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Abstract—We propose a decentralized, sequential and adaptive
hypothesis test in sensor networks, which extends Chernoff’s test
to a decentralized setting. We show that the proposed test achieves
the same asymptotic optimality of the original one, minimizing
the expected cost required to reach a decision plus the expected
cost of making a wrong decision, when the observation cost per
unit time tends to zero. We also show that the proposed test is
parsimonious in terms of communications. Namely, in the regime
of vanishing observation cost per unit time, the expected number
of channel uses required by each sensor to complete the test
converges to four.

Index Terms—Hypothesis
Divergence, Sensor Networks

Testing, Chernoff Test, KL-

I. INTRODUCTION

Inference systems based on sensor networks are attractive
for a variety of reasons, including the increasingly low cost
of the sensors, the inherent redundancy provided by the dis-
tributed structure of the network, the embedded computational
capabilities of the sensors, and the availability of high-speed
wireless communication channels [1]. When the network is
used for detection, a set of hypotheses is tested based on the
observations collected at the remote sensors, and an action is
taken based on the results of these tests. Applications that fall
in this framework include intrusion and target detection, and
object classification and recognition [2]—[6].

One possible strategy to perform a statistical test using a
sensor network is to send all observations from the sensors to
a central processor, where the inference task is performed.
Alternatively, in a decentralized setting, some preliminary
processing can be performed at the sensors, and only a limited
amount of pre-processed data is communicated to the central
processor. This reduces the communication overhead, but may
lead to sub-optimal performance. A natural question is what
kind of local processing to perform at the sensor nodes, and
what fusion scheme to adopt at the central processor, in order
to reduce the communication burden while keeping a high
level of detection performance. In this work, we address this
question by proposing a decentralized statistical test in sensor
networks that is optimal in terms of detection performance,
while being parsimonious in terms of communication.

Hypothesis testing techniques are broadly classified as se-
quential or non-sequential tests, and adaptive or non-adaptive
tests. Our focus is on a sequential and adaptive test. In a
sequential test the number of observations needed to make
a decision is not fixed in advance, but depends on the specific
realization of the observed data. The test proceeds to collect
and process data until a decision with a prescribed level of
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reliability can be made, and an important performance figure
— in addition to the probability of correct decision — is the
average number of observations required to end the test. In
an adaptive test, the sensors’ probing actions are chosen on
the basis of the collected data in a causal manner. Hence, the
sensors learn from the past, and adapt their future probing
actions in a closed loop fashion.

Sequential tests were first introduced by Wald in [7]. One
of such tests, the Sequential Probability Ratio Test (SPRT),
was established to be asymptotically optimal for binary hy-
pothesis testing in [8]. The asymptotic optimality of SPRT
was extended to multi-hypothesis testing in [9], [10]. In the
case of sequential and adaptive tests, Chernoff provided a test
that is asymptotically optimal for binary hypotheses in his
landmark paper [11]. Namely, as the observation cost per unit
time vanishes, the test minimizes the sum of the expected cost
required to reach a decision and the expected cost of making
an incorrect decision. The asymptotic optimality of his test
was extended to multi-hypothesis testing in [12]. The work
in [13] discusses a specific application. The sequentiality and
adaptivity gains for different tests were further studied in [14]-
[16]. All of these results were established in a centralized
setting.

Various works discuss extensions to a decentralized set-
ting [17], [18]. Different techniques for combining the infor-
mation at the central processor are considered in [1], [19]-
[21]. In this context, asymptotically optimal sequential and
non-adaptive tests have been developed [22], [23]. All of these
results do not consider adaptive test, which are the main focus
of our work.

We propose a Decentralized version of Chernoff’s Test
(DCT) for sensor networks that retains the asymptotic opti-
mality of Chernoff’s original solution. We provide an upper
bound on the test performance in terms of expected risk. We
also provide a matching converse, showing that any sequential
test must achieve at least the same value of expected risk.
Our solution is efficient in terms of communication overhead,
compared to the trivial one where sensors blindly send all of
their observations to the fusion center. We show that, as the
observation cost per unit time vanishes, the expected number
of times each sensor node uses the communication channel
tends to four. Finally, discussing future work, we mention
possible extensions of the test to a fully distributed scenario
that does not require any fusion center operation.

