
A Geometric Characterization of Fisher Information from Quantized
Samples with Applications to Distributed Statistical Estimation

Leighton Pate Barnes, Yanjun Han, and Ayfer Özgür
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Abstract— Consider the Fisher information for estimating
a vector θ ∈ Rd from the quantized version of a statistical
sample X ∼ f(x|θ). Let M be a k-bit quantization of X .
We provide a geometric characterization of the trace of the
Fisher information matrix IM (θ) in terms of the score function
Sθ(X). When k = 1, we exactly solve the extremal problem of
maximizing this geometric quantity for the Gaussian location
model, which allows us to conclude that in this model, a half-
space quantization is the one-bit quantization that maximizes
Tr(IM (θ)). Under assumptions on the tail of the distribution
of Sθ(X) projected onto any unit vector in Rd, we give upper
bounds demonstrating how Tr(IM (θ)) can scale with k. We
apply these results to find lower bounds on the minimax risk of
estimating θ from multiple quantized samples of X , for example
in a distributed setting where the samples are distributed across
multiple nodes and each node has a total budget of k-bits to
communicate its sample to a centralized estimator. Our bounds
apply in a unified way to many common statistical models
including the Gaussian location model and discrete distribution
estimation, and they recover and generalize existing results in
the literature with simpler and more transparent proofs.

I. INTRODUCTION

Fisher information plays a central role in the standard
statistical problem of estimating some parameter θ, that can
take its value from a set Θ ⊆ Rd, given a statistical sample
X ∈ X . In this work, we study the effects of quantization
of the sample X on the Fisher information for estimating θ,
and the related question of how to efficiently represent X
with a given number of bits so as to maximize the Fisher
information it provides about θ. Quantization of data is of
interest in many different settings. For example, in many
machine learning systems data is distributed across different
machines or generated in a distributed fashion, and it needs
to be communicated efficiently while preserving maximal
information about an underlying parameter of interest. In
such modern applications, θ can have a very large dimension,
i.e. θ ∈ Rd, where d can potentially be very large. In this
vector case, one quantity of interest is the sum of the Fisher
informations for estimating each individual component θi
for i = 1, . . . , d, or equivalently the trace of the Fisher
information matrix for estimating θ.

In this paper, we provide a geometric characterization of
the trace of the Fisher information matrix for estimating θ
from a k-bit quantized sample of X . This characterization
has a natural geometric interpretation in terms of the score-
function Sθ(X), and enables us to prove upper bounds on
the trace of the Fisher information matrix that hold for any

k-bit quantization strategy. When these upper bounds are
used together with the van Trees inequality, they easily lend
themselves to lower bounds on the minimax squared error
risk of estimating θ in a distributed setting, where there are
multiple nodes each observing an independent and identically
distributed sample from the distribution of X , and each
node has k-bits to communicate its sample to a centralized
estimator. The central estimator then estimates the underlying
parameter θ from the k-bit messages it receives from the
nodes. The messages can be communicated independently, or
in an interactive fashion according to a blackboard protocol
using private/public randomness. We recover and generalize
existing results in the literature [13], [14], [4], [1] for
this setting under different statistical models (including the
Gaussian location model and discrete distribution estimation)
in a unified way with simpler and more transparent proofs.

In a flavor similar to [1], our upper bounds on the trace
of the Fisher information matrix reveal that the the tail of
the distribution of the score function Sθ(X) dictates the
dependence on the quantization rate k. If the projection of
the score function vector onto any unit vector has finite
variance at most I0, then the trace of the Fisher information
for estimating θ from the quantized sample is upper bounded
by I02k. Furthermore, if the projection of the score function
vector onto any unit vector has finite Ψp Orlicz norm N ,
then we show that the trace of the Fisher information for
estimating θ from the quantized sample is O

(
N2k

2
p

)
with a

small absolute constant that is independent of d. This implies
that when the score function is sub-Gaussian, which is the
case for the Gaussian location model, the Fisher information
increases linearly in k. On the other hand, when the score-
function is sub-exponential, the trace of the Fisher infor-
mation matrix increases at most as k2. These qualitatively
different scalings for the trace of Fisher information matrix
translate to qualitatively different minimax bounds for the
associated distributed estimation problems.

Finally, we give a “most Fisher-informative bit” result that
demonstrates that for the Gaussian location model, where
X ∼ N (θ, σ2Id), the one-bit quantization that maximizes
the trace of the Fisher information for estimating the mean
parameter θ is given by two half-spaces whose defining
hyperplane intersects the true mean θ. This is reminiscent of
Borell’s isoperimetric result in Gauss space that implies that
a half-space quantization maximizes the mutual information



between a Gaussian random vector and a one-bit quantized
version of the same random vector that has been corrupted
with additive Gaussian noise [9],[11].

