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Abstract—Consider a memoryless relay channel, where the
relay is connected to the destination with an isolated bit pipe
of capacity C0. Let C(C0) denote the capacity of this channel
as a function of C0. What is the critical value of C0 such
that C(C0) first equals C(∞)? This is a long-standing open
problem posed by Cover and named “The Capacity of the Relay
Channel,” in Open Problems in Communication and Computation,
Springer-Verlag, 1987. In this paper, we answer this question
in the Gaussian case and show that C(C0) can not equal to
C(∞) unless C0 = ∞, regardless of the SNR of the Gaussian
channels. This result follows as a corollary to a new upper
bound we develop on the capacity of this channel. Instead of
“single-letterizing” expressions involving information measures
in a high-dimensional space as is typically done in converse
results in information theory, our proof directly quantifies the
tension between the pertinent n-letter forms. This is done by
translating the information tension problem to a problem in
high-dimensional geometry. As an intermediate result, we develop
an extension of the classical isoperimetric inequality on a high-
dimensional sphere, which can be of interest in its own right.

Index Terms—Relay channel, capacity, information inequality,
geometry, isoperimetric inequality, concentration of measure

I. PROBLEM SETUP AND MAIN RESULT

In 1987, Thomas M. Cover formulated a seemingly simple
question in Open Problems in Communication and Computa-
tion, Springer-Verlag [2], which he called “The Capacity of the
Relay Channel”. This problem, not much longer than a single
page in [2], remains open to date. His problem statement, taken
verbatim from [2] with only a few minor notation changes, is
as follows:

The Capacity of the Relay Channel

Consider the following seemingly simple discrete memoryless
relay channel: Here Z and Y are conditionally independent
and conditionally identically distributed given X , that is,
p(z, y|x) = p(z|x)p(y|x). Also, the channel from Z to Y does
not interfere with Y . A (2nR, n) code for this channel is a map
Xn : [1 : 2nR]→ Xn, a relay function fn : Zn → [1 : 2nC0 ]
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and a decoding function gn : Yn × [1 : 2nC0 ] → [1 : 2nR].
The probability of error is given by

P (n)
e = Pr(gn(Y n, fn(Zn)) 6= M),

where the message M is uniformly distributed over [1 : 2nR]
and

p(m, yn, zn) = 2−nR
n∏

i=1

p(yi|xi(m))

n∏

i=1

p(zi|xi(m)).

Let C(C0) be the supremum of achievable rates R for a given
C0, that is, the supremum of the rates R for which P (n)

e can
be made to tend to zero. We note the following facts:

1. C(0) = supp(x) I(X;Y ).
2. C(∞) = supp(x) I(X;Y,Z).
3. C(C0) is a nondecreasing function of C0.

What is the critical value of C0 such that C(C0) first equals
C(∞)?

A. Main Result

As is customary in network information theory, Cover
formulates the problem for discrete memoryless channels.
However, the same question clearly applies to channels with
continuous input and output alphabets, and in particular when
the channels from the source to the relay and the destination
are Gaussian, which is the canonical model for wireless relay
channels. More formally, assume

{
Z = X +W1

Y = X +W2

with the transmitted signal being constrained to average power
P , i.e.,

‖xn(m)‖2 ≤ nP, ∀m ∈ [1 : 2nR], (1)

and W1,W2 ∼ N (0, N) representing Gaussian noises that are
independent of each other and X . See Fig. 1.

For this Gaussian relay channel, it is easy to observe that1

C(∞) =
1

2
log

(
1 +

2P

N

)
.

1All logarithms throughout the paper are to base two.
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Fig. 1. Symmetric Gaussian relay channel.

Let C∗0 denote the threshold in Cover’s problem, i.e.

C∗0 := inf{C0 : C(C0) = C(∞)}. (2)

For the Gaussian model, there is no known scheme that allows
to achieve C(∞) at a finite C0 regardless of the parameters of
the channels, i.e. the signal to noise power ratio (SNR) P/N .
Therefore, from an achievability perspective we only have the
trivial bound

C∗0 ≤ ∞.
On the converse side, any upper bound on the capacity of
this channel can be used to establish a lower bound on C∗0 .
The only upper bound on the capacity of this channel (prior
to our work in [5]–[6] preceding the current paper) was the
celebrated cut-set bound developed by Cover and El Gamal in
1979 [10]. It yields the following lower bound on C∗0 :

C∗0 ≥
1

2
log

(
1 +

2P

N

)
− 1

2
log

(
1 +

P

N

)
.

Note that the cut-set bound does not preclude achieving C(∞)
at finite C0. Moreover, it is interesting to note that as P/N
decreases to zero, this lower bound decreases to zero. This
implies a sharp dichotomy between the current achievability
and converse results for this problem, which becomes even
more apparent in the limit when SNR goes to zero: the cut-
set bound does not preclude achieving C(∞) at diminishing
C0 if C(∞) itself is diminishing, while from an achievability
perspective we need C0 = ∞ regardless of the SNRs of the
channels (apart from the trivial case when P/N is exactly
equal to 0). The main result of our paper is to show that
C∗0 = ∞ regardless of the parameters of the problem,
answering Cover’s long-standing question for the canonical
Gaussian model.

Theorem 1.1: For the symmetric Gaussian relay channel
depicted in Fig. 1, C∗0 =∞.

This theorem follows immediately from the following the-
orem which establishes a new upper bound on the capacity of
this channel for any C0.

Theorem 1.2: For the symmetric Gaussian relay channel
depicted in Fig. 1, the capacity C(C0) satisfies

C(C0) ≤ 1

2
log

(
1 +

P

N

)

+ sup
θ∈[arcsin(2−C0 ),π2 ]

min

{ C0 + log sin θ,
min

ω∈(π2−θ,
π
2 ]
hθ(ω)

}

where

hθ(ω) :=
1

2
log

(
4sin2 ω

2 (P +N −Nsin2 ω
2 )sin 2θ

(P +N)(sin2θ − cos2 ω)

)
.

In Fig. 2 we plot this upper bound (label: New bound)
under three different SNR values of the Gaussian channels,
together with the cut-set bound [10] and an upper bound on
the capacity of this channel we have previously derived in [6]
(label: Old bound). For reference, we also provide the rate
achieved by a compress-and-forward relay strategy (label: C-
F), which employs Gaussian input distribution at the source
combined with Gaussian quantization and Wyner-Ziv binning
at the relay.2 The flat levels at which the cut-set bound and
our old bound saturate in these plots precisely correspond to
C(∞). Note that while these earlier bounds reach C(∞) at
finite C0 values, hence leading to finite lower bounds on C∗0 ,
our new bound remains bounded away from C(∞) in all the
three plots. Indeed, it can be formally shown that the new
bound remains bounded away from C(∞) (the flat level in
the plots) at any finite C0 value. We prove this formally in the
proof of Theorem 1.1.

While in this paper we restrict our attention to the symmetric
case, an assumption imposed by Cover in his original formula-
tion of the problem given above, our methods and results also
extend to the asymmetric case. In [8], we show that when
the relay’s and the destination’s observations are corrupted
by independent Gaussian noises of different variances, it is
still true that C∗0 = ∞ regardless of the channel parameters.
The extension to this asymmetric case heavily builds on the
methods and results we develop in this paper for the symmetric
case. Interestingly, the symmetric case, which Cover seems to
somewhat arbitrarily assume in his problem formulation, turns
out to be the canonical case for our proof technique. We also
provide a solution to Cover’s problem for binary symmetric
channels in [9] using a similar approach.

B. Technical Approach

There are two basic aspects in an information-theoretic
characterization of an operational problem: the so-called
achievability result and converse result. An achievability result
establishes what is possible in a given setting, while the
converse result distinguishes what is impossible. The ideal
situation is when these two results match, in which case an
information limit is born. The most famous example goes
back to Shannon and the inception of the field: Reliable
communication is possible over a noisy channel if, and only
if, the rate of transmission does not exceed the capacity of the
channel [18].

Over the last two decades, there has been significant
leap forward in developing achievable schemes for multi-
user problems, ranging from schemes based on interference
alignment and distributed MIMO, to lattice-based techniques,
to strategies inspired by network coding and linear determin-
istic models. This stands in fairly stark contrast to the set
of converse arguments in the information theorist’s toolkit.
Almost all converse arguments rely on a few fundamental tools

2In the low SNR regime, we can achieve higher rates using bursty compress-
and-forward [21], as demonstrated in the left-most plot of Fig. 2. Note that
since we still impose the Gaussian restriction on the input and quantization
distributions for bursty compress-forward, the resultant rates are not concave
in C0 and can be further improved by time sharing.
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Fig. 2. Upper bounds and achievable rates for the Gaussian relay channel.

that go back to the early years of the field: information mea-
sure calculus (e.g., chain rules, non-negativity of divergence),
Fano’s inequality, and the entropy power inequality. The
typical converse program follows from a clever application
of these tools to “single-letterize” an expression involving
information measures in a high-dimensional space (so called
n-letter forms), with the possible introduction of auxiliary
random variables as needed.

In this paper, we take a different approach. Instead of
focusing on single-letterizing pertinent n-letter forms, we aim
to directly quantify the tension between them. To do this, we
lift the problem to an even higher dimensional space and study
the geometry of the typical sequences generated independently
and identically (i.i.d.) from these n-dimensional distributions.
We establish non-trivial geometric properties satisfied by these
typical sequences, which are then translated to inequalities
satisfied by the original n-dimensional information measures.
This notion of “typicality”, connecting information measures
associated with a distribution to probabilities of long i.i.d.
sequences generated from this distribution, is a standard tool
in establishing achievability results in information theory but
to the best of our knowledge has been rarely used in proving
converse results in network information theory, with only a
few examples such as the work of Zhang [11] from 1988 and
our recent works [3]–[7].

To study the geometry of the typical sequences, we use
classical tools from high-dimensional geometry, such as the
isoperimetric inequality [14], measure concentration [12], and
rearrangement and symmetrization theory [13], [25]. We also
prove a new geometric result which can be regarded as an
extension of the classical isoperimetric inequality on a high-
dimensional sphere and can be of interest in its own right.
Note that the classical isoperimetric inequality on the sphere
states that among all sets on the sphere with a given measure
(area), the spherical cap has the smallest boundary or more
generally the smallest neighborhood [16]. As an intermediate
result in this paper, we show that the spherical cap not
only minimizes the measure of its neighborhood, but roughly
speaking, also minimizes the measure of its intersection with
the neighborhood of a randomly chosen point on the sphere.

The incorporation of geometric insight in information theory

is not new. Formulating the problem of determining the
communication capacity of channels as a problem in high-
dimensional geometry is indeed one of Shannon’s most im-
portant insights that has led to the conception of the field. In
his classical paper “Communication in the presence of noise”,
1949 [17], Shannon develops a geometric representation of
any point-to-point communication system, and then uses this
geometric representation to derive the capacity formula for
the AWGN channel. His converse proof is based on a sphere-
packing argument, which relies on the notion of sphere hard-
ening (i.e. measure concentration) in high-dimensional space.
Our approach resembles Shannon’s approach in [17] in that
the main argument in our proof is also a packing argument;
however, instead of packing smaller spheres in a larger sphere,
we pack (quantization) regions of some minimal measure (and
unknown shape) inside a spherical cap. The key ingredient in
our packing argument is the extended isoperimetric inequality
we develop, which guarantees that each of these quantization
regions has some minimal intersection with the spherical cap.
Also, note that we do not directly study the geometry of the
codewords as in [17], but rather use geometry in an indirect
way to solve an n-letter information tension problem.

C. Organization of The Paper
The remainder of the paper is organized as follows. In

Section II, we review some basic definitions and results for
high-dimensional spheres, and state our main geometric result
in Theorem 2.2, which can be regarded as an extension of the
classical isoperimetric inequality on the sphere. In Section III,
we introduce some typicality lemmas and combine them with
Theorem 2.2 to prove a key information inequality stated in
Theorem 3.1. The proofs of our main theorems, Theorem 1.1
and 1.2, are almost immediate given Theorem 3.1 and are
provided in Section IV.