The rest of the paper is organized as follows: Section
IT formulates the problem; Section III reviews the standard
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Chernoff test and Section IV introduces its decentralized ver-
sion; Section V informally describes the main idea behind the
decentralized test and Section VI presents rigorous theoretical
results. Section VII concludes the work.

II. PROBLEM FORMULATION

We consider a sensor network composed of L sensors
and one fusion center. The sensors and the fusion center
can communicate with each other, while no direct mode of
communication between the sensors is allowed. We consider
M hypotheses and assume that only one of these hypotheses
is true. At each time instant, each sensor can take a probing
action, selected from a fixed set of actions S = {u;}ien,
independently of all other sensors. For simplicity, we consider
the cardinality of set S to be M, however, all results hold for
the more general case as well, and this is not a limitation
of our work. For i,k € [M], given that hypothesis h; is
true and probing action uy is taken at sensor ¢, we let p;%
denote the probability distribution of the observation received
at the sensor ¢ following uy. Given the true hypothesis, the
observations received at any sensor are independent of the
observations received at other sensors. Conversely, there may
be a time-correlation between the observations at a given
sensor, induced by the fact that the probing actions are
observation-dependent.

Our performance measure — the risk — is analogous to the
one considered in [11]. Given hypothesis h; is true, the risk
R? of a sequential test § is defined as

R? = cEJ[N] + w; P (H # hy), (1)

where E?[N] is the conditional expected time required to reach
a decision, c is the observation cost per unit time, H is the
decision made, PS(H # h;) is the conditional probability of
wrong detection, and w; is the cost of wrong detection. It
follows that the risk corresponds to the sum of the expected
cost required to reach a decision and the expected cost of
making a wrong decision. Our objective is to design a test
that minimizes the risk for all ¢ € [M], as ¢ — 0.

We assume that observations corresponding to probing ac-
tions are instantly available at the sensors, the communication
link between the sensor and the fusion center is noise free, and
the information sent along this link is instantly available at the
receiving end. The KL-divergence between the hypotheses is
assumed to be strictly positive and finite for the entire action
set S, namely, for all ¢ € [L] and ¢,5,k; € [M], we have
0< D(pzzl ||P;L’;1) < oo. This assumption entails little loss
of generality, rules out trivialities, and is commonly adopted
in the literature, see e.g. [11], [13]. Also, for all £ € [L] and
i.j, k1 € [M], we assume Ellog(pys (V))/ log(pl% (Y)]? <
00.

III. STANDARD CHERNOFF TEST

We start considering sensor ¢ alone, with no interactions
with the fusion center or with other elements of the network.
Chernoff test for this isolated sensor is as follows [11]:

1) At step k — 1, a temporary decision is made, based on
the posterior probability of the hypotheses, given the
past observations and actions. Specifically, the temporary
decision is in favor of hiZ_l if

ij_y = argmax P(H* = hy|y; "
i€[M]

b Th, (@)

where H* is the true hypothesis, yéf_l = {y1.0, Y20 ---
Yk—1,). Yie is the observation at step ¢ and sensor £,
u;f*l = {ui¢,u2¢...ux—1,}, and u;, is the action at
step ¢ and sensor /.

2) At step k, the action wuy, ¢ is randomly chosen among the
elements of S, according to Probability Mass Function

(PMF) sz_l, where:

4
Qi:

= arg max
k—1 g

qeQ

ZQ(U)D(p%A,ng}L}z)’

min
JeMIN i} =

in which Q denotes the set of all the possible PMFs over
the alphabet [M].

3) For all i € [M], update the posterior probability P(H* =
hilys, uk).

4) The test stops at step IV if the worst case log-likelihood
ratio crosses a prescribed fixed threshold 7, i.e.,

pij\r,z (yévv ué\f)

N N
max;ix Pje(Yy Uy

where pix (3", uy’) is the posterior probability P(H* =
hix lyp' ,up' ) at sensor /. If the test stops at step N, then
the final decision is h;x . Otherwise, k < (k + 1), and
the procedures continues from 1).

IV. DECENTRALIZED CHERNOFF TEST

As the observation cost per unit time tends to zero, the
probability of wrong detection for the standard Chernoff test
tends to zero [11]. It follows that minimizing the risk in
(1) also corresponds to minimizing the expected number of
samples required to reach a decision. When one sample is
collected at each time step, minimizing the expected number
of samples is obviously the same as minimizing the expected
time for making a decision. However, this is not necessarily
true in a decentralized setting.

