their smart
phones or mobile devices. One major challenge is the sensor drift
problem in chemical sensors. Similarly, passive IR sensors also suf-
fer from infrared light reflections from the background in open air.
Therefore, thresholding the sensor outputs for VOC gas leak is not a
reliable option. To address the problem of sensor drift, we analyzed
the time-varying signal waveforms that sensors generate using neu-
ral networks. In addition to a regular deep neural network we use
the AddNet and the discriminator of a GAN as a classifier. AddNet
produces comparable results to a regular deep neural network with-
out the need to perform vector multiplication operations, which re-
quire energy consuming GPU processing. Furthermore, the weights
of AddNet are highly compressible, with no resultant degradation
in performance, suggesting the possibility of AddNet being used in
mobile devices forming such CPS, to deliver accuracy and frugality
at the same time. While it can be observed that the discriminator
of GAN also performs as well as the other two neural networks in
the two classification problems studied in this paper, it unfortunately
suffers from inordinate computational cost.
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