There has been some previous work in analyzing Fisher
information from a quantized scalar random variable such
as [5],[6],[7],[8]. Here we instead consider the arbitrary
quantization of a random vector, and are able to study the
trade-off between the quantization rate k and the number
of parameter components d that we are trying to estimate.
Our work follows [1], which introduces a similar geometric
approach to obtain minimax bounds for distributed parameter
estimation under communication constraints.

II. FISHER INFORMATION FROM A QUANTIZED SAMPLE

Let Pθ be a family of probability measures on X param-
eterized by θ ∈ Θ ⊆ Rd. Suppose each Pθ is dominated by
some base measure ν and that each Pθ has density f(x|θ)
with respect to ν. Let X ∈ X be a single sample drawn
from f(x|θ). Any (potentially randomized) k-bit quantization
strategy for X can be expressed in terms of the conditional
probabilities

bm(x) = p(m|x) for m ∈ [1 : 2k], x ∈ X .

We assume that there is a well-defined joint probability
distribution with density

f(x,m|θ) = f(x|θ)p(m|x)

and that p(m|x) is a regular conditional distribution. For a
given θ ∈ Rd and quantization strategy, denote the likelihood
that the quantization M takes a specific value m by p(m|θ).
Let

Sθ(m) = (Sθ1(m), . . . , Sθd(m))

=

(
∂

∂θ1
log p(m|θ), . . . , ∂

∂θd
log p(m|θ)

)
be the score of this likelihood. In an abuse of notation, we
will also denote the score of the likelihood f(x|θ) by

Sθ(x) = (Sθ1(x), . . . , Sθd(x))

=

(
∂

∂θ1
log f(x|θ), . . . , ∂

∂θd
log f(x|θ)

)
.

The Fisher information matrix for estimating θ from M is

IM (θ) = E[Sθ(M)TSθ(M)]

and likewise the Fisher information matrix for estimating θ
from an X is

IX(θ) = E[Sθ(X)TSθ(X)] .

We will assume throughout that f(x|θ) satisfies the following
regularity conditions:
(1) For each j and fixed θ1, . . . , θj−1, θj+1, . . . , θjd , the

function
√
f(x|θ), thought of as a function of θj , is

continuously differentiable with respect to θj at µ-
almost every x ∈ X .

(2) For each j and all θ, the expected value [IX(θ)]jj =
E[Sθj (X)2] exists and is continuous in θj .

These two conditions justify interchanging differentiation
and integration as in

∂

∂θj
p(m|θ) =

∂

∂θj

∫
f(x|θ)p(m|x)dν(x)

=

∫
∂

∂θj
f(x|θ)p(m|x)dν(x)

for each j, and they also ensure that p(m|θ) is continuously
differentiable with respect to each θj (see Lemma 1, Section
26 in [15]). We will also assume, without loss of generality,
that f(x|θ) > 0. For each fixed θ, this can be done by
restricting the domain X to only include those x values such
that f(x|θ) > 0 when taking an expectation, or equivalently,
by defining Sθ(x) = 0 whenenver f(x|θ) = 0. In the same
way we will assume that p(m|θ) > 0.

Our first two lemmas establish a geometric interpretation
of the trace Tr(IM (θ)). The first lemma is a slight variant
of Theorems 1 and 2 from [3], and our debt to that work is
clear.

Lemma 1: The (i, i)-th entry of the Fisher information
matrix IM (θ) is

[IM (θ)]i,i = E
[
E [Sθi(X)|M ]

2
]
.

The inner conditional expectation is with respect to the
distribution f(x|θ), while the outer expectation is over the
conditioning random variable M .