Appendices A and B are then devoted to the proof of Theo-
rem 2.2 and the proofs of the typicality lemmas introduced in
Section III, respectively. The proofs of these typicality lemmas
require us to derive formulas and exponential characterizations
for the area/volume of various high dimensional sets including
balls, spherical caps, shell caps, and intersections of such sets.
We derive these characterizations in Appendix C.
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II. GEOMETRY OF HIGH-DIMENSIONAL SPHERES

In this section, we summarize some basic definitions and
results for high-dimensional spheres and present our main
geometric result which can be regarded as an extension of the
classical isoperimetric inequality on high-dimensional spheres.
This result is the key to proving the information inequality we
present in the next section, which in turn is the key to proving
Theorems 1.1 and 1.2.

A. Basic Results on High-Dimensional Spheres

We now summarize some basic results on high-dimensional
spheres that will be referred to later in the paper.
(i) Isoperimetric Inequality: Let Sm−1 ⊆ Rm denote the

(m− 1)-sphere of radius R, i.e.,

Sm−1 = {z ∈ Rm : ‖z‖ = R} ,

equipped with the rotation invariant (Haar) measure µ =
µm−1 that is normalized such that

µ(Sm−1) =
2π

m
2

Γ(m2 )
Rm−1,

i.e. the usual surface area. Let P(A) denote the probability
of a set or event A with respect to the corresponding Haar
probability measure, i.e. the normalized Haar measure
such that P(Sm−1) = 1. A spherical cap is defined as
a ball on Sm−1 in the geodesic metric (or simply the
angle) ∠(z,y) = arccos(〈z/R,y/R〉), i.e.,

Cap(z0, θ) =
{
z ∈ Sm−1 : ∠(z0, z) ≤ θ

}
.

See Fig. 3. We will often say that an arbitrary set A ⊆
Sm−1 has an effective angle θ if µ(A) = µ(C), where
C = Cap(z0, θ) for some arbitrary z0 ∈ Sm−1.

The following proposition is the so-called isoperimetric
inequality, which was first proved by Levy in 1951 [14].
(See also [16].) It states the intuitive fact that among all
sets on the sphere with a given measure, the spherical cap
has the smallest boundary, or more generally the smallest
neighborhood. This is formalized as follows:

Proposition 2.1: For any arbitrary set A ⊆ Sm−1 such
that µ(A) = µ(C), where C = Cap(z0, θ) ⊆ Sm−1 is a
spherical cap, it holds that

µ(At) ≥ µ(Ct), ∀t ≥ 0,

where At is the t-neighborhood of A, defined as

At =

{
z ∈ Sm−1 : min

z′∈A
∠(z, z′) ≤ t

}
,

and similarly

Ct =

{
z ∈ Sm−1 : min

z′∈C
∠(z, z′) ≤ t

}
= Cap(z0, θ+ t).

(ii) Measure Concentration: Measure concentration on the
sphere refers to the fact that most of the measure of
a high-dimensional sphere is concentrated around any
equator. The following elementary result capturing this
phenomenon will be used later in the paper when we
prove the extended isoperimetric inequality.

Proposition 2.2: Given any ε, δ > 0, there exists some
M(ε, δ) such that for any m ≥ M(ε, δ) and any z ∈
Sm−1,

P (∠(z,Y) ∈ [π/2− ε, π/2 + ε]) ≥ 1− δ, (3)

where Y ∈ Sm−1 is distributed according to the Haar
probability measure.
Proof: Let e1 = (R, 0, . . . , 0). Note for any z ∈ Sm−1,
the distribution of ∠(z,Y) is the same as the distribution
of ∠(e1,Y), since z can be written in the form z = Ue1,
where U is an orthogonal matrix, and the distribution
of Y is rotation-invariant. Therefore, without loss of
generality, we can assume z = e1. Since 〈e1/R,Y/R〉 =
Y1/R, we have E[〈e1/R,Y/R〉] = E[Y1]/R = 0; we
also have E[〈e1/R,Y/R〉2] = E[Y 2

1 ]/R2 = 1/m be-
cause E[Y 2

1 ] = · · · = E[Y 2
m] and E[Y 2

1 ]+ · · ·+E[Y 2
m] =

R2. Therefore by Chebyshev’s inequality, for any µ > 0,

P(|〈e1/R,Y/R〉| ≥ µ) ≤ 1

mµ2
.

Recalling that ∠(e1,Y) = arccos(〈e1/R,Y/R〉) and
noting that the R.H.S. of the above inequality can be
made arbitrarily small by choosing m to be sufficiently
large, we have proved the proposition.

(iii) Blowing-Up Lemma: The above measure concentration
result combined with the isoperimetric inequality imme-
diately yields the following result:

Proposition 2.3: Let A ⊆ Sm−1 be an arbitrary set and
C = Cap(z0, θ) ⊆ Sm−1 be a spherical cap such that
µ(A) = µ(C), i.e. A has an effective angle of θ. Then
for any ε > 0 and m sufficiently large,

P(Aπ
2−θ+ε) ≥ 1− ε. (4)

Proof: If A = Cap(z0, θ), P(Aπ
2−θ+ε) ≥ 1 − ε due

to Proposition 2.2. If A is not a spherical cap, then
P(Aπ

2−θ+ε) ≥ P (Cπ
2−θ+ε) where C = Cap(z0, θ), due

to the isoperimetric inequality in Proposition 2.1.



5

If we take A to be a half sphere, this result says that
most of the measure of the sphere is concentrated around
the boundary of this half-sphere, i.e. an equator, which
is the result in Proposition 2.2. However, due to the
isoperimetric inequality, Proposition 2.3 allows us to
make the stronger statement that the measure is concen-
trated around the boundary of any set with probability
1/2. While the elementary results we establish above
suggest that this concentration takes place at a polynomial
speed in the dimension m, it can be shown that the
measure concentrates around the boundary of any set with
probability 1/2 exponentially fast in the dimension m;
see [15].

B. Extended Isoperimetry on the Sphere and the Shell

An almost equivalent way to state the blowing-up lemma
in Proposition 2.3 is the following: Let A ⊆ Sm−1 be an
arbitrary set with effective angle θ > 0. Then for any ε > 0
and sufficiently large m,

P
(
µ
(
A ∩ Cap

(
Y,

π

2
− θ + ε

))
> 0
)
> 1− ε, (5)

where Y is distributed according to the normalized Haar
measure on Sm−1. In words, if we take a y uniformly at
random on the sphere and draw a spherical cap of angle
slightly larger than π

2 − θ around it, this cap will intersect
the set A with high probability. This statement is almost
equivalent to (4) since the y’s for which the intersection has
non-zero measure lie in the π

2 − θ + ε-neighborhood of A.
Note that similarly to Proposition 2.3, this statement would
trivially follow from measure concentration on the sphere
(Proposition 2.2) if A were known to be a spherical cap,
and it holds for any A due to the isoperimetric inequality
in Proposition 2.1. By building on the Riesz rearrangement
inequality [25], we prove the following extended result:

Theorem 2.1: Let A ⊆ Sm−1 be any arbitrary subset of
Sm−1 with effective angle θ > 0, and let V = µ(Cap(z0, θ)∩
Cap(y0, ω)) where z0,y0 ∈ Sm−1 with ∠(z0,y0) = π/2 and
θ + ω > π/2. (See Fig. 4.) Then for any ε > 0, there exists
an M(ε) such that for m > M(ε),

P (µ(A ∩ Cap(Y, ω + ε)) > (1− ε)V ) ≥ 1− ε,
where Y is a random vector on Sm−1 distributed according
to the normalized Haar measure.

If A itself is a cap, then the statement in Theorem 2.1
is straightforward and follows from the fact that Y with
high probability will be concentrated around the equator at
angle π/2 from the pole of A (Proposition 2.2). Therefore,
as m gets large for almost all Y, the intersection of the two
spherical caps will be given by V . See Fig. 4. The statement,
however, is stronger than this and holds for any arbitrary set
A, analogous to the isoperimetric inequality in (5). It states
that no matter what the set A is, if we take a random point
on the sphere and draw a cap of angle slightly larger than ω
centered at this point, for any ω > π/2 − θ, then with high
probability the intersection of the cap with the set A would be
at least as large as the intersection we would get if A were a

spherical cap. In this sense, Theorem 2.1 can be regarded as
an extension of the isoperimetric inequality in Proposition 2.1,
even though the latter can be stated purely geometrically and
implies the weaker probabilistic statement in (5), while our
result is inherently probabilistic.

Theorem 2.1 is in fact a special case of a more general
theorem that is true for subsets on a spherical shell. Let

Lm = {y ∈ Rm : RL ≤ ‖y‖ ≤ RU}
be this shell, where 0 ≤ RL ≤ RU . A cap on this shell with
pole z0 and angle θ can be defined as a ball in terms of the
angle:

∠(y, z) = arccos

(
y · z
‖y‖‖z‖

)

on the shell, i.e.,

ShellCap(z0, θ) = {z ∈ Lm : ∠(z0, z) ≤ θ} .
Let |A| denote the standard m-dimensional Euclidean measure
of a subset A ⊆ Lm. We will say that an arbitrary set A ⊆ Lm
has effective angle θ > 0 if its measure is equal to that of a
shell cap of angle θ, i.e. |A| = |ShellCap(z0, θ)| for some
z0 ∈ Lm. We will also say that a probability measure P for
subsets of Lm is rotationally invariant if P(A) = P(UA) for
any orthogonal matrix U , where UA denotes the image of the
set A under the linear transformation U . The following more
general theorem holds in the shell setting.

Theorem 2.2: Let A ⊆ Lm be any arbitrary subset of Lm
with effective angle θ > 0, and let V = |ShellCap(z0, θ) ∩
ShellCap(y0, ω)| where z0,y0 ∈ Lm with ∠(z0,y0) = π/2
and θ + ω > π/2. Then for any ε > 0, there exists an M(ε)
such that for m > M(ε),

P (|A ∩ ShellCap(Y, ω + ε)| > (1− ε)V ) ≥ 1− ε,
where Y is a random vector drawn from any rotationally
invariant probability measure on Lm.

We prove Theorems 2.1 and 2.2 in Appendix A. Note that
M(ε) in these two results depends only on ε—in particular it
does not depend on the radius parameters for Lm and Sm−1,
respectively, which means that these two results also apply
if the radius parameters depend on the dimension m. In the
following section, we will be mainly interested in the case
when the radius parameters scale in the square-root of the
dimension.

III. INFORMATION TENSION IN
A SYMMETRIC MARKOV CHAIN

In this section, we prove an inequality between information
measures in a certain type of Markov chain, which can be of
interest in its own right. The proof of this inequality builds
on Theorem 2.2 from the previous section. As we will see in
Section IV, the main theorems in this paper, i.e. Theorems 1.1
and 1.2, are almost immediate given this result. We now state
this result in the following theorem.

Theorem 3.1: Consider a Markov chain In − Zn − Xn −
Y n where Xn, Y n and Zn are n-length random vectors and
In = fn(Zn) is a deterministic mapping of Zn to a set of
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integers. Assume moreover that Zn and Y n are i.i.d. white
Gaussian vectors given Xn, i.e. Zn, Y n ∼ N (Xn, N In×n)
where In×n denotes the identity matrix, E[‖Xn‖2] = nP , and
H(In|Xn) = −n log sin θn for some θn ∈ [0, π/2]. Then the
following inequality holds for any n,

H(In|Y n)

≤ n · min
ω∈(π2−θn,

π
2 ]

1

2
log

(
4sin2 ω

2 (P +N −Nsin2 ω
2 )

(P +N)(sin2θn − cos2 ω)

)
.

(6)

Note that H(In|Y n) is trivially lower bounded by
H(In|Xn) for any Markov chain In − Zn − Xn − Y n.
The above theorem says that if In − Zn − Xn − Y n sat-
isfies the conditions of the theorem, then H(In|Y n) can
also be upper bounded in terms of H(In|Xn). In particu-
lar, it provides an upper bound on H(In|Y n) in terms of
θn = arcsin 2−

1
nH(In|Xn). It can be easily verified that this

upper bound on H(In|Y n) is decreasing with increasing θn,
or equivalently decreasing with decreasing H(In|Xn), and
implies that H(In|Y n)→ 0 as H(In|Xn)→ 0.

We next turn to proving Theorem 3.1. The reader who is
interested in seeing how this theorem leads to Theorems 1.1
and 1.2, without seeing its own proof, can jump to Sec-
tion IV. In order to prove Theorem 3.1, we will first establish
some properties that are satisfied with high probability by
long i.i.d. sequences generated from the source distribution
(In, Z

n, Xn, Y n) satisfying the assumptions of the theorem.
We now state and discuss these properties in Section III-A and
then use them to prove Theorem 3.1 in Section III-B.