To further illustrate this point, consider first minimizing
the total expected number of samples collected by the L
sensors to reach a decision, and assume that the amount
of communication between sensors and fusion center is un-
constrained. A straightforward design, which we call Fusion
center based Chernoff Test (FCT), is as follows. The action
set S is modified to S’ with cardinality M L, where action
a; ¢ € S’ corresponds to the selection of u; € S and sensor
¢ € [M]. Then, a Chernoff test is performed on S’ at the fusion
center where the selection of a;, corresponds to activating
sensor ¢, and enabling the activated sensor to use the probing
action u; in order to collect the corresponding observation,
which is then delivered to the fusion center. It is not hard to
see that, as the probability of wrong detection tends to zero,
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the FCT minimizes the total expected number of collected
samples. The proof of this claim is similar to the one of the
optimality of Chernoff test in [11] and is thus omitted.

The FCT also minimizes the total number of probing actions
performed by the sensors. However, there is only one active
sensor, out of L, per unit time, and all observations are
communicated to the fusion center. Clearly, this is highly
inefficient in terms of both communication overhead and
decision time, and motivates introducing a different kind of
test.

Our proposed DCT operates in two phases. In the initial-
ization phase, assuming the probability distributions of the
observations received at the sensors are unknown to the fusion
center, each sensor ¢ sends a vector v, to the fusion center,
where the elements of v, are, for all ¢ € [M]

= i D(p¥,||p% ). 4
(W] rgleaéifgl;?zqw) (Pz,e |Pg,e) “)

u

The quantity v; , is a measure of the capability of sensor £ to
detect hypothesis h; (see [11] for a discussion), and plays a
critical role in designing the test. After receiving v, from all
sensors, the fusion center sends back to sensor ¢ a response
vector pg, whose M entries are the scalars

Pie = vi,e/f(i), )

where (i) = Zle v; ¢ is a measure of cumulative capability
of the network to detect hypothesis h;.

At this point, the test phase begins. All sensors perform a
Chernoff test, independently of each other, consisting of steps
1-4 described in Section III, with an important difference: any
time at sensor { we have

10g pi;*l,l (y?7 u?)

max;zix pj.e(yy, uy)
then a local decision in favor of h;. is communicated to
the fusion center. This is not a stopping criterion for the
test at sensor ¢, but only a triggering condition for the
communication between sensor ¢ and the fusion center. Thus,
sensor ¢ continues to run the test until the fusion center sends
a halting message.

The final decision H is made at the fusion center in favor
of hypothesis h; when the local decisions from all the sensors
are in favor of h;. After the final decision is made, the fusion
center sends a halting message to all the sensors.

Apart from the initialization phase, the proposed DCT only
requires the communication of an index € [M] during the
test phase. Thus, the communication resources required are
considerably less compared to the FCT, where continuous
random variables are sent over the network at each step.
In addition, our results show that, while maintaining the
same asymptotic optimality of Chernoff’s test as ¢ — 0,
the oscillations in the local decisions at the sensors vanish,
and each sensor tends to use the communication channel on
average only four times: two in the initialization phase, one to
communicate the local decision, and one to receive the halting
message.

> piz, e |logc, (6)

V. INFORMAL DISCUSSION

The key idea behind the proposed DCT is to determine the
individual capabilities of the sensors for detecting the hypothe-
ses. These capabilities — that depend on the true hypothesis
H* — are captured by the vector v,, whose i*" element is a
measure of sensor capability to detect the hypothesis h;. The
fusion center gathers this information, and utilizes it to control
the threshold at each sensor through the response vector p; ;.
At the fusion center, (i) is the measure of the cumulative
detection capability of the network for hypothesis h;, and p; ¢
denotes the fraction of this capability contributed by sensor ¢
for hypothesis h;. To minimize the expected time to reach
a decision, it is desirable to determine the threshold for each
sensor ¢ such that all the sensors require roughly the same time
to reach the triggering condition. This is analogous to dividing
the task of hypothesis testing among the sensors based on their
speed of performing the task, such that all the sensors finish
their share of the task at roughly the same time.