Proof:

E [Sθi(X)|m] =

∫
Sθi(x)

f(x|θ)p(m|x)

p(m|θ)
dν(x)

=

∫ ∂
∂θi
f(x|θ)

f(x|θ)
f(x|θ)p(m|x)

p(m|θ)
dν(x)

=
1

p(m|θ)

∫
∂

∂θi
f(x|θ)p(m|x)dν(x)

=
1

p(m|θ)
∂

∂θi

∫
f(x|θ)p(m|x)dν(x)

= Sθi(m)

Squaring both sides and taking the expectation over M gives

E[Sθi(M)2] = E
[
E [Sθi(X)|M ]

2
]

where the left-hand side is by definition [IM (θ)]i,i.
Lemma 2: The trace of the Fisher information matrix

IM (θ) can be written as

Tr(IM (θ)) =

d∑
i=1

[IM (θ)]i,i

=
∑
m

p(m|θ)‖E[Sθ(X)|m]‖2 . (1)



Proof: By Lemma 1,

d∑
i=1

[IM (θ)]i,i =

d∑
i=1

E
[
E [Sθi(X)|M ]

2
]

= E

[
d∑
i=1

E [Sθi(X)|M ]
2

]
= E

[
‖E[Sθ(X)|M ]‖2

]
=
∑
m

p(m|θ)‖E[Sθ(X)|m]‖2 .

In order to get some geometric intuition for the quantity
(1), consider a special case where the quantization is de-
terministic and the score function Sθ(x) is a bijection. In
this case, the quantization map partitions the space X into
disjoint quantization bins, and this induces a corresponding
partitioning of the score functions values Sθ(x). Each vector
E[Sθ(X)|m] is then the centroid of the set of Sθ(x) values
corresponding to quantization bin m (with respect to the
induced probability distribution on Sθ(X)). Lemma 2 shows
that Tr(IM (θ)) is equal to the average magnitude squared
of these centroid vectors.

A. Upper Bounds on Tr(IM (θ))

In this section, we give two upper bounds on Tr(IM (θ)).
The proofs appear in Appendix A. The first theorem upper
bounds Tr(IM (θ)) in terms of the variance of Sθ(X) when
projected onto any unit vector.

Theorem 1: If for any θ ∈ Θ and any unit vector u ∈ Rd,

var(〈u, Sθ(X)〉) ≤ I0 ,

then
Tr(IM (θ)) ≤ min{Tr(IX(θ)), 2kI0} .

The upper bound Tr(IM (θ)) ≤ Tr(IX(θ)) follows easily
from the data processing inequality for Fisher information
[10]. The theorem shows that when I0 is finite, Tr(IM (θ))
can increase at most exponentially in k.

Recall that for p ≥ 1, the Ψp Orlicz norm of a random
variable X is defined as

‖X‖Ψp
= inf{k ∈ (0,∞) | E[Ψp(|X|/k)] ≤ 1}

where
Ψp(x) = exp(xp)− 1 .

A random variable with finite p = 1 Orlicz norm is sub-
exponential, while a random variable with finite p = 2 Orlicz
norm is sub-Gaussian [16]. Our second theorem shows that
when the Ψp Orlicz norm of the projection of Sθ(X) onto
any unit vector is finite, Tr(IM (θ)) can increase at most like
k

2
p .
Theorem 2: If for any θ ∈ Θ, some p ≥ 1, and any unit

vector u ∈ Rd,

‖〈u, Sθ(X)〉‖Ψp
≤ N ,

then
Tr(IM (θ)) ≤ min{Tr(IX(θ)), CN2k

2
p }

where C = 8
e2 + 4.

We next apply the above two results to common statistical
models. We will see that neither of these bounds is strictly
stronger than the other and depending on the statistical
model, one may yield a tighter bound than the other.

B. Applications to Common Statistical Models

Example 1 (Gaussian location model): Consider the
Gaussian location model X ∼ N (θ, σ2Id) where we are
trying to estimate the mean θ of a d-dimensional Gaussian
random vector with fixed covariance σ2Id. In this case,

Sθ(x) =
1

σ2
(θ − x)

so that Sθ(X) ∼ N (0, 1/σ2). Therefore

‖〈u, Sθ(X)〉‖Ψ2
= Θ

(
1

σ

)
for any unit vector u ∈ Rd, so by Theorem 2,

Tr(IM (θ)) = O

(
k

σ2

)
. (2)

Example 2 (variance of a Gaussian): Now suppose X =
(X1, . . . , Xd) ∼ N (0, diag(θ1, . . . , θd)) and Θ ⊆
[σ2

min, σ
2
max]d with σmin > 0. The components of the score

function are

Sθi(x) =
x2
i

2θ2
i

− 1

2θi
.

Therefore each independent component Sθi(X) is chi-
squared distributed with one degree of freedom and

‖〈u, Sθ(X)〉‖Ψ1
= O

(
1

σ2
min

)
.

Using Theorem 2,

Tr(IM (θ)) = O

((
k

σ2
min

)2
)
.

Example 3 (distribution estimation): Suppose that X =
{1, . . . , d+ 1} and that

f(x|θ) = θx .