A. Typicality Lemmas

Assume (In, Z
n, Xn, Y n) satisfy the assumptions of The-

orem 3.1. Consider the B-length i.i.d. sequence

{(In(b), Zn(b), Xn(b), Y n(b))}Bb=1, (7)

where for any b ∈ [1 : B], (In(b), Zn(b), Xn(b), Y n(b))
has the same distribution as (In, Z

n, Xn, Y n). For no-
tational convenience, in the sequel we write the B-
length sequence [Xn(1), Xn(2), . . . , Xn(B)] as X and

similarly define Y,Z and I; note that we have I =
[fn(Zn(1)), fn(Zn(2)), . . . , fn(Zn(B))] =: f(Z). Also let
Shell (c, r1, r2) denote the spherical shell

Shell (c, r1, r2) :=
{
a ∈ RnB : r1 ≤ ‖a− c‖ ≤ r2

}
,

and let Ball(c, r) denote the Euclidean ball

Ball (c, r) :=
{
a ∈ RnB : ‖a− c‖ ≤ r

}
.

We next state several properties that X,Y,Z, I satisfy with
high probability when B is large. The proofs of these proper-
ties are given in Appendix B.

Lemma 3.1: For any δ > 0 and B sufficiently large, we
have

Pr(E1) ≥ 1− δ
and Pr(E2) ≥ 1− δ,

where E1 and E2 are defined to be the following two events
respectively:
{
Z ∈ Shell

(
0,
√
nB(P +N − δ),

√
nB(P +N + δ)

)}
,

(8)

and
{
Y ∈ Shell

(
0,
√
nB(P +N − δ),

√
nB(P +N + δ)

)}
.

(9)

The proof of this lemma is a simple application of the law of
large numbers and is included in Appendix B-A. The lemma
simply states that when B is large, Y and Z will concentrate
in a thin nB-dimensional shell of radius

√
nB(P +N).

Lemma 3.2: Given any ε > 0 and a pair of (x, i), let
Sε(Z

n|x, i) be a set of z’s defined as3

Sε(Z
n|x, i) :=

{
z ∈ f−1(i) :

‖x− z‖ ∈ [
√
nB(N − ε),

√
nB(N + ε)] (10)

z ∈ Ball
(
0,
√
nB(P +N + ε)

)
(11)

2nB(log sinθn−ε) ≤ p(f(z)|x) ≤ 2nB(log sinθn+ε)
}

(12)

where θn = arcsin 2−
1
nH(In|Xn) as in Theorem 3.1. Then for

B sufficiently large, there exists a set Sε(Xn, In) of (x, i)
pairs, such that

Pr((X, I) ∈ Sε(Xn, In)) ≥ 1−√ε, (13)

and for any (x, i) ∈ Sε(Xn, In),

Pr(Z ∈ Sε(Zn|x, i)|x) ≥ 2nB(log sinθn−2ε). (14)

This lemma establishes the existence of a high probability
set Sε(Xn, In) of (x, i) sequences, and a conditional typi-
cal set Sε(Zn|x, i) for each (x, i) ∈ Sε(X

n, In) such that
z ∈ Sε(Zn|x, i) satisfies some natural properties. Note that all
properties in the definition of Sε(Zn|x, i) as well as (14) are

3Note that under this definition of Sε(Zn|x, i), if a pair (x, i) doesn’t
satisfy 2nB(log sinθn−ε) ≤ p(i|x) ≤ 2nB(log sinθn+ε), then the set
Sε(Zn|x, i) is empty because no z can satisfy the condition in (12).
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analogous to properties of strongly typical sets as stated in [21,
Ch. 2]. However, the notion of strong typicality does not apply
to the current case since Zn and Y n are continuous random
vectors and Xn may or may not be continuous. Nevertheless,
analogous properties can still be proved in this case; see the
proof of this lemma in Appendix B-B.

The following result has a slightly different flavor from
the previous two lemmas in that it is simply a corollary of
Theorem 2.2 from Section II.

Corollary 3.1: For any N, ε such that N > ε > 0, consider
the spherical shell in Rm

Shell
(
0,
√
m(N − ε),

√
m(N + ε)

)

=
{
y ∈ Rm :

√
m(N − ε) ≤ ‖y‖ ≤

√
m(N + ε)

}
.

Let A ⊆ Shell
(
0,
√
m(N − ε),

√
m(N + ε)

)
be an arbitrary

subset on this shell with volume

|A| ≥ 2
m
2 log 2πe(N+ε)sin2θ, (15)

where θ ∈ (0, π/2). For any ω ∈ (π/2 − θ, π/2] and m
sufficiently large, we have

Pr

(∣∣∣∣A ∩ Ball
(
Y, 2

√
m(N + ε)sin

ω + ε

2
+ 2
√
mε

)∣∣∣∣

≥ 2
m
2 [log(2πeN(sin2θ−cos2 ω))−ε]

)
≥ 1− ε, (16)

where Y is drawn from any rotationally invariant distribution
on the Shell

(
0,
√
m(N − ε),

√
m(N + ε)

)
.

This is a simple corollary of Theorem 2.2 when applied to
a specific shell and a subset A of this shell with measure
prescribed by (15). The prescribed measure means that A
has an effective angle (asymptotically) greater than or equal
to θ. The corollary follows by observing that due to the
triangle inequality (see also Fig. 5), for any y in the shell,
ShellCap(y, ω+ ε) considered in Theorem 2.2 is contained in
the Euclidean ball

Ball
(
y, 2
√
m(N + ε)sin

ω + ε

2
+ 2
√
mε

)
.

The lower bound on the intersection volume in (16) follows
from an explicit characterization of

V = |ShellCap(z0, θ) ∩ ShellCap(y0, ω)|

in Theorem 2.2, where ∠(z0,y0) = π/2 and θ + ω > π/2;
see Appendix C-B, and in particular Lemma C.2, for this
characterization. A formal proof of Corollary 3.1 is given in
Appendix B-C.

The above corollary together with Lemma 3.2 leads to the
following lemma.

Lemma 3.3: For any δ > 0 and B sufficiently large, we
have

Pr(E3) ≥ 1− δ,

  

p
m(N + ✏)

p
m(N � ✏)

! + ✏

2
p

m(N + ✏) sin
! + ✏

2

0 Y

Fig. 5. Euclidean ball contains the shell cap.

where E3 is defined to be the following event:
{∣∣∣∣∣f

−1(I) ∩ Ball
(
0,
√
nB(P +N + δ)

)

∩ Ball
(
Y,

√
nBN

(
4sin 2

ω

2
+ δ
)) ∣∣∣∣∣

≥ 2nB[ 12 log(2πeN(sin2θn−cos2 ω))−δ]

}
(17)

in which f−1(I) := {a ∈ RnB : f(a) = I} and ω ∈ (π/2 −
θn + δ, π/2].

This lemma can also be regarded as a typicality lemma as it
states a property satisfied by (I,Y) pair with high probability
when B is large. However, this is a non-trivial property. The
lemma follows by first fixing a pair (x, i) ∈ Sε(Xn, In) and
showing that the volume of the set Sε(Zn|x, i) defined in
Lemma 3.2 can be lower bounded by

2
nB
2 log(2πeNsin2θn),

up to the first order term in the exponent. Since by definition
Sε(Z

n|x, i) is a subset of the shell

Shell
(
x,
√
nB(N − ε),

√
nB(N + ε)

)
,

and given X = x, Y is isotropic Gaussian (therefore rotation-
ally invariant around x when constrained to this shell), we can
apply Corollary 3.1 to the above shell by choosing the set A
to be Sε(Zn|x, i). This allows us to conclude that

Pr

(∣∣∣∣∣Sε(Z
n|x, i) ∩ Ball

(
Y,

√
nBN

(
4sin 2

ω

2
+ ε

))∣∣∣∣∣

≥ 2nB[ 1
2 log(2πeN(sin2θn−cos2 ω))−ε]

∣∣∣∣∣X = x

)
≥ 1− ε.

(18)

The conclusion of Lemma 3.3 then follows by observing that
by definition

Sε(Z
n|x, i) ⊆ f−1(i) ∩ Ball

(
0,
√
nB(P +N + ε)

)
,

and removing the conditioning with respect to X in (18). The
formal proof of Lemma 3.3 is given in Appendix B-D.
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p
nB(P + N)

�

r
nBN4 sin2 !

2

Fig. 6. A spherical cap with angle φ = 2 arcsin

√
Nsin2 ω

2
P+N

.

B. Proof of Theorem 3.1

We are now ready to prove Theorem 3.1, which mainly
builds on Lemma 3.3. Consider a Y that with high proba-
bility lies in the ball with center 0 and approximate radius√
nB(P +N), and draw another ball around Y of approx-

imate radius
√
nBN4sin 2 ω

2 and intersect this ball with the
original ball; equivalently, this corresponds to considering a
cap around Y of angle φ on the original ball (see Fig. 6).
Lemma 3.3 asserts that this cap around Y will have a certain
minimal intersection volume with f−1(I). In other words,
there is a subset of this cap with certain minimal volume that is
mapped to I. This naturally lends itself to a packing argument:
the number of distinct I values plausible under a given Y can
be upper bounded by the ratio between the volume of the cap
around Y and the minimal intersection volume occupied for
each distinct I. This in turn leads to a bound on H(I|Y).

We now proceed with the formal proof. Consider the
indicator function

F = I(E1, E2, E3)

where I(·) is defined as

I(A) =

{
1 if A holds
0 otherwise,

and the events E1, E2 and E3 are as given by (8), (9) and (17)
respectively. Obviously, by the union bound, we have

Pr(F = 1) ≥ 1− 3δ

for any δ > 0 and B sufficiently large, and therefore

H(I|Y) ≤ H(I, F |Y)

= H(F |Y) +H(I|Y, F )

≤ H(I|Y, F ) + 1

= Pr(F = 1)H(I|Y, F = 1)

+ Pr(F = 0)H(I|Y, F = 0) + 1

≤ H(I|Y, F = 1) + 3δnBC0 + 1. (19)

To bound H(I|Y, F = 1), it suffices to bound H(I|Y =
y, F = 1) for any

y ∈ Shell
(
0,
√
nB(P +N − δ),

√
nB(P +N + δ)

)
.

(20)

For this, we apply a packing argument as follows. Con-
sider a ball centered at any y satisfying (20) and of radius√
nBN

(
4sin 2 ω

2 + δ
)
, i.e.,

Ball
(
y,

√
nBN

(
4sin 2

ω

2
+ δ
))

,

where ω satisfies

π/2− θn + δ < ω ≤ π/2.

We now use the following lemma (whose proof is included in
Appendix C-C) to upper bound the volume of the intersection
between this ball and Ball

(
0,
√
nB(P +N + δ)

)
, i.e.,

∣∣∣∣∣Ball
(
y,

√
nBN

(
4sin 2

ω

2
+ δ
))

∩ Ball
(
0,
√
nB(P +N + δ)

) ∣∣∣∣∣.

Lemma 3.4: Let Ball(c1,
√
mR1) and Ball(c2,

√
mR1) be

two balls in Rm with ‖c1 − c2‖ =
√
mD, where D satisfies

(
√
R1 −

√
R2)2 < D < (

√
R1 +

√
R2)2. Then for any ε > 0

and m sufficiently large, we have
∣∣∣Ball(c1,

√
mR1) ∩ Ball(c2,

√
mR1)

∣∣∣

≤ 2m( 1
2 log πeλ(R1,R2,D)+ε)

where

λ(R1, R2, D) :=
2R1D + 2R1R2 + 2DR2 −R2

1 −R2
2 −D2

2D
.