VI. THEORETICAL RESULTS

In the following theorems, NV indicates the time required to
make a decision, and C' indicates the communication overhead,
namely the number of times a sensor communicates with the
fusion center. The superscripts C and ¢ refer to the DCT and
to a generic decentralized sequential test, respectively.

Part (¢) of Theorem 1 states that the probability of making
a wrong decision can be made as small as desired by an
appropriate choice of c¢. Part (i) provides a bound on the
expected time to reach the final decision, and part (4i7) bounds
the risk as an immediate consequence of parts (i) and (ii).

Theorem 1: (Direct). The following statements hold:

() For all ¢ € (0,1) and for all ¢ € [M], given that hypothesis
h; is true, the probability that the DCT makes an incorrect
decision is bounded as

P¢(H # h;) < min{(M — 1)¢, 1}.
(i7) For all i € [M], given that hypothesis h; is true, the
expected decision time is
|log c|
I(i)
(#91) Combining (¢) and (4i), the risk defined in (1) verifies

ES[N] < (1+ o(1)) as ¢ — 0. (7)

¢ |log ¢|
YO
The following theorem provides a matching converse result.

Theorem 2: (Converse). For any sequential test 9, if for all
i € [M] the probability of missed detection satisfies

RS < (1+0(1)) as ¢ — 0. (8)

PS(H # h;) = O(c|loge|), asc— 0, )
then we have
S log ¢
BIN] = (1+o(1) 50, (10)
R > a+oanled o0 an

1(3)
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The following result is a consequence of Theorems 1 and 2.
It shows the asymptotic optimality of the DCT, and presents
the expected communication overhead, as ¢ — 0.

Theorem 3: For the DCT , for all i € [M] we have

1
BEIN] = (1+o(1) 5, (12)
RS = (1+o(1))6|}?§)c|, asc—0, (13)
lim E¢[C] = 4. (14)

c—0

To illustrate the proofs, we need the following additional
notation. We let yf = {Y1,0,Y2,¢- .. Yk,e}, Where y; ; is the

it" observation sample at sensor /; ui? = {u1e,u20.. . Uke},
where u; ¢ i the it action at sensor £. We also let Anj
be the set of sample paths where the fusion center makes
a decision in favor of h; at the nth step, and we indicate a
single sample path as {(u},y?)... (u},y})}. We indicate by
Ay, j ¢ the set of sample paths in A, ; corresponding to the
¢th sensor. Finally, we define

Uk, 0

N; ¢ = inf { Z log Pie <ykkf)

max;£iP; ¢ (yk,e

Proof of Theorem 1: The proof consists of two parts.
First, we write P (H # h;) as the probability of a countable
union of disjoint sets of sample paths. An upper bound on
this probability then follows from an upper bound on the
probability of these disjoint sets, in conjunction with the union
bound. Second, we upper bound E¢[N] by the sum of the
expected time required to reach the triggering condition (6)
for hypothesis h;, and the expected delay between the time of
triggering and the final decision is taken in favor of hypothesis
h; at the fusion center. We then show that these expectations
are the same at all sensors, so that (7) follows.

Consider the probability PS(H = h; ;). This is same as the
probability of the countable union of disjoint sets A,, ;. Thus,
for all j € [M]\{i}, we can write

B¢ (Any)
s

J b=
/ H pz é yk 2) dyl K(ul Z) ----- dyn,g(un,f)

Anjie =1

“(yk,e) dy1e(ure) - .. dyn,e(une)

Il
\

S

\/\G‘

L
o
H/ clit HPJ (Wk.0) dyr,e(uie) - dyn,e(une)
/=1

Anje
L

o H/
L

H H h; at sample n at ¢t sensor)
e_

H Py Wre) dyne(une) - .. dyn,e(tn,e)

"7[16 1

c
= Pj(H h; at sample n), (15)

where (a) follows from the definition of A, ;¢; (b) follows
from the definition of N; ¢; (c) follows from ZZL:l pie =1
Now, we can bound PS(H # h;) as follows

=2 P(H=h) =3 > Fi(An)
i j#in=1
oo
< Z ZCP]C»(H = h; at sample n)
j#in=1
= ¢P{(H = hyj) < (M 1),
J#i
where the first inequality of the chain follows by (15). This

proves part (i) of the theorem.
Let us now define

PS(H # hy)

(16)