Let θ1, . . . , θd be the free parameters of interest and suppose
they can vary from 1

4d ≤ θi ≤
1
2d . Note that

θd+1 = 1−
d∑
i=1

θi .

We have

Sθi(x) =


1
θi

, x = i

− 1
θd+1

, x = d+ 1

0 , otherwise



for i = 1, . . . , d. For any unit vector u = (v1, . . . , vd),

var(〈u, Sθ(X)〉)

=

d+1∑
x=1

θx

(
d∑
i=1

viSθi(x)

)2

= θd+1
1

θ2
d+1

(
d∑
i=1

vi

)2

+

d∑
x=1

θx

(
d∑
i=1

viSθi(x)

)2

≤ 2d+

d∑
x=1

θxv
2
x

1

θ2
x

≤ 6d .

By Theorem 1,

Tr(IM (θ)) = O(d2k) . (3)

Example 4 (product Bernoulli model): Consider X =
(X1, . . . , Xd) ∼

∏d
i=1 Bern(θi). With this model,

Sθi(x) =

{
1
θi

, xi = 1
−1

1−θi , xi = 0 .

If Θ = [1/2 − ε, 1/2 + ε]d for some 0 < ε < 1/2,
i.e. the model is relatively dense, then var(〈u, Sθ(X)〉) and
‖〈u, Sθ(X)〉‖2Ψ2

are both Θ(1). In this case Theorem 1 gives

Tr(IM (θ)) = O(2k)

while Theorem 2 gives

Tr(IM (θ)) = O(k) .

In this situation Theorem 2 gives the better bound. On the
other hand, if Θ = [(1 − ε) 1

d , (1 + ε) 1
d ]d, i.e. the model is

sparse, then var(〈u, Sθ(X)〉) = Θ(d) and ‖〈u, Sθ(X)〉‖2Ψ2
=

Θ(d2). In this case Theorem 1 gives

Tr(IM (θ)) = O(d2k)

while Theorem 2 gives

Tr(IM (θ)) = O(d2k) .

In the sparse case Tr(IX(θ)) = Θ(d2), so only the bound
from Theorem 1 is nontrivial. It is interesting that Theorem
2 is able to use the sub-Gaussian structure in the first case to
yield a better bound – but in the second case, when the tail of
the score function is essentially not sub-Gaussian, Theorem
1 yields the better bound.

III. DISTRIBUTED ESTIMATION OF HIGH-DIMENSIONAL
DISTRIBUTIONS AND PARAMETERS

In this section we will apply Theorems 1 and 2 to
statistical estimation with multiple quantized samples. Let
X1, . . . , Xn be i.i.d. generated by the distribution f(x|θ). We
consider three different models for quantizing these samples:
• Independent Quantization: under this model, each sam-

ple is independently quantized to k-bits. Formally, each
sample Xi, for i = 1, . . . , n, is encoded to a k-bit string
Mi by a possibly randomized quantization strategy,

Sensor

θ

Quantizer
Limited
Memory Estimator

Xi Mi Mi θ̂

(a) Sequential storage of samples

Sensor 1

θ

Sensor 2

θ

. . . Sensor n

θ

Quantizer 1 Quantizer 2 . . . Quantizer n

Estimator

X1 X2 Xn

M1 M2

Mn

θ̂

(b) Distributed communication of samples

Fig. 1: Quantization for storage and communication

denoted by qi(xi) : X → [1 : 2k], which can be
expressed in terms of the conditional probabilities

p(mi|xi) for mi ∈ [1 : 2k], xiX .

• Sequential Quantization: under this model, we assume
that samples arrive sequentially and the quantization
of the sample Xi can depend on the previously stored
quantized samples M1, . . . ,Mi−1 corresponding to the
previously observed samples X1, . . . , Xi−1. Formally,
each sample Xi, for i = 1, . . . , n, is encoded to
a k-bit string Mi by a set of possibly randomized
quantization strategies {qm1,...,mi−1

(xi) : X → [1 :
2k] : m1, . . . ,mi−1 ∈ [1 : 2k]}, where each strategy
qm1,...,mi−1(xi) can be expressed in terms of the con-
ditional probabilities

p(mi|xi;m1, . . . ,mi−1)

for mi ∈ [1 : 2k] andxi ∈ X .

These two models are motivated by a scenario where
a continuous stream of samples is captured sequentially
and each sample is stored in digital memory by using k
bits/sample. See Figure 1a. In the first case, each samples is
quantized independently of the other samples (even though
the quantization strategies for different bits can be different
and jointly optimized ahead of time), while under the second
model the quantization of each sample Xi can depend on the
information M1, . . . ,Mi stored in the memory of the system
at time i.