Using the above lemma, we have for B sufficiently large,
∣∣∣∣∣Ball

(
y,

√
nBN

(
4sin 2

ω

2
+ δ
))

∩ Ball
(
0,
√
nB(P +N + δ)

) ∣∣∣∣∣

≤ 2nB[ 1
2 log πeλ(P+N+δ,N(4sin2 ω2 +δ),‖y‖)+δ]

= 2nB[ 1
2 log πeλ(P+N,4Nsin2 ω2 ,P+N)+δ1]

= 2
nB

[
1
2 log

8πeNsin2 ω
2

(P+N−Nsin2 ω
2

)

P+N +δ1

]
,

for some δ1 → 0 as δ → 0, where the first inequality is an
immediate application of Lemma 3.4, the first equality follows
from the fact that

y ∈ Shell
(
0,
√
nB(P +N − δ),

√
nB(P +N + δ)

)

and the continuity of the function λ(R1, R2, D) in its ar-
guments, and the second equality follows from a simple
evaluation of λ

(
P +N, 4Nsin2 ω

2 , P +N
)
.
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On the other hand, the condition F = 1 (c.f. the definition
of E3 in Lemma 3.3) also ensures that

∣∣∣∣∣f
−1(I) ∩ Ball

(
0,
√
nB(P +N + δ

)

∩ Ball
(
y,

√
nBN

(
4sin 2

ω

2
+ δ
)) ∣∣∣∣∣

≥ 2nB[ 12 log(2πeN(sin2θn−cos2 ω))−δ].

Since f−1(i) are disjoint sets for different i, given F = 1 and
Y = y, the number of different possible values for I can be
upper bounded by the ratio between

∣∣∣∣∣Ball
(
y,

√
nBN

(
4sin 2

ω

2
+ δ
))

∩ Ball
(
0,
√
nB(P +N + δ)

) ∣∣∣∣∣

and
2nB[ 12 log(2πeN(sin2θn−cos2 ω))−δ],

which can be further upper bounded by

2
nB

[
1
2 log

8πeNsin2 ω
2

(P+N−Nsin2 ω
2

)

P+N − 1
2 log(2πeN(sin2θn−cos2 ω))+δ+δ1

]

= 2
nB

[
1
2 log

4sin2 ω
2

(P+N−Nsin2 ω
2

)

(P+N)(sin2θn−cos2 ω)
+δ2

]
,

where δ2 → 0 as δ → 0. This immediately implies the
following upper bound on H(I|Y = y, F = 1) and therefore
H(I|Y, F = 1),

H(I|Y, F = 1)

≤ nB
[

1

2
log

4sin2 ω
2 (P +N −Nsin2 ω

2 )

(P +N)(sin2θn − cos2 ω)
+ δ2

]
,

which combined with (19) yields that

H(I|Y) ≤ nB

[
1

2
log

4sin2 ω
2 (P +N −Nsin2 ω

2 )

(P +N)(sin2θn − cos2 ω)
+ δ2

]

+ 3δnBC0 + 1.

Dividing both sides of the above inequality by B and noting
that

H(I|Y) =

B∑

b=1

H(In(b)|Y n(b)) = BH(In|Y n),

we have

H(In|Y n)

≤ n
(

1

2
log

4sin2 ω
2 (P +N −Nsin2 ω

2 )

(P +N)(sin2θn − cos2 ω)
+ δ2 + 3δC0 +

1

nB

)
,

(21)

which holds for any

ω ∈ (π/2− θn + δ, π/2]. (22)

Since δ, δ2 and 1
nB in (21)–(22) can all be made arbitrarily

small by choosing B sufficiently large, we obtain

H(In|Y n) ≤ n
(

1

2
log

4sin2 ω
2 (P +N −Nsin2 ω

2 )

(P +N)(sin2θn − cos2 ω)

)
, (23)

for any ω ∈
(
π
2 − θn, π2

]
. This completes the proof of

Theorem 3.1.

IV. PROOFS OF THEOREMS 1.1 AND 1.2

We now prove Theorem 1.2 by using Theorem 3.1, and use
Theorem 1.2 to prove Theorem 1.1.

A. Proof of Theorem 1.2

Suppose a rate R is achievable. Then there exists a sequence
of (2nR, n) codes such that the average probability of error
P

(n)
e → 0 as n → ∞. Let the relay’s transmission be

denoted by In = fn(Zn). By standard information theoretic
arguments, for this sequence of codes we have

nR = H(M)

= I(M ;Y n, In) +H(M |Y n, In)

≤ I(Xn;Y n, In) + nµ (24)
= I(Xn;Y n) + I(Xn; In|Y n) + nµ

= I(Xn;Y n) +H(In|Y n)−H(In|Xn) + nµ (25)
≤ nI(XQ;YQ) +H(In|Y n)−H(In|Xn) + nµ (26)

≤ n

2
log

(
1 +

P

N

)
+H(In|Y n)−H(In|Xn) + nµ,

(27)

for any µ > 0 and n sufficiently large. In the above, (24)
follows from applying the data processing inequality to the
Markov chain M −Xn− (Y n, In) and Fano’s inequality, (25)
uses the fact that In − Xn − Y n form a Markov chain and
thus H(In|Xn, Y n) = H(In|Xn), (26) follows by defining
the time sharing random variable Q to be uniformly distributed
over [1 : n], and (27) follows because

E[X2
Q] =

1

2nR

2nR∑

m=1

1

n

n∑

i=1

x2
i (m)

=
1

n

1

2nR

2nR∑

m=1

‖xn(m)‖2

≤ P.

Given (27), the standard way to proceed would be to upper
bound the first entropy term by H(In|Y n) ≤ H(In) ≤ nC0

and lower bound the second entropy term H(In|Xn) simply
by 0. This would lead to the so-called multiple-access bound in
the well-known cut-set bound on the capacity of this channel
[10]. However, as we already point out in our previous works
[3]–[7], this leads to a loose bound since it does not capture
the inherent tension between how large the first entropy term
can be and how small the second one can be. Instead, we can
use Theorem 3.1 to more tightly upper bound the difference
H(In|Y n)−H(In|Xn) in (27).
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We start by verifying that the random variables In, Xn, Zn

and Y n associated with a code of blocklength n satisfy the
conditions in Theorem 3.1. It is trivial to observe that they
satisfy the required Markov chain condition and Zn and Y n

are i.i.d. Gaussian given Xn due to the channel structure. Also
assume that

E[‖Xn‖2] =
1

2nR

2nR∑

m=1

‖xn(m)‖2 = nP ′

with P ′ ≤ P , and assume that H(In|Xn) = −n log sin θn.
Then, applying Theorem 3.1 to the random variables associ-
ated with a code for the relay channel, we have

H(In|Y n)

≤ n · min
ω∈(π2−θn,

π
2 ]

1

2
log

(
4sin2 ω

2 (P ′ +N −Nsin2 ω
2 )

(P ′ +N)(sin2θn − cos2 ω)

)

≤ n · min
ω∈(π2−θn,

π
2 ]

1

2
log

(
4sin2 ω

2 (P +N −Nsin2 ω
2 )

(P +N)(sin2θn − cos2 ω)

)
,

and therefore,

H(In|Y n)−H(In|Xn) ≤ n · min
ω∈(π2−θn,

π
2 ]
hθn(ω) (28)

where hθn(ω) is defined as

hθn(ω) =
1

2
log

(
4sin2 ω

2 (P +N −Nsin2 ω
2 )sin 2θn

(P +N)(sin2θn − cos2 ω)

)
,

(29)

in which θn = arcsin 2−
1
nH(In|Xn) satisfies

θ0 := arcsin(2−C0) ≤ arcsin 2−
1
nH(In|Xn) = θn ≤

π

2
. (30)

Plugging (28) into (27), we conclude that for any achievable
rate R,

R ≤ 1

2
log

(
1 +

P

N

)
+ min
ω∈(π2−θn,

π
2 ]
hθn(ω) + µ. (31)

At the same time, for any achievable rate R, we also have

R ≤ 1

2
log

(
1 +

P

N

)
+ C0 + log sin θn + µ, (32)

which simply follows from (27) by upper bounding H(In|Y n)
with nC0 and plugging in the definition of θn. Therefore, if
a rate R is achievable, then for any µ > 0 and n sufficiently
large it should simultaneously satisfy both (31) and (32) for
some θn that satisfies the condition in (30). This concludes
the proof of the theorem.

B. Proof of Theorem 1.1

In order to show that Theorem 1.1 follows from Theo-
rem 1.2, consider the following bound on C(C0) implied by
Theorem 1.2:

C(C0) ≤ 1

2
log

(
1 +

P

N

)

+ sup
θ∈[arcsin(2−C0 ),π2 ]

min
ω∈(π2−θ,

π
2 ]
hθ(ω). (33)

With θ0 defined as arcsin(2−C0), we can upper bound the
right-hand side of (33) to obtain

C(C0) ≤ 1

2
log

(
1 +

P

N

)
+ sup
θ∈[θ0,π2 ]

min
ω∈(π2−θ0,

π
2 ]
hθ(ω).

Also because given any fixed ω ∈
(
π
2 − θ0,

π
2

]
, hθ(ω) ≤

hθ0(ω) for any θ ∈ [θ0, π/2], we further have

C(C0) ≤ 1

2
log

(
1 +

P

N

)
+ min
ω∈(π2−θ0,

π
2 ]
hθ0(ω). (34)

The significance of the function hθ0(ω) is that for any θ0 > 0,

hθ0

(π
2

)
=

1

2
log

(
2P +N

P +N

)
, (35)

and hθ0(ω) is increasing at ω = π
2 , or more precisely,

h′θ0

(π
2

)
=

P

(2P +N) ln 2
> 0.

Therefore, as long as θ0 > 0, which is the case when C0 is
finite, the minimization of hθ0(ω) with respect to ω in (34)
yields a value strictly smaller than hθ0

(
π
2

)
in (35). This would

allow us to conclude that the capacity C(C0) for any finite C0

is strictly smaller than 1
2 log

(
1 + 2P

N

)
.

We now formalize the above argument. Using the definition
of the derivative, one obtains

h′θ0

(π
2

)
= lim

∆→0

hθ0
(
π
2

)
− hθ0

(
π
2 −∆

)

∆
.

Therefore, there exists a sufficiently small ∆1 > 0 such that
0 < ∆1 < θ0 and

∣∣∣∣∣
hθ0
(
π
2

)
− hθ0

(
π
2 −∆1

)

∆1
− h′θ0

(π
2

)∣∣∣∣∣ ≤
h′θ0
(
π
2

)

2
.

For such ∆1 we have

hθ0

(π
2
−∆1

)
≤ hθ0

(π
2

)
− ∆1h

′
θ0

(
π
2

)

2

=
1

2
log

(
2P +N

P +N

)
− P∆1

2(2P +N) ln 2
,

which further implies that

min
ω∈(π2−θ0,

π
2 ]
hθ0(ω) ≤ 1

2
log

(
2P +N

P +N

)
− P∆1

2(2P +N) ln 2
.

(36)

Combining (34) and (36) we obtain that for any finite C0,
there exists some ∆1 > 0 such that

C(C0) ≤ 1

2
log

(
1 +

2P

N

)
− P∆1

2(2P +N) ln 2
. (37)

This proves Theorem 1.1.
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V. CONCLUSION

We have proved a new upper bound on the capacity of the
Gaussian relay channel and solved a problem posed by Cover
in [2], which has remained open since 1987. The derivation of
our upper bound focuses on directly characterizing the tension
between information measures of pertinent n-letter random
variables. In particular, this is done via the following steps:
• we first use “typicality” to translate the information

tension problem to a problem regarding the geometry of
the typical sets of these n-letter random variables;

• we then use results and tools in the (broadly defined) field
of concentration of measure, in particular rearrangement
theory, to establish non-trivial geometric properties for
these typical sets;

• we finally use these geometric properties to construct a
packing argument, which leads to an inequality between
the original n-letter information measures.

In contrast, the typical program for proving converses in
network information theory focuses on “single-letterizing” n-
letter information measures. This makes it difficult to invoke
tools from geometry and concentration of measure, which
in retrospect appear well-suited for quantifying information
tensions that lie at the hearth of network problems. Indeed,
to the best of our knowledge, the use of concentration of
measure in information theory has been mostly limited to
establishing strong converses for problems whose capacity is
already known (c.f., e.g. [26], [12]), and it has been rarely
used to derive first-order results, i.e. bounds on the capacity
of multi-user networks. Our proof suggests that measure
concentration, in particular geometric inequalities and their
functional counterparts, can have a bigger role to play in
network information theory. It would be interesting to better
understand this role and see if the program developed in this
paper can be used to prove converses for other open problems
in network information theory.

APPENDIX A
PROOFS OF EXTENDED ISOPERIMETRIC INEQUALITIES

In this appendix, we prove the extended isoperimetric in-
equalities on the sphere and on the shell, as stated in Theorems
2.1 and 2.2 respectively. In particular, we will first prove the
shell case and then show that the sphere case follows as a
corollary.