R iy (Yr.e)
7(Ni¢) = sup {n Z log bt o < O}.
k=N, 41 XDy (Yk,e)

The triggering condition (6) at the ¢! sensor is satisfied for
all n > N, ¢ + 7(N; ), yielding

L
N< maX(NLg+T(N1g)+1)< max N,g—FZ ¢)+1.
=1
Taking the expectation of both sides, we get
ES[N] < E; {max NM]JrZE O+ a7

=1

We now bound the terms on the right-hand side of (17). As
each sensor performs a Chernoff test individually, using [11,
Lemma 2] we have, as ¢ — 0

Ei[Nie] = (14 o(1))[log ¢l /1(i),

which is independent of ¢. Additionally, from [24] we have,
asc—0

(18)

Var(N; ) = O([logc|).

Hence, as ¢ — 0, and for all £ € [L], we have

(Ei Nie— (1+0(1)) |1;)é)0| )
N o llog ¢\
— Var(Ni,) = O(Jlogel). (19)
The above yields,
B [1r<nza<XL i 4
_ Jlogd T losd
P14 o(1)) + B | N~ (14 o(1) TS
log cf 5 i loge
= 1+ o) + O Toge, 0)
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where the inequality follows by max, N; ¢ < > ,|N; |, and
the last equality follows by (19). The term E[r(N; /)] on the
right-hand side of (17) is finite because, for all 4,j € [M],
IE[log(pZ}‘Z (yk,g)/pﬁ/(yk,g))], KL divergence between the
two probability measure, is positive and finite [25]. Thus, com-
bining equation (17), (20) and the finiteness of E;[7(N; ¢)], as
c— 0 we get (7). [ |

The proofs of Theorem 2 and 3 are omitted for space
reasons, but they are available to the reader in [25].

VII. CONCLUSIONS AND FUTURE WORK

We proposed a DCT which is parsimonious in terms of
communications, and is asymptotically optimal in terms of
detection performance, when the observation cost per unit time
vanishes.

One major advantage of sensor networks is their robustness
to node failures and external attacks. From this viewpoint,
although we have presented our results assuming the pres-
ence of a fusion center, alternative solutions where all the
information processing is completely distributed and there
is no central unit, are certainly desirable. Our design could
also be implemented in a fully distributed architecture. The
key quantity I(i) computed in the initialization phase can
be obtained by gossip protocols using consensus techniques
[26]-[28]. Similarly, once all the sensors reach the triggering
condition (6), the final decision needs to be computed in a
distributed way.

Unlike the classic Chernoff test for isolated sensors, the
proposed DCT has two critical times: the time required to
reach the triggering condition in (6), and the delay between
the time of triggering and the final decision at the fusion center.
As in other sequential tests, unexpected long runs can occur
in our setting as well, when these two times significantly
deviate from their average. In the first case, one or more
“outlier” sensors can take unusually long time to reach the
local decision, and the remaining sensors would need to keep
sending their decisions to the fusion center until the outliers
have also reached their local decisions. This situation can
lead to unusually large communication overhead, and can be
triggered by even a single sensor. In the second case, when ¢
is not sufficiently close to 0, sensors can reach incorrect local
decisions which are likely to be different. This would also
result in additional communication overhead until the time all
sensors have agreed upon a single hypothesis. We plan to study
these effects in our future work.

REFERENCES

[11 P. K. Varshney, Distributed detection and data fusion. Springer Science
& Business Media, 2012.

[2] Y. Hu, M. Dong, K. Ota, A. Liu, and M. Guo, “Mobile target detection
in wireless sensor networks with adjustable sensing frequency,” IEEE
Systems Journal, vol. 10, no. 3, pp. 1160-1171, 2016.

[3] Y. Liu, M. Dong, K. Ota, and A. Liu, “Activetrust: secure and trustable
routing in wireless sensor networks,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 9, pp. 2013-2027, 2016.

[4] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus,
“Tracking a moving object with a binary sensor network,” in Proceedings
of the lIst international conference on Embedded networked sensor
systems. ACM, 2003, pp. 150-161.

[5]

[6]

[7]
[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

505

P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu, “Senseye: a multi-
tier camera sensor network,” in Proceedings of the 13th annual ACM
international conference on Multimedia. ACM, 2005, pp. 229-238.
S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang, “Design and analysis of
sensing scheduling algorithms under partial coverage for object detection
in sensor networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 3, pp. 334-350, 2007.