These two models can be equivalently used to model
a distributed estimation setting where there are n sensors,
each observing an independent sample from the underlying
statistical model. See Figure 1b. Each sensor has k bits to
communicate its sample to a centralized estimator. Under



the independent model, each sensor communicates its sample
independently from the other nodes by transmitting a k-bit
message. Under the sequential model, sensors are ordered
and communication occurs in a sequential fashion; sensor
i observes the k-bit messages M1, . . . ,Mi communicated
by previous sensors and therefore its k-bit message Mi can
depend on the previously transmitted messages M1, . . . ,Mi.
Note that this second model allows for some limited interac-
tion between the sensors while the first one does not. For
the distributed estimation scenario in Figure 1b, one can
also consider a fully interactive communication model for
the sensors, which we describe next.

• Blackboard Model: all sensors communicate via a pub-
licly shown blackboard while the total number of bits
each sensor can write in the final transcript Y is limited
by k bits. When one sensor writes a message (bit) on
the blackboard, all other sensors can see the content
of the message. Formally, a blackboard communication
protocol ΠBB can be viewed as a binary tree [18],
where each internal node v of the tree is assigned a
deterministic label lv ∈ [n] indicating the identity of
the sensor to write the next bit on the blackboard if
the protocol reaches node v; the left and right edges
departing from v correspond to the two possible values
of this bit and are labeled by 0 and 1 respectively.
Because all bits written on the blackboard up to the
current time are observed by all nodes, the sensors
can keep track of the progress of the protocol in the
binary tree. The value of the bit written by node lv
(when the protocol is at node v) can depend on the
sample Xlv observed by this node (and implicitly on
all bits previously written on the blackboard encoded
in the position of the node v in the binary tree).
Therefore, this bit can be represented by a function
bv(x) = pv(1|x) ∈ [0, 1], which we associate with the
node v; sensor lv transmits 1 with probability bv(Xlv )
and 0 with probability 1− bv(Xlv ). Note that a proper
labeling of the binary tree together with the collection
of functions {bv(·)} (where v ranges over all internal
nodes) completely characterizes all possible (possibly
probabilistic) communication strategies for the sensors.
The k-bit communication constraint for each node can
be viewed as a labeling constraint for the binary tree; for
each i ∈ [n], each possible path from the root node to
a leaf node can visit exactly k internal nodes with label
i. In particular, the depth of the binary tree is nk and
there is one-to-one correspondence between all possible
transcripts y ∈ {0, 1}nk and paths in the tree. Note
that there is also one-to-one correspondence between
y ∈ {0, 1}nk and the k-bit messages m1, . . . ,mn

transmitted by the n sensors. In particular, the transcript
y ∈ {0, 1}nk contains the same amount of information
as m1, . . . ,mn, since given the transcript y (and the
protocol) one can infer m1, . . . ,mn and vice versa (for
the opposite direction note that the protocol specifies
which sensor transmits first so given m1, . . . ,mn one

can follow the path in the protocol tree).
Under all the three quantization/communication models

above, the end goal is to produce an estimate θ of the un-
derlying parameter θ from the k-bit quantizations/messages
M1, . . . ,Mn stored in the system/received by the central
node. As usual, the encoding strategies or the protocols used
in each case can be jointly optimized and agreed upon by
all parties ahead of time.

We are interested in the quantity

I(M1,...,Mn)(θ)

under each model. (Note that under the blackboard model,
the central estimator observes the transcript Y , however as
we already argued Tr(IY (θ)) = Tr(I(M1,...,Mn)(θ)).)

We have

Tr(I(M1,...,Mn)(θ)) =

d∑
j=1

[I(M1,...,Mn)(θ)]j,j

=

n∑
i=1

d∑
j=1

[IMi|(M1,...,Mi−1)(θ)]j,j

=

n∑
i=1

∑
m1,...,mi−1

p(m1, . . . ,mi−1|θ)Tr(IMi|(m1,...,mi−1)(θ))

(4)

due to the chain-rule for Fisher information. Under the
independent model,

[IMi|(m1,...,mi−1)(θ)]j,j = [IMi(θ)]j,j .