A. Preliminaries

We begin with some preliminaries that will be used in
the proofs. Our main tool for proving Theorems 2.1 and 2.2
is the symmetric decreasing rearrangement of functions on
the sphere, along with a version of the Riesz rearrangement
inequality on the sphere due to Baernstein and Taylor [25].

For any measurable function f : Sm−1 → R and pole z0, the
symmetric decreasing rearrangement of f about z0 is defined
to be the function f∗ : Sm−1 → R such that f∗(y) depends
only on the angle ∠(y, z0), is nonincreasing in ∠(y, z0), and
has super-level sets of the same Haar measure as f , i.e.

µ
(
{y : f∗(y) > d}

)
= µ

(
{y : f(y) > d}

)

for all d. The function f∗ is unique up to its value on sets of
measure zero.

One important special case is when the function f = 1A is
the characteristic function for a subset A. The function 1A is
just the function such that

1A(y) =

{
1 y ∈ A
0 otherwise.

In this case, 1∗A is equal to the characteristic function asso-
ciated with a spherical cap of the same size as A. In other
words, if A∗ is a spherical cap about the pole z0 such that
µ(A∗) = µ(A), then 1∗A = 1A∗ .

Lemma A.1 (Baernstein and Taylor [25]): Let K be a
nondecreasing bounded measurable function on the interval
[−1, 1]. Then for all functions f, g ∈ L1(Sm−1),

∫

Sm−1

(∫

Sm−1

f(z)K (〈z/R,y/R〉) dz
)
g(y)dy

≤
∫

Sm−1

(∫

Sm−1

f∗(z)K (〈z/R,y/R〉) dz
)
g∗(y)dy.

For any f ∈ L1(Sm−1), define

ψ(y) =

∫

Sm−1

f(z)K (〈z/R,y/R〉) dz

to be the inner integral in Lemma A.1. When applying
Lemma A.1 we will use test functions g that are characteristic
functions. Let g = 1C where C = {y : ψ(y) > d} for some
d (i.e. C is a super-level set of ψ). For a fixed measure µ(C),
the left-hand side of the inequality from Lemma A.1 will be
maximized by this choice of C. With this choice we have the
following equality:

∫

Sm−1

ψ(y)1C(y)dy =

∫

Sm−1

ψ∗(y)1∗C(y)dy

=

∫

C∗
ψ∗(y)dy.

This follows from the layer-cake decomposition for any non-
negative and measurable function ψ in that
∫

Sm−1

ψ(y)1C(y)dy =

∫

C

ψ(y)dy

=

∫

C

∫ ∞

0

1{ψ(y)>t}dtdy

=

∫ ∞

0

∫

C

1{ψ(y)>t}dydt

=

∫ ∞

0

∫

Sm−1

1{ψ(y)>max(t,d)}dydt

=

∫ ∞

0

∫

Sm−1

1{ψ∗(y)>max(t,d)}dydt

=

∫ ∞

0

∫

C∗
1{ψ∗(y)>t}dydt

=

∫

C∗
ψ∗(y)dy . (38)

Using this equality and our choice for g we will rewrite the
inequality from Lemma A.1 as

∫

C∗
ψ∗(y)dy ≤

∫

C∗
ψ̄(y)dy (39)
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where

ψ̄(y) =

∫

Sm−1

f∗(z)K (〈z/R,y/R〉) dz .

Note that both ψ∗(y) and ψ̄(y) are spherically symmetric.
More concretely, they both depend only on the angle ∠(y, z0),
so in an abuse of notation we will write ψ̄(α) and ψ∗(α) where
α = ∠(y, z0).

For convenience we will define a measure ν by

dν(φ) = Am−2(Rsinφ)Rdφ

where Am(R) denotes the Haar measure of the m-sphere with
radius R. We do this so that an integral like

∫

Sm−1

ψ∗dy =

∫ π

0

ψ∗(φ)Am−2(Rsinφ)Rdφ

can be expressed as ∫ π

0

ψ∗dν .

B. Proof of Theorem 2.2 (The Shell Case)

Let A ⊆ Lm be a given subset with effective angle θ. In
order to apply Lemma A.1, note that

|A ∩ ShellCap(y, ω + ε)| =
∫

Rm
1A∩ShellCap(y,ω+ε)(z) dz

=

∫

Sm−1

(∫ RU

RL

( r
R

)m−1

1A∩ShellCap(y,ω+ε)

( r
R
z
)
dr

)
dz

by using spherical coordinates, so that if we define

fA(z) =

∫ RU

RL

( r
R

)m−1

1A

( r
R
z
)
dr (40)

for A ⊆ Lm and

K(cosα) =

{
0 ω + ε < α ≤ π
1 0 ≤ α ≤ ω + ε

,

then

ψ(y) = |A ∩ ShellCap(y, ω + ε)|

=

∫

Sm−1

fA(z)K(〈z/R,y/R〉)dz .

Both ψ and fA can be thought of as functions on the sphere
Sm−1. Let ψ∗, f∗A be their respective symmetric decreasing
rearrangements about a pole z0. Define

ψ̄(y) =

∫

Sm−1

f∗A(z)K(〈z/R,y/R〉)dz

so that by definition we have (39).
The inequality (39) allows to compare ψ and ψ̄, but we

require a way to compare ψ with the function arising from a
shell cap of angle θ. Let

A′ = ShellCap(z0, θ)

and
¯̄ψ(y) = |A′ ∩ ShellCap(y, ω + ε)| .

We will show that∫

C∗
ψ̄(y)dy ≤

∫

C∗

¯̄ψ(y)dy (41)

so that along with (39),
∫

C∗
ψ∗(y)dy ≤

∫

C∗

¯̄ψ(y)dy . (42)

To show the inequality (41) note
∫

C∗
ψ̄(y)dy

=

∫

Sm−1

∫

Sm−1

1C∗(y)f∗A(z)K(〈z/R,y/R〉)dydz

=

∫

Sm−1

f∗A(z)

(∫

Sm−1

1C∗(y)K(〈z/R,y/R〉)dy
)
dz .

(43)

The term inside the parentheses is the measure of the in-
tersection between the cap C∗ centered at z0 and a cap
of angle ω + ε centered at z. This intersection measure is
a function only of the angle ∠(z0, z) and is nonincreasing
in that angle. Consider functions f : Sm−1 → R with
0 ≤ f(z) ≤

∫ RU
RL

(
r
R

)m−1
dr and

∫
f(z)dz = |A|. Both

f∗A and fA′ satisfy these properties and moreover fA′ is
extremal in the sense that fA′(z) =

∫ RU
RL

(
r
R

)m−1
dr when

∠(z0, z) ≤ θ and 0 when ∠(z0, z) > θ. Therefore (43) is
maximized by replacing f∗A with fA′ , and
∫

C∗
ψ̄(y)dy

=

∫

Sm−1

f∗A(z)

(∫

Sm−1

1C∗(y)K(〈z/R,y/R〉)dy
)
dz

≤
∫

Sm−1

fA′(z)

(∫

Sm−1

1C∗(y)K(〈z/R,y/R〉)dy
)
dz

=

∫

C∗

¯̄ψ(y)dy .

Equipped with (42), we are now ready to finish the proof of
Theorem 2.2. Proposition 2.2 implies that for any 0 < ε < 1,
there exists an M(ε) such that for m > M(ε) we have

P (∠(z0,Y) ∈ [π/2− ε, π/2 + ε]) ≥ 1− ε2

2
(44)

where Y is drawn from any rotationally invariant distribution
on Lm. Because the random quantity |A∩ShellCap(Y, ω+ε)|
depends only on the direction of Y, and not on its magnitude,
we can instead consider Y to be distributed according to the
Haar measure on Sm−1. The constant M(ε) is determined only
by the concentration of measure phenomenon cited above, and
it does not depend on any parameters in the problem other than
ε. From now on, let us restrict our attention to dimensions
m > M(ε). Due to the triangle inequality for the geodesic
metric, for y such that ∠(z0,y) ∈ [π/2− ε, π/2 + ε] we have

A′ ∩ ShellCap(y0, ω) ⊆ A′ ∩ ShellCap(y, ω + ε)

where y0 is such that ∠(z0,y0) = π/2. Therefore,
¯̄ψ(∠(z0,y)) = |A′ ∩ ShellCap(y, ω + ε)| ≥ V (45)

for all for y such that ∠(z0,y) ∈ [π/2− ε, π/2 + ε] and
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P
(

¯̄ψ(Y) ≥ V
)

= P (|A′ ∩ ShellCap(Y, ω + ε)| ≥ V )

≥ 1− ε2

2

≥ 1− ε

2
. (46)

To prove the theorem, we need to show that

P (ψ(Y) > (1− ε)V )

= P (|A ∩ ShellCap(Y, ω + ε)| > (1− ε)V )

≥ 1− ε (47)

for any arbitrary set A ⊆ Lm. Recall that by the definition of
a decreasing symmetric rearrangement, we have

P (ψ∗(Y) > d) = P (ψ(Y) > d)

for any threshold d and this implies

P (ψ∗(Y) ≤ (1− ε)V ) = P (ψ(Y) ≤ (1− ε)V ) . (48)

Therefore, the desired statement in (47) can be equivalently
written as

P (ψ∗(Y) ≤ (1− ε)V ) ≤ ε. (49)

Turning to proving (49), recall that by the definition of a
decreasing symmetric rearrangement, ψ∗(α) is nonincreasing
in the angle α = ∠(y, z0) over the interval 0 ≤ α ≤ π. Let
β be the smallest value such that ψ∗(β) = (1− ε)V , or more
explicitly,

β = inf{α : ψ∗(α) ≤ (1− ε)V } .

If β ≥ π/2+ε, then (49) would follow trivially from (44) and
the fact that ψ∗(α) would be greater than (1− ε)V for all 0 <
α < π/2 + ε. We will therefore assume that 0 < β < π/2 + ε.
It remains to show that even if this is the case, we have (49).

By the definition of β and the fact that ψ∗ is nonincreasing,

P (ψ∗(Y) ≤ (1− ε)V ) =
1

Am−1(R)

∫ π

β

dν

=
1

Am−1(R)

∫ max{β,π2−ε}

β

dν

+
1

Am−1(R)

∫ π
2 +ε

max{β,π2−ε}
dν

+
1

Am−1(R)

∫ π

π
2 +ε

dν . (50)

To bound the first and third terms of (50) note that

1

Am−1(R)

∫ max{β,π2−ε}

β

dν +
1

Am−1(R)

∫ π

π
2 +ε

dν ≤ ε2

2

(51)

≤ ε

2
(52)

as a consequence of (44). In order to bound the second term,
we establish the following chain of (in)equalities which will
be justified below.

1

Am−1(R)

∫ π

π
2 +ε

dν ≥ 1

(1− ε)V Am−1(R)

∫ π

π
2 +ε

(ψ∗ − ¯̄ψ)dν

(53)

=
1

(1− ε)V Am−1(R)

∫ π
2 +ε

0

( ¯̄ψ − ψ∗)dν
(54)

≥ 1

(1− ε)V Am−1(R)

∫ π
2 +ε

β

( ¯̄ψ − ψ∗)dν
(55)

≥ ε

(1− ε)Am−1(R)

∫ π
2 +ε

max{β,π2−ε}
dν

(56)

≥ ε

Am−1(R)

∫ π
2 +ε

max{β,π2−ε}
dν (57)

Combining (57) with (51) reveals that the second term in (50)
is also bounded by ε/2, therefore

P (ψ∗(Y) ≤ (1− ε)V )

must be bounded by ε, which proves Theorem 2.2.
The first inequality (53) is a consequence of the fact that

over the range of the integral, ψ∗ is less than or equal to
(1− ε)V and ¯̄ψ is non-negative. The equality in (54) follows
from ∫ π

0

ψ∗dν =

∫ π

0

¯̄ψdν ,

which is itself a consequence of (38) with C = Sm−1 and
∫

Sm−1

ψ(y)dy =

∫

Sm−1

∫

Sm−1

fA(z)K(〈z/R,y/R〉)dzdy

=

∫ ∫
K(〈y/R, z/R〉)dyfA(z)dz

=

∫
µ(Cap(y, ω))fA(z)dz

= µ(Cap(y, ω))|A|

=

∫
µ(Cap(y, ω))fA′(z)dz

=

∫ ∫
fA′(z)K(〈z/R,y/R〉)dzdy

=

∫

Sm−1

¯̄ψ(y)dy . (58)

Next we have (55) which is due to the rearrangement inequal-
ity (42) when C is the super-level set {y : ψ(y) > (1− ε)V }.
By the definition of a symmetric decreasing rearrangement,
µ({y : ψ(y) > (1 − ε)V }) = µ({y : ψ∗(y) > (1 − ε)V }),
and the set on the right-hand side is an open or closed spherical
cap of angle β. Thus C∗ is a spherical cap with angle β and
the rearrangement inequality (42) gives

∫ β

0

ψ∗dν ≤
∫ β

0

¯̄ψdν .