A. Wald, Sequential analysis. Courier Corporation, 1973.

A. Wald and J. Wolfowitz, “Optimum character of the sequential
probability ratio test,” The Annals of Mathematical Statistics, pp. 326—
339, 1948.

V. P. Dragalin, A. G. Tartakovsky, and V. V. Veeravalli, “Multihypothesis
sequential probability ratio tests. ii. accurate asymptotic expansions for
the expected sample size,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1366-1383, 2000.

V. Draglia, A. G. Tartakovsky, and V. V. Veeravalli, “Multihypothesis
sequential probability ratio tests. i. asymptotic optimality,” IEEE Trans-
actions on Information Theory, vol. 45, no. 7, pp. 2448-2461, 1999.
H. Chernoff, “Sequential design of experiments,” The Annals of Math-
ematical Statistics, vol. 30, no. 3, pp. 755-770, 1959.

S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing
for multihypothesis testing,” IEEE Transactions on Automatic Control,
vol. 58, no. 10, pp. 2451-2464, 2013.

M. Franceschetti, S. Marano, and V. Matta, “Chernoff test for strong-or-
weak radar models,” IEEE Transactions on Signal Processing, vol. 65,
no. 2, pp. 289-302, 2016.

M. Naghshvar and T. Javidi, “Sequentiality and adaptivity gains in
active hypothesis testing,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 5, pp. 768-782, 2013.

M. Naghshvar, T. Javidi et al., “Active sequential hypothesis testing,”
The Annals of Statistics, vol. 41, no. 6, pp. 2703-2738, 2013.

N. A. Goodman, P. R. Venkata, and M. A. Neifeld, “Adaptive waveform
design and sequential hypothesis testing for target recognition with
active sensors,” IEEE Journal of Selected Topics in Signal Processing,
vol. 1, no. 1, pp. 105-113, 2007.

R. S. Blum, S. A. Kassam, and H. V. Poor, “Distributed detection with
multiple sensors ii. advanced topics,” Proceedings of the IEEE, vol. 85,
no. 1, pp. 64-79, 1997.

R. Viswanathan and P. K. Varshney, “Distributed detection with multiple
sensors part i. fundamentals,” Proceedings of the IEEE, vol. 85, no. 1,
pp. 54-63, 1997.

Z. Chair and P. Varshney, “Optimal data fusion in multiple sensor
detection systems,” IEEE Transactions on Aerospace and Electronic
Systems, no. 1, pp. 98-101, 1986.

R. Jiang and B. Chen, “Fusion of censored decisions in wireless sensor
networks,” IEEE Transactions on Wireless Communications, vol. 4,
no. 6, pp. 2668-2673, 2005.

Y. Lin, B. Chen, and P. K. Varshney, “Decision fusion rules in multi-
hop wireless sensor networks,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 41, no. 2, pp. 475-488, 2005.

Y. Mei, “Asymptotic optimality theory for decentralized sequential hy-
pothesis testing in sensor networks,” IEEE Transactions on Information
Theory, vol. 54, no. 5, pp. 2072-2089, 2008.

Y. Wang and Y. Mei, “Asymptotic optimality theory for decentralized
sequential multihypothesis testing problems,” IEEE Transactions on
Information Theory, vol. 57, no. 10, pp. 7068-7083, 2011.

D. Siegmund, “The variance of one-sided stopping rules,” The Annals
of Mathematical Statistics, vol. 40, no. 3, pp. 1074-1077, 1969.

A. Rangi, M. Franceschetti, and S. Marano, “Distributed chernoff test:
optimal decision systems over networks,” www.arxiv.org, 2018.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Transactions on Networking (TON), vol. 14,
no. SI, pp. 2508-2530, 2006.

P. Braca, S. Marano, and V. Matta, “Enforcing consensus while moni-
toring the environment in wireless sensor networks,” IEEE Transactions
on Signal Processing, vol. 56, no. 7, pp. 3375-3380, 2008.

P. Braca, S. Marano, V. Matta, and P. Willett, “Asymptotic optimality
of running consensus in testing binary hypotheses,” IEEE Transactions
on Signal Processing, vol. 58, no. 2, pp. 814-825, 2010.