Under the sequential and the blackboard models, condition-
ing on specific m1, . . . ,mi−1 only effects the distribution
p(mi|θ) by fixing the quantization strategy for Xi. Formally,
for the sequential model

P(Mi = mi|θ;m1, . . . ,mi−1)

= P(qm1,...,mi−1
(Xi) = mi|θ;m1, . . . ,mi−1)

= P(qm1,...,mi−1
(Xi) = mi|θ),

where the last step follows since X1, . . . , Xi−1 is indepen-
dent of Xi and therefore conditioning of m1, . . . ,mi−1 does
not change the distribution of Xi. A similar argument can
be made for the blackboard model by observing that con-
ditioning on messages M1, . . . ,Mi−1 allows to effectively
prune the encoding tree to a smaller tree which induces a
new quantization strategy for Mi.

Since the bounds from Theorems 1 and 2 apply for
any quantization strategy, they apply to each of the terms
in (4), and the following statements hold under all three
quantization models:
(i) Under the hypotheses in Theorem 1,

Tr(IM1,...,Mn
(θ)) ≤ nI02k .

(ii) Under the hypotheses in Theorem 2,

Tr(IM1,...,Mn
(θ)) ≤ nCN2k

2
p .



Consider the squared error risk in estimating θ:

E[‖θ − θ̂‖2] =

d∑
i=1

E[(θi − θ̂i)2] .

In order to lower bound this risk, we will use the van
Trees inequality from [17]. For concreteness, suppose Θ =
[−B,B]d. Denote M = (M1, . . . ,Mn), and suppose we
have a prior µi for the parameter θi. The van Trees inequality
for the component θi gives∫ B

−B
E[(θ̂i(M)− θi)2]µi(θi)dθi

≥ 1∫ B
−B [IM (θ)]i,iµi(θi)dθi + I(µi)

(5)

where I(µi) =
∫ B
−B

µ′i(θ)
2

µi(θ)
dθ is the Fisher information from

the prior. Note that the required regularity condition that
E[Sθi(M)] = 0 follows trivially since the expectation over
M is just a finite sum:

E[Sθi(M)] =
∑
m

∂

∂θi
p(m|θ) =

∂

∂θi

∑
m

p(m|θ) = 0 .

The prior µi can be chosen to minimize this Fisher informa-
tion and achieve I(µi) = π2/B2 [15]. Let µ(θ) =

∏
i µi(θi).

By summing over each component,∫
Θ

d∑
i=1

E[(θi − θ̂i)2]µ(θ)dθ

≥
d∑
i=1

1∫
Θ

[IM (θ)]i,iµ(θ)dθ + π2

B2

(6)

= d

d∑
i=1

1

d

1∫
Θ

[IM (θ)]i,iµ(θ)dθ + π2

B2

≥ d 1∑d
i=1

1
d

∫
Θ

[IM (θ)]i,iµ(θ)dθ + π2

B2

(7)

=
d2∫

Θ
Tr(IM (θ))µ(θ)dθ + dπ2

B2

.

Therefore,

sup
θ∈Θ

E[‖θ̂(M)− θ‖2]

≥ d2

supθ∈Θ Tr(IM (θ)) + dπ2

B2

. (8)

The inequaltiy (7) follows from Jensen’s inequality via the
convexity of x 7→ 1/x for x > 0, and the inequality (6)
follows both from this convexity and (5). Using the bounds
we developed in Section II-B, the relation (8) gives a lower
bound on the minimax risk for the distributed estimation
of θ under common statistical models. We summarize these
results in the following corollaries:

Corollary 1 (Gaussian location model): Let X ∼
N (θ, σ2Id) with Θ = [−B,B]d. Under all three

quantization/communication models described above,
for nB2 min{k, d} ≥ dσ2, we have

sup
θ∈Θ

E[‖θ̂(M)− θ‖2] ≥ Cσ2 max

{
d2

nk
,
d

n

}
for any quantization strategy and estimator θ̂ where C > 0
is a universal constant independent of n, k, d, σ2, B.

The condition that nB2 min{k, d} ≥ dσ2 is a weak
condition that ensures that we can ignore the second term
in the denominator of (8). For fixed B, σ, this condition is
weaker than just assuming that n is at least order d, which
is required for consistent estimation anyways. We will make
similar assumptions in the subsequent corollaries.

Corollary 2 (variance of a Gaussian): Let X ∼
N (0, diag(θ1, . . . , θd)) with Θ = [σ2

min, σ
2
max]d. Under

all three quantization/communication models described

above, for n
(
σ2

max−σ
2
min

2

)2

min{k2, d} ≥ dσ4
min, we have

sup
θ∈Θ

E[‖θ̂(M)− θ‖2] ≥ Cσ4
min max

{
d2

nk2
,
d

n

}
for any quantization strategy and estimator θ̂ where C > 0
is a universal constant independent of n, k, d, σmin, σmax.