Finally, for the inequality (56), we first replace the lower
integral limit with max{β, π/2−ε} ≥ β. Then ¯̄ψ ≥ V over the
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range of the integral due to (45). Additionally, ψ∗ ≤ (1− ε)V
over the range of the integral, and the inequality follows.

C. Proof of Theorem 2.1 (The Sphere Case)

Given any A ⊆ Sm−1 with effective angle θ > 0, construct
a corresponding

Ashell =

{
y ∈ Lm : R

y

‖y‖ ∈ A
}
.

The set Ashell also has effective angle θ as a subset of Lm
since

|Ashell| =
∫

Rm
1Ashell(z) dz

=

∫

Sm−1

(∫ RU

RL

( r
R

)m−1

1Ashell

(rz
R

)
dr

)
dz

=

∫

Sm−1

1A(z)dz

∫ RU

RL

( r
R

)m−1

dr

= µ(A)

∫ RU

RL

( r
R

)m−1

dr

= µ(Cap(y, θ))

∫ RU

RL

( r
R

)m−1

dr

=

∫

Rm
1ShellCap(y,θ)(z) dz

= |ShellCap(y, θ)| .
For any ε > 0, we can apply Theorem 2.2 to find an M(ε)
such that for m > M(ε),

P (|Ashell ∩ ShellCap(Y, ω + ε)| > (1− ε)Vshell) ≥ 1− ε ,
(59)

where Vshell = |ShellCap(z0, θ) ∩ ShellCap(y0, ω)| with
∠(z0,y0) = π/2. Because the set ShellCap(y, ω) depends
only on the direction of y, and not on its magnitude, the
probability in (59) is the same whether we consider Y to
be uniformly distributed on Sm−1 or from some rotationally
invariant probability distribution on Lm. Using spherical co-
ordinates, we have

|Ashell ∩ ShellCap(y, ω + ε)|

=

∫

Rm
1Ashell∩ShellCap(y,ω+ε)(z) dz

=

∫

Sm−1

(∫ RU

RL

( r
R

)m−1

1Ashell∩ShellCap(y,ω+ε)

(rz
R

)
dr

)
dz

=

∫

Sm−1

1A∩Cap(y,ω+ε)(z)dz

∫ RU

RL

( r
R

)m−1

dr

= µ(A ∩ Cap(y, ω + ε))

∫ RU

RL

( r
R

)m−1

dr

and similarly,

|ShellCap(z0, θ) ∩ ShellCap(y0, ω)|

=

∫

Sm−1

1Cap(z0,θ)∩Cap(y0,ω)(z)dz

∫ RU

RL

( r
R

)m−1

dr

= µ(Cap(z0, θ) ∩ Cap(y0, ω))

∫ RU

RL

( r
R

)m−1

dr .

By dividing out the
∫ RU
RL

(
r
R

)m−1
dr term, (59) implies

P (µ(A ∩ Cap(Y, ω + ε)) > (1− ε)V ) ≥ 1− ε (60)

where V = µ(Cap(z0, θ) ∩ Cap(y0, ω)) as desired.

APPENDIX B
PROOFS OF TYPICALITY LEMMAS

Here we prove the typicality lemmas presented in Section
III-A.

A. Proof of Lemma 3.1

Recalling that Z = [Zn(1), Zn(2), . . . , Zn(B)], we have

‖Z‖2 =

B∑

b=1

‖Zn(b)‖2.

Therefore by the weak law of large numbers, for any δ > 0
and B sufficiently large we have

Pr
(∣∣∣∣

1

B
‖Z‖2 − E[‖Zn‖2]

∣∣∣∣ ≤ δ
)
≥ 1− δ,

i.e.,

Pr(‖Z‖2 ∈ [nB(P +N − δ), nB(P +N + δ)]) ≥ 1− δ,

since by assumption E[‖Xn‖2] = nP and thus E[‖Zn‖2] =
n(P + N). Because Z and Y are identically distributed, the
above relation also holds with ‖Z‖2 replaced by ‖Y‖2. This
completes the proof of the lemma.

B. Proof of Lemma 3.2

We now present the proof of Lemma 3.2. By the law of
large numbers and Lemma 3.1, we have for any ε > 0 and
sufficiently large B,

Pr((X,Z) ∈ Sε(Xn, Zn)) ≥ 1− ε

where

Sε(X
n, Zn)

:=
{

(x, z) : ‖x− z‖ ∈ [
√
nB(N − ε),

√
nB(N + ε)],

z ∈ Ball
(
0,
√
nB(P +N + ε)

)
,

2nB(log sinθn−ε) ≤ p(f(z)|x) ≤ 2nB(log sinθn+ε)
}
.

Note that in terms of Sε(Xn, Zn), the set Sε(Zn|x, i) in
Lemma 3.2 can be simply written as

Sε(Z
n|x, i) = {z : f(z) = i, (x, z) ∈ Sε(Xn, Zn)}.

Therefore, for B sufficiently large, we have

Pr(Z /∈ Sε(Zn|X, I)) = Pr(f(Z) = I, (X,Z) /∈ S(Xn, Zn))

≤ ε.
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On the other hand, defining Sε(X
n, In) := {(x, i) : Pr(Z ∈

Sε(Z
n|x, i)|x, i) ≥ 1−√ε}, we have

Pr(Z /∈ Sε(Zn|X, I))
=

∑

(x,i)∈Sε(Xn,In)

Pr(Z /∈ Sε(Zn|x, i)|x, i)p(x, i)

+
∑

(x,i)/∈Sε(Xn,In)

Pr(Z /∈ Sε(Zn|x, i)|x, i)p(x, i)

≥ √ε · Pr(Scε (X
n, In)).

Therefore, we have for B sufficiently large,

Pr(Scε (X
n, In)) ≤ ε√

ε
=
√
ε,

and thus
Pr(Sε(Xn, In)) ≥ 1−√ε,

which proves (13).
To prove (14), consider any (x, i) ∈ Sε(X

n, In). From
the definition of Sε(Xn, In), Pr(Sε(Zn|x, i)|x, i) ≥ 1 − √ε.
Therefore, Sε(Zn|x, i) must be nonempty, i.e., there exists at
least one z ∈ Sε(Z

n|x, i). Consider any z ∈ Sε(Z
n|x, i).

By the definition of Sε(Z
n|x, i), we have f(z) = i and

(x, z) ∈ Sε(Xn, Zn). Then, it follows from the definition of
Sε(X

n, Zn) that

2nB(log sinθn−ε) ≤ p(f(z)|x) = p(i|x) ≤ 2nB(log sinθn+ε).

This further implies that

Pr(Z ∈ Sε(Zn|x, i)|x)

=
Pr(f(Z) = i|x)Pr(Z ∈ Sε(Zn|x, i)|x, f(Z) = i)

Pr(f(Z) = i|Z ∈ Sε(Zn|x, i),x)

= p(i|x)Pr(Sε(Zn|x, i)|x, i)
≥ 2nB(log sinθn−ε)(1−√ε)
≥ 2nB(log sinθn−2ε)

for sufficiently large B, which concludes the proof of (14) and
Lemma 3.2.

C. Proof of Corollary 3.1

Let the effective angle of A be denoted by θ′, i.e.,

|A| = |ShellCap(z0, θ
′)|

for some

z0 ∈ Shell
(
0,
√
m(N − ε),

√
m(N + ε)

)
,

where

ShellCap(z0, θ
′)

:=

{
z ∈ Shell(0,

√
m(N − ε),

√
m(N + ε)) :

∠(z0, z) ≤ θ′
}
.

Then using the formula for the volume of a shell cap (c.f.
Appendix C-A and in particular (66)), we have

|A| ≤ 2
m
2 [log(2πe(N+ε)sin2θ′)+ε1]

for some ε1 → 0 as m→∞. Recall that by assumption

|A| ≥ 2
m
2 [log(2πe(N+ε)sin2θ)],

and we hence have

θ′ ≥ θ − ε2

for some ε2 → 0 as m→∞.
We now apply Theorem 2.2 to this specific shell and subset

A. First, using the formula of the intersection volume of two
shell caps (c.f. Appendices C-B and in particular Lemma C.2),
we have

|ShellCap(z0, θ
′) ∩ ShellCap(y0, ω)|

≥ 2
m
2 [log(2πeN(sin2θ′−cos2 ω))−ε3]

≥ 2
m
2 [log(2πeN(sin2θ−cos2 ω))−ε4]

for some ε3, ε4 → 0 as m → ∞, where ∠(z0,y0) = π/2
and θ′ + ω > π/2. Then Theorem 2.2 asserts that for any
ω ∈ (π/2− θ′, π/2] and m sufficiently large,

Pr
(
|A ∩ ShellCap(Y, ω + ε)|

≥ (1− ε)2m2 [log(2πeN(sin2θ−cos2 ω))−ε4]
)
≥ 1− ε,

where Y is a random vector drawn from any rotationally in-
variant distribution on the shell. Since π/2−θ′ ≤ π/2−θ+ε2,
the condition ω ∈ (π/2−θ′, π/2] in the above can be replaced
with the weaker condition ω ∈ (π/2 − θ + ε2, π/2]. Now
by choosing m sufficiently large we can make ε2, ε4 and
2
m log(1− ε) as small as desired, so we have

Pr
(
|A ∩ ShellCap(Y, ω + ε)| ≥ 2

m
2 [log(2πeN(sin2θ−cos2 ω))−ε]

)

≥ 1− ε,

for any ω ∈ (π/2 − θ, π/2] and m sufficiently large. Finally,
observe that for any y in the considered shell,

ShellCap(y, ω + ε)

⊆ Ball
(
y, 2
√
m(N + ε)sin

ω + ε

2
+ 2
√
mε

)
.

This simply follows from the geometry illustrated in Fig. 5
combined with the triangle inequality and the fact that the
thickness of the shell can be trivially bounded by 2

√
mε.

Therefore, we can conclude that

Pr

(∣∣∣∣A ∩ Ball
(
Y, 2

√
m(N + ε)sin

ω + ε

2
+ 2
√
mε

)∣∣∣∣

≥ 2
m
2 [log(2πeN(sin2θ−cos2 ω))−ε]

)
≥ 1− ε

for any ω ∈ (π/2 − θ, π/2] and m sufficiently large. This
completes the proof of Corollary 3.1.
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D. Proof of Lemma 3.3

Fix ε > 0 and consider a pair (x, i) ∈ Sε(Xn, In). From
Lemma 3.2, we have

Pr(Z ∈ Sε(Zn|x, i)|x) ≥ 2nB(log sinθn−2ε),

for B sufficiently large. We also have

Pr(Z ∈ Sε(Zn|x, i)|x) ≤ |Sε(Zn|x, i)| sup
z∈Sε(Zn|x,i)

p(z|x)

≤ |Sε(Zn|x, i)|2−nB( 1
2 log 2πeN−ε1),

for some ε1 → 0 as ε → 0, where p(z|x) refers to the
conditional density of z given x. The second inequality in
the above follows because for any z ∈ Sε(Zn|x, i), we have

‖x− z‖ ∈ [
√
nB(N − ε),

√
nB(N + ε)],

and therefore using the fact that Z is Gaussian distributed
given x, we have for any z ∈ Sε(Zn|x, i),

p(z|x) =
1

(2πN)
nB
2

e−
||z−x||2

2N

≤ 2−
nB(N−ε)

2N log e−nB2 log 2πN

= 2−nB( 1
2 log 2πeN−ε1)

where ε1 → 0 as ε → 0. Therefore, for B sufficiently large,
the volume of Sε(Zn|x, i) can be lower bounded by

|Sε(Zn|x, i)| ≥ 2nB( 1
2 log(2πeNsin2θn)−2ε−ε1).