Corollary 3 (distribution estimation): Suppose that X =
{1, . . . , d+ 1} and that

f(x|θ) = θx .

Let Θ be the probability simplex with d + 1 variables. Un-
der all three quantization/communication models described
above, for nmin{2k, d} ≥ d2, we have

sup
θ∈Θ

E[‖θ̂(M)− θ‖2] ≥ C max

{
d

n2k
,

1

n

}
for any quantization strategy and estimator θ̂ where C > 0
is a universal constant independent of n, k, d.

The lower bounds from Corollaries 1 and 3 match those
from [1]. Corollary 3 matches the upper bound from the
achievable scheme in [2], while Corollary 1 matches the
upper bound from [14] if we are allowed to use the interactive
or blackboard models. The bound in Corollary 2 is new, and
it is an unknown whether or not it is order optimal.

IV. THE MOST FISHER-INFORMATIVE BIT

Consider the Gaussian location model with k = 1 bit of
information about a sample X . In this model, the distribution
f(x|θ) is a Gaussian with known covariance σ2Id and mean
θ. The score function is

Sθ(X) =
1

σ2
(θ −X)

which is a Gaussian with covariance 1
σ2 Id and mean zero. For

general k, the problem of finding exactly which quantization
function b maximizes Tr(IM (θ)) for some θ is a difficult
optimization problem. However, when k = 1 we can show
that Tr(IM (θ)) is maximized when the two quantization
bins b−1(1) and b−1(2) are complementary half-spaces. We
show this by explicitly determining the maximal value of



‖E[Sθ(X)|m]‖ from the right-hand side of (1) for fixed
t = p(m|θ). For convenience, consider only deterministic
quantization maps bm(x) ∈ {0, 1}. By the convexity of
‖E[Sθ(X)bm(X)]‖ in bm, this suffices for the stochastic
quantization case as well.

Let φ be the standard normal distribution. We have the
following theorem (whose proof is omitted due to space
constraints):

Theorem 3: Let Y ∼ N (0, Id). Over all subsets A with
E[1A(Y )] = t, the magnitude of the vector E[Y |A] is
maximized when A is a half-space. In this case,

‖E[Y |A]‖ =
φ(Q−1(t))

t

where Q is the Q-function defined by

Q(τ) =

∫ ∞
τ

φ(x)dx .

Note that Theorem 3 only solves the problem of finding
one bin b−1(m) that is optimal, but it does not solve the
problem of jointly optimizing all of the bins that must
partition the space of possible X-values. However, when
k = 1 there are only two quantization bins b−1(1) and
b−1(2). When one bin is a half-space with probability t,
the other bin must be its complementary half-space with
probability 1 − t. Furthermore, a quantization scheme that
partitions the X-values into two half-spaces also partitions
the Sθ(X)-values into two half-spaces. Such a scheme will
jointly maximize both terms in the sum

Tr(IM (θ)) =

d∑
i=1

[IM (θ)]i,i

= t‖E[Sθ(X)|M = 1]‖2

+ (1− t)‖E[Sθ(X)|M = 2]‖2

so by Theorem 3,

Tr(IM (θ)) =
1

tσ2
g1(Q−1(t))2

+
1

(1− t)σ2
g1(Q−1(1− t))2 .

This one-parameter expression has its maximum at t = 1/2
where

Tr(IM (θ)) =
2

πσ2
.

Therefore the one-bit quantization scheme that maximizes
the trace of the Fisher information is given by two half-
spaces whose defining hyperplane in Sθ(X)-space intersects
the origin, and this corresponds to two half-spaces in X-
space whose defining hyperplane intersects the true value of
θ.

APPENDIX

A. Proofs of Theorems 1 and 2

Consider some m and fix its likelihood t = p(m|θ). We
will proceed by upper-bounding ‖E[Sθ(X)|m]‖ from the

right-hand side of (1). Note that

E[Sθ(X)|m] =
E[Sθ(X)bm(X)]

t

where E[bm(X)] = t and 0 ≤ bm(x) ≤ 1 for all x ∈ X . We
use 〈·, ·〉 to denote the usual inner product.

For some fixed m and t = p(m|θ), let U be a d-by-d
orthogonal matrix with columns u1, u2, . . . , ud and whose
first column is given by

u1 =
1

‖E[Sθ(X)|m]‖
E[Sθ(X)|m] .