Let θ′n be defined such that

log 2πe(N + ε)sin2θ′n =
1

2
log(2πeNsin2θn)− 2ε− ε1.

Obviously, we have θ′n ≤ θn and θ′n → θn as ε → 0. Noting
that Sε(Zn|x, i) is a subset of

Shell
(
x,
√
nB(N − ε),

√
nB(N + ε)

)
,

by Corollary 3.1, for any ω ∈ (π/2− θ′n, π/2] we have

Pr

(∣∣∣∣Sε(Zn|x, i) ∩ Ball
(
U,

√
nBN

(
4sin2ω

2
+ ε2

))∣∣∣∣

≥ 2nB[ 1
2 log(2πeN(sin2θn−cos2 ω))−ε3]

)
≥ 1− ε (61)

for any U drawn from a rotationally invariant distribution
around x on Shell

(
x,
√
nB(N − ε),

√
nB(N + ε)

)
, where

ε2 is defined such that
√
nBN

(
4sin2ω

2
+ ε2

)
= 2
√
nB(N + ε)sin

ω + ε

2
+ 2
√
mε,

and ε3 is defined such that
1

2
log(2πeN(sin2θn − cos2 ω))− ε3

=
1

2
log(2πeN(sin2θ′n − cos2 ω))− ε,

and both ε2 and ε3 tend to zero as ε goes to zero.
We now translate the bound (61) on the probability involv-

ing a rotationally invariantly distributed U on the shell to a

bound on the probability involving Y. Define Y(x,i) to be the
following set of y:
{
y :

∣∣∣∣Sε(Zn|x, i) ∩ Ball
(
y,

√
nBN

(
4sin2ω

2
+ ε2

))∣∣∣∣

≥ 2nB[ 1
2 log(2πeN(sin2θn−cos2 ω))−ε3]

}
.

Then we have for (x, i) ∈ Sε(Xn, In) and B sufficiently large,

Pr(Y ∈ Y(x,i)|x)

≥ Pr
(
Y ∈ Y(x,i),

Y ∈ Shell
(
x,
√
nB(N − ε),

√
nB(N + ε)

) ∣∣∣x
)

= Pr
(
Y ∈ Shell

(
x,
√
nB(N − ε),

√
nB(N + ε)

) ∣∣∣x
)

× Pr
(
Y ∈ Y(x,i)

∣∣∣x,

Y ∈ Shell
(
x,
√
nB(N − ε),

√
nB(N + ε)

))

≥ (1− ε)Pr
(
Y ∈ Y(x,i)

∣∣∣x,

Y ∈ Shell
(
x,
√
nB(N − ε),

√
nB(N + ε)

))

≥ (1− ε)2,

where the second inequality simply follows by applying the
law of large numbers in a manner similar to the proof of
Lemma 3.1, and the last inequality follows from combining
(61) and the fact that if x is known and Y is restricted to
Shell

(
x,
√
nB(N − ε),

√
nB(N + ε)

)
then Y is rotationally

invariant around x on this shell.
Since by definition Sε(Z

n|x, i) is a subset of f−1(i) ∩
Ball

(
0,
√
nB(P +N + ε)

)
, we have

∣∣∣∣∣f
−1(i) ∩ Ball

(
0,
√
nB(P +N + ε)

)

∩ Ball
(
y,

√
nBN

(
4sin2ω

2
+ ε2

)) ∣∣∣∣∣

≥ 2nB[ 1
2 log(2πeN(sin2θn−cos2 ω))−ε3]

for any y ∈ Y(x,i), and therefore for B sufficiently large,

Pr

(∣∣∣∣∣f
−1(I) ∩ Ball

(
0,
√
nB(P +N + ε)

)

∩ Ball
(
Y,

√
nBN

(
4sin2ω

2
+ ε2

)) ∣∣∣∣∣

≥ 2nB[ 1
2 log(2πeN(sin2θn−cos2 ω))−ε3]

)

≥
∑

(x,i)

Pr(Y ∈ Y(x,i)|x)p(x, i)

≥
∑

(x,i)∈Sε(Xn,In)

Pr(Y ∈ Y(x,i)|x)p(x, i)

≥ (1− ε)2(1−√ε)
≥ 1− 4

√
ε,
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for any ω ∈ (π/2 − θ′n, π/2]. Finally, choosing δ =
max{4√ε, ε2, ε3, θn−θ′n} concludes the proof of Lemma 3.3.
Note that by choosing B sufficiently large, ε and therefore δ
can be made arbitrarily small.

APPENDIX C
MISCELLANEOUS RESULTS IN HIGH-DIMENSIONAL

GEOMETRY

This appendix derives some miscellaneous results in high-
dimensional geometry, including the surface area (volume)
of a spherical (shell) cap, the surface area (volume) of the
intersection of two spherical (shell) caps, and the volume of
the intersection of two balls.

A. Surface Area (Volume) of A Spherical (Shell) Cap

We first derive the surface area (volume) formula for a
spherical (shell) cap. See also [23].

Let C ⊆ Sm−1 be a spherical cap with angle θ on the
(m − 1)-sphere of radius R =

√
mN . The area µ(C) of C

can be written as

µ(C) =

∫ θ

0

Am−2(Rsin ρ)Rdρ

where Am−2(Rsin ρ) is the total surface area of the (m− 2)-
sphere of radius Rsin ρ. Plugging in the expression for the
surface area of an (m− 2)-sphere leads to

µ(C) =
2π

m−1
2

Γ
(
m−1

2

) (mN)
m−2

2

∫ θ

0

sinm−2ρ dρ.

We now characterize the exponent of µ(C). First, by Stir-

ling’s approximation, 2π
m−1

2

Γ(m−1
2 )

(mN)
m−2

2 in the above can be
bounded as

2
m
2 [log(2πeN)−ε1] ≤ 2π

m−1
2

Γ
(
m−1

2

) (mN)
m−2

2 ≤ 2
m
2 [log(2πeN)+ε1]

(62)

for some ε1 → 0 as m → ∞. Also for m sufficiently large,
we have

∫ θ

0

sinm−2ρdρ =

∫ θ

0

2
m−2

2 log sin2ρdρ

≥
∫ θ

θ− 1
m

2
m−2

2 log sin2ρdρ

≥ 1

m
2
m−2

2 log sin2(θ− 1
m )

≥ 2
m
2 (log sin2θ−ε2)

and
∫ θ

0

sinm−2ρdρ =

∫ θ

0

2
m−2

2 log sin2ρdρ

≤ θ · 2m−2
2 log sin2θ

≤ 2
m
2 (log sin2θ+ε2)

for some ε2 → 0 as m → ∞. Therefore, the area µ(C) can
be bounded as

2
m
2 [log(2πeNsin2θ)−ε] ≤ µ(C) ≤ 2

m
2 [log(2πeNsin2θ)+ε] (63)

for some ε→ 0 as m→∞.
Now suppose that C = ShellCap(z0, θ) is a shell cap on

Shell
(
0,
√
m(N − δ),

√
m(N + δ)

)

where ‖z0‖ =
√
m(N − δ). Let RL =

√
m(N − δ), RU =√

m(N + δ) and define Sm−1
RL

to be the m−1 sphere of radius
RL with Haar measure µRL . We use spherical coordinates to
integrate over the surface areas of the individual caps that
make up the shell cap,

|C| =
∫

Rm
1ShellCap(z0,θ) dz

=

∫

Sm−1
RL

(∫ RU

RL

(
r

RL

)m−1

1ShellCap(z0,θ)

(
r

RL
z

)
dr

)
dz

=

∫

Sm−1
RL

1Cap(z0,θ)(z)dz

∫ RU

RL

(
r

RL

)m−1

dr

= µRL(Cap(z0, θ))

∫ RU

RL

(
r

RL

)m−1

dr (64)

where the integral term on the right is bounded as
∫ RU

RL

(
r

RL

)m−1

dr ≥
(√

m(N + δ)−
√
m(N − δ)

)
.

(65)

Together with (64), (63) and (65) imply

|C| ≥ 2
m
2 [log(2πe(N−δ)sin2θ)−ε]

for sufficiently large m. In a similar way,

|C| ≤ 2
m
2 [log(2πe(N+δ)sin2θ)+ε] ,

and therefore

2
m
2 [log(2πe(N−δ)sin2θ)−ε] ≤ |C| ≤ 2

m
2 [log(2πe(N+δ)sin2θ)+ε]

(66)

where ε→ 0 as m→∞.

B. Surface Area (Volume) of the Intersection of Two Spherical
(Shell) Caps

Recall Sm−1 ⊂ Rm is the (m − 1)-sphere of radius R =√
mN . Let

Ci = Cap(vi, θi) = {v ∈ Sm−1 : ∠(v,vi) ≤ θi}, i = 1, 2

be two spherical caps on Sm−1 such that ∠(v1,v2) = π
2 ,

θi ≤ π
2 , and θ1 + θ2 >

π
2 . We have the following lemma that

characterizes the intersection measure µ(C1∩C2) of these two
caps.

Lemma C.1: For any ε > 0 there exists an M(ε) such that
for m > M(ε),

µ(C1 ∩ C2) ≤ 2
m
2 [log(2πeN(sin2θ1−cos2 θ2))+ε]
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and

µ(C1 ∩ C2) ≥ 2
m
2 [log(2πeN(sin2θ1−cos2 θ2))−ε].

Proof: To prove this lemma, we will first derive the
surface area formula for the intersection of the above two caps
(see also [24]), and then characterize the exponent of this area.

Deriving the Surface Area Formula: Consider the points
v ∈ Sm−1 such that

∠(v1,v) = θ1

and
∠(v2,v) = θ2.

These points satisfy the linear relations

〈v1,v〉 = R2 cos θ1

and
〈v2,v〉 = R2 cos θ2,

and therefore all such v lie in the unique m− 1 dimensional
subspace H defined by

〈
v1

cos θ1
− v2

cos θ2
,v

〉
= 0.

The angle between the hyperplane H and the vector v2 is

φ =
π

2
− arccos

 1

R
√

1
cos2 θ1

+ 1
cos2 θ2

〈
v1

cos θ1
− v2

cos θ2
,v2

〉
and because v1 and v2 are orthogonal and ‖v2‖ = R,

φ =
π

2
− arccos


 1

cos θ2

√
1

cos2 θ1
+ 1

cos2 θ2




= arctan

(
cos θ1

cos θ2

)
.

The approach will be as follows. Divide the intersection
C1 ∩C2 into two parts C+ and C− that are on either side of
the hyperplane H . More concretely,

C+ =

{
v ∈ C1 ∩ C2 :

〈
v,

v1

cos θ1
− v2

cos θ2

〉
≥ 0

}

and

C− =

{
v ∈ C1 ∩ C2 :

〈
v,

v1

cos θ1
− v2

cos θ2

〉
< 0

}
.

Each part C+ and C− can be written as a union of lower
dimensional spherical caps. We will find the measure of each
part by integrating the measures of these lower dimensional
caps.

The measure of the cap C2 can be expressed as the integral

µ(C2) =

∫ θ2

0

Am−2(Rsin ρ)Rdρ

where Am−2(Rsin ρ) is the surface area of the (m−2)-sphere
with radius Rsin ρ. If we consider a single (m− 2)-sphere at
some angle ρ, then the hyperplane H divides that (m − 2)-
sphere into two spherical caps. The claim is that each of these
m − 2 dimensional caps that is on the side of H with v1 is

contained in C+ (and those on the side with v2 are contained
in C−). Furthermore, all points in C+ are in one of these
m− 2 dimensional caps. The claim follows because

〈
v,

v1

cos θ1
− v2

cos θ2

〉
≥ 0

implies

cos θ2 cos
(
∠(v,v1)

)
≥ cos θ1 cos

(
∠(v,v2)

)

and since ∠(v,v2) ≤ θ2 and cos
(
∠(v,v2)

)
≥ cos θ2, this

implies
cos θ2 cos

(
∠(v,v1)

)
≥ cos θ1 cos θ2.

Finally, this implies ∠(v,v1) ≤ θ1, v ∈ C1, and v ∈ C+.
Note that for ρ < φ, the (m−2)-sphere at angle ρ is entirely

on the v2 side of H , and does not need to be included when
computing the measure of C+. This establishes the fact that

µ(C+) =

∫ θ2

φ

C
θρ
m−2(Rsin ρ)Rdρ

where Cθρm−2(Rsin ρ) is the surface area of an m− 2 dimen-
sional spherical cap defined by angle θρ on the (m−2)-sphere
of radius Rsin ρ. Writing

cos θρ =
h

Rsin ρ

note that h is the distance from the center of the (m−2)-sphere
at angle ρ to the m−2 dimensional hyperplane that divides the
sphere into two caps. Furthermore, since the (m − 2)-sphere
has center (R cos ρ)v2, we have

tanφ =
h

R cos ρ
.

Therefore,

θρ = arccos

(
tanφ
tanρ

)
.

Combining this with the corresponding result for µ(C−) yields

µ(C1 ∩ C2) = µ(C+) + µ(C−)

=

∫ θ2

φ

C
arccos( tanφ

tanρ )
m−2 (Rsin ρ)Rdρ

+

∫ θ1

π
2−φ

C
arccos( tan(π/2−φ)

tanρ )
m−2 (Rsin ρ)Rdρ.

This expression can be rewritten using known expressions
for the area of a spherical cap in terms of the regularized
incomplete beta function as

µ(C1 ∩ C2) = J(φ, θ2) + J(π/2− φ, θ1),

where J(φ, θ2) is defined as

J(φ, θ2)

=
(πmN)

m−1
2

Γ
(
m−1

2

)
∫ θ2

φ

(sinm−2ρ)I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)
dρ

(67)
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and J(π/2−φ, θ1) is defined similarly. Here in (67), Ix(a, b)
is the regularized incomplete beta function, given by

Ix(a, b) =
B(x; a, b)

B(a, b)
, (68)

where B(x; a, b) and B(a, b) are the incomplete beta function
and the complete beta function respectively:

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Characterizing the Exponent: We now lower and upper
bound J(φ, θ2) with exponential functions. First, using Stir-

ling’s approximation, (πmN)
m−1

2

Γ(m−1
2 )

on the R.H.S. of (67) can be
bounded as

2
m
2 [log(2πeN)−ε1] ≤ (πmN)

m−1
2

Γ
(
m−1

2

) ≤ 2
m
2 [log(2πeN)+ε1] (69)

for some ε1 → 0 as m→∞.
Now consider

I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)

inside the integral on the R.H.S. of (67). In light of (68), it
can be written as

I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)
=

B

(
1−

(
tanφ
tanρ

)2

; m−2
2 , 1

2

)

B
(
m−2

2 , 1
2

) . (70)

For the denominator in (70), by Stirling’s approximation, we
have

B

(
m− 2

2
,

1

2

)
∼ Γ

(
1

2

)(
m− 2

2

)− 1
2

.

For the numerator in (70), we have

B

(
1−

(
tanφ
tanρ

)2

;
m− 2

2
,

1

2

)

=

∫ 1−( tanφ
tanρ )

2

0

t
m−4

2 (1− t)− 1
2 dt

≥
∫ 1−( tanφ

tanρ )
2

0

t
m−4

2 dt

=
2

m− 2
t
m−2

2

∣∣1−( tanφ
tanρ )

2

0

=
2

m− 2

[
1−

(
tanφ
tanρ

)2
]m−2

2

≥ 2
m
2

[
log
(

1−( tanφ
tanρ )

2
)
−ε2

]
,

for some ε2 → 0 as m→∞, and

B

(
1−

(
tanφ
tanρ

)2

;
m− 2

2
,

1

2

)

=

∫ 1−( tanφ
tanρ )

2

0

t
m−4

2 (1− t)− 1
2 dt

≤
∫ 1−( tanφ

tanρ )
2

0

t
m−4

2

(
1−

(
1−

(
tanφ
tanρ

)2
))− 1

2

dt

=
tanρ
tanφ

∫ 1−( tanφ
tanρ )

2

0

t
m−4

2 dt

≤ tanθ2

tanφ

∫ 1−( tanφ
tanρ )

2

0

t
m−4

2 dt

=
2tanθ2

(m− 2)tanφ

[
1−

(
tanφ
tanρ

)2
]m−2

2

≤ 2
m
2

[
log
(

1−( tanφ
tanρ )

2
)

+ε3
]
,

for some ε3 → 0 as m→∞. Also noting that

sinm−2ρ = 2
m−2

2 log sin2ρ

with ρ ∈ [φ, θ2], we can bound the integrand in (67) as

(
sinm−2ρ

)
I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)

≥ 2
m
2

[
log
(

(sin2ρ)
(

1−( tanφ
tanρ )

2
))
−ε4

]
= 2

m
2 [log(sin2ρ−tan2φ cos2 ρ)−ε4]

and
(
sinm−2ρ

)
I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)

≤ 2
m
2 [log(sin2ρ−tan2φ cos2 ρ)+ε4]

for some ε4 → 0 as m→∞. For sufficiently large m,
∫ θ2

φ

(sinm−2ρ)I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)
dρ

≥
∫ θ2

θ2− 1
m

(sinm−2ρ)I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)
dρ

≥
∫ θ2

θ2− 1
m

2
m
2 [log(sin2ρ−tan2φ cos2 ρ)−ε4]dρ

≥ 1

m
2
n
2 [log(sin2(θ2− 1

m )−tan2φ cos2(θ2− 1
m ))−ε4]

≥ 2
m
2 [log(sin2θ2−tan2φ cos2 θ2)−ε5]

= 2
m
2 [log(sin2θ2−cos2 θ1)−ε5],

and
∫ θ2

φ

(sinm−2ρ)I
1−( tanφ

tanρ )
2

(
m− 2

2
,

1

2

)
dρ

≤ 2
m
2 [log(sin2θ2−cos2 θ1)+ε5]

for some ε5 → 0 as m→∞.
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Combining this with (69), we can bound J(φ, θ2) as

2
m
2 [log 2πeN(sin2θ2−cos2 θ1)−ε6] ≤ J(φ, θ2)

≤ 2
m
2 [log 2πeN(sin2θ2−cos2 θ1)+ε6]

for some ε6 → 0 as m→∞.
Due to symmetry, we can also bound J(π/2− φ, θ1) as

2
m
2 [log 2πeN(sin2θ1−cos2 θ2)−ε6] ≤ J(π/2− φ, θ1)

≤ 2
m
2 [log 2πeN(sin2θ1−cos2 θ2)+ε6].

Noting that sin2θ2 − cos2 θ1 = sin2θ1 − cos2 θ2, we have

µ(C1 ∩ C2) ≥ J(φ, θ2) + J(π/2− φ, θ1)

≥ 2
m
2 [log 2πeN(sin2θ1−cos2 θ2)−ε]

and

µ(C1 ∩ C2) ≤ 2
m
2 [log 2πeN(sin2θ1−cos2 θ2)+ε]

for some ε→ 0 as m→∞. This completes the proof of the
lemma.

We now utilize Lemma C.1 to characterize the volume of
the intersection of two shell caps. Consider a spherical shell

Shell (0, RL, RU )

with RL =
√
m(N − δ), RU =

√
m(N + δ) and two

caps on this shell, i.e. S1 = ShellCap(z0, θ) and S2 =
ShellCap(y0, ω), where ∠(z0,y0) = π/2 and θ + ω > π/2.
The following lemma bounds the intersection volume |S1∩S2|
of these two shell caps.

Lemma C.2: For any ε > 0 there exists an M(ε) such that
for m > M(ε),

|S1 ∩ S2| ≥ 2
m
2 [log(2πeN(sin2θ−cos2 ω))−ε]

and

|S1 ∩ S2| ≤ 2
m
2 [log(2πe(N+δ)(sin2θ−cos2 ω))+ε].

Proof: Using spherical coordinates, we have

|S1 ∩ S2| =
∫

Rm
1S1∩S2(z) dz

=

∫

Sm−1

(∫ RU

RL

( r
R

)m−1

1S1∩S2

( r
R
z
)
dr

)
dz

=

∫

Sm−1

1Cap(z0,θ)∩Cap(y0,ω)(z)dz

∫ RU

RL

( r
R

)m−1

dr

= µ(Cap(z0, θ) ∩ Cap(y0, ω))

∫ RU

RL

( r
R

)m−1

dr (71)

where the integral term on the right is bounded as
∫ √m(N+δ)

√
m(N−δ)

( r
R

)m−1

dr ≥
∫ √m(N+δ)

√
mN

( r
R

)m−1

dr

≥
√
m(N + δ)−

√
mN . (72)

Given ε > 0, set M = max{M1,M2} where M1 is given by
Lemma C.1 to ensure

µ(Cap(z0, θ) ∩ Cap(y0, ω)) ≥ 2
m
2 [log(2πeN(sin2θ−cos2 ω))−ε/2]

and M2 is chosen to be sufficiently large so that the right-hand
side of (72) satisfies

√
m(N + δ)−

√
mN ≥ 2−mε .

Together with (71), this implies

|S1 ∩ S2| ≥ 2
m
2 [log(2πeN(sin2θ−cos2 ω))−ε]

for m > M .
For the inequality in the other direction, define Sm−1

RU
to be

the m−1 sphere of radius RU with Haar measure µRU . Then

|S1 ∩ S2| =
∫

Rm
1S1∩S2(z) dz

=

∫

Sm−1
RU

(∫ RU

RL

(
r

RU

)m−1

1S1∩S2

(
r

RU
z

)
dr

)
dz

=

∫

Sm−1
RU

1Cap(z0,θ)∩Cap(y0,ω)(z)dz

∫ RU

RL

(
r

RU

)m−1

dr

= µRU (Cap(z0, θ) ∩ Cap(y0, ω))

∫ RU

RL

(
r

RU

)m−1

dr

(73)

where the integral term on the right is bounded as

∫ √m(N+δ)

√
m(N−δ)

(
r

RU

)m−1

dr ≤
√
m(N + δ)−

√
m(N − δ) .

(74)

Given ε > 0, set M = max{M1,M2} where M1 is given by
Lemma C.1 to ensure

µRU (Cap(z0, θ) ∩ Cap(y0, ω))

≤ 2
m
2 [log(2πe(N+δ)(sin2θ1−cos2 θ2))+ε/2]

and M2 is chosen to be sufficiently large so that the right-hand
side of (74) satisfies

√
m(N + δ)−

√
m(N − δ) ≤ 2mε .

Together with (73), this implies

|S1 ∩ S2| ≤ 2
m
2 [log(2πe(N+δ)(sin2θ−cos2 ω))+ε]

for m > M .

C. Volume of the Intersection of Two Balls

Proof of Lemma 3.4 : The intersection of
Ball(c1,

√
mR1) and Ball(c2,

√
mR1) consists of two

caps: C1 and C2, as depicted in Fig. 7. To bound the volume
of Ball(c1,

√
mR1) ∩ Ball(c2,

√
mR1), we will bound |C1|

and |C2| respectively.
We first bound |C1|. By the cosine formula, we have

cos θ1 =
mR1 +mD −mR2

2
√
mR1

√
mD

=
R1 +D −R2

2
√
R1D
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p
mR1

p
mR2

p
mD

C1C2

 ✓1  

✓2
c1 c2

Fig. 7. Intersection of two balls.

and therefore

sin2θ1 = 1− cos2 θ1

= 1− (R1 +D −R2)2

4R1D

=
2R1D + 2R1R2 + 2DR2 −R2

1 −R2
2 −D2

4R1D
.

From Appendix C-A, we have for any ε > 0 and m sufficiently
large,

|C1| ≤ 2m( 1
2 log 2πeR1sin2θ1+ ε

2 )

= 2m( 1
2 log πeλ(R1,R2,D)+ ε

2 )

where

λ(R1, R2, D) :=
2R1D + 2R1R2 + 2DR2 −R2

1 −R2
2 −D2

2D
.

Similarly, we have

sin2θ2 = 1− cos2 θ2

= 1− (R2 +D −R1)2

4R2D

=
2R1D + 2R1R2 + 2DR2 −R2

1 −R2
2 −D2

4R2D

and therefore

|C2| ≤ 2m( 1
2 log 2πeR2sin2θ2+ ε

2 )

= 2m( 1
2 log πeλ(R1,R2,D)+ ε

2 ).

Combining the above, we obtain
∣∣∣Ball(c1,

√
mR1) ∩ Ball(c2,

√
mR1)

∣∣∣
= |C1|+ |C2|
≤ 2m( 1

2 log πeλ(R1,R2,D)+ε)

for any ε > 0 and m sufficiently large.
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