We have

tE[Sθ(X)|m] =

∫
Sθ(x)bm(x)f(x|θ)dν(x)

=

∫ ( d∑
i=1

ui〈ui, Sθ(x)〉

)
bm(x)f(x|θ)dν(x)

=

d∑
i=1

(∫
〈ui, Sθ(x)〉bm(x)f(x|θ)dν(x)

)
ui

and since u2, . . . , ud are all orthogonal to E[Sθ(X)|m],

E[Sθ(X)|m] =
1

t

(∫
〈u1, Sθ(x)〉bm(x)f(x|θ)dν(x)

)
u1 .

Therefore,

‖E[Sθ(X)|m]‖ =
1

t
E[〈u1, Sθ(X)〉bm(X)] . (9)

1) Proof of Theorem 1: To finish the proof of Theorem 1,
note that the upper bound Tr(IM (θ)) ≤ Tr(IX(θ)) follows
easily from the data processing inequality for Fisher infor-
mation [10]. Using (9) and the Cauchy-Schwarz inequality,

t‖E[Sθ(X)|m]‖2 =
1

t
(E[〈u1, Sθ(X)〉bm(X)])

2

≤ 1

t
E[〈u1, Sθ(X)〉2]E[bm(X)2]

≤ 1

t
E[〈u1, Sθ(X)〉2]E[bm(X)]

= E[〈u1, Sθ(X)〉2] .

So if var〈u1, Sθ(X)〉 ≤ I0, then because score functions
have zero mean,

t‖E[Sθ(X)|m]‖2 ≤ I0 .

Therefore by Lemma 2,

Tr(IM (θ)) ≤ 2kI0 .

2) Proof of Theorem 2: Turning to Theorem 2, we now
assume that for some p ≥ 1 and any unit vector u ∈ Rd,
the random vector 〈u, Sθ(X)〉 has finite Ψp norm less than
or equal to N . For p = 1 or p = 2, this is the common
assumption that Sθ(X) is sub-exponential or sub-Gaussian,
respectively, as a vector.

In particular 〈u1, Sθ(X)〉 has ‖〈u1, Sθ(X)〉‖Ψp ≤ N , and



2 ≥ E[exp((|〈u1, Sθ(X)〉|/N)p)]

≥ E[exp((〈u1, Sθ(X)〉/N)p)]

≥ E[bm(X) exp((〈u1, Sθ(X)〉/N)p)]

≥ tE[exp((〈u1, Sθ(X)〉/N)p)|m]

≥ t exp

((
1

N
E[〈u1, Sθ(X)〉|m]

)p)
so that

E[〈u1, Sθ(X)〉|m] ≤ N
(

log

(
2

t

)) 1
p

.

Therefore by (9),

‖E[Sθ(X)|m]‖ ≤ N
(

log

(
2

t

)) 1
p

. (10)

By Lemma 2

Tr(IM (θ)) =
∑
m

p(m|θ)‖E[Sθ(X)|m]‖2 ,

and therefore by (10)

Tr(IM (θ)) ≤
∑
m

N2p(m|θ)
(

log

(
2

p(m|θ)

)) 2
p

.

To bound this expression we will use the following proper-
ties:
(i) x 7→ x

(
log 2

x

) 2
p is concave for 0 ≤ x ≤ 2e

p−2
p

(ii) x
(
log 2

x

) 2
p ≤ 2e−

2
p

(
2
p

) 2
p

for 0 ≤ x ≤ 1

(iii)
∑
m p(m|θ) = 1

There can be at most one m-value such that p(m|θ) ≥ 2e
p−2
p ,

so we’ll call such a term m0, separate it out, and treat it
separately.∑
m

p(m|θ)
(

log

(
2

p(m|θ)

)) 2
p

≤ 2e−
2
p

(
2

p

) 2
p

+
∑
m6=m0

p(m|θ)
(

log

(
2

p(m|θ)

)) 2
p

(11)

≤ 2e−
2
p

(
2

p

) 2
p

+

(2k − 1)
∑
m 6=m0

1

2k − 1
p(m|θ)

(
log

(
2

p(m|θ)

)) 2
p

≤ 2e−
2
p

(
2

p

) 2
p

+
(
log
(
2(2k − 1)

)) 2
p (12)

≤ 8

e2
+ (k + 1)

2
p (13)

In (11) we separate out the possible m0 such that p(m0|θ) ≥
2e

p−2
p and then use property (ii) to bound that specific term.

Then (12) follows from Jensen’s inequality and the concavity
described in property (i). Setting C large enough so that (13)
is less than or equal to Ck

2
p completes the proof.
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