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AN EXPONENTIAL SEPARATION BETWEEN RANDOMIZED AND
DETERMINISTIC COMPLEXITY IN THE LOCAL MODEL*
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Abstract. Over the past 30 years numerous algorithms have been designed for symmetry
breaking problems in the LOCAL model, such as maximal matching, MIS, vertex coloring, and edge
coloring. For most problems the best randomized algorithm is at least exponentially faster than
the best deterministic algorithm. In this paper we prove that these exponential gaps are necessary
and establish numerous connections between the deterministic and randomized complexities in the
LOCAL model. Each of our results has a very compelling take-away message: Fast A-coloring of trees
requires random bits. Building on a recent randomized lower bound of Brandt et al. [A lower bound
for the distributed Lovdsz local lemma, in Proceedings of the 48th ACM Symposium on Theory of
Computing (STOC), ACM, New York, 2016, pp. 479-488], we prove that the randomized complexity
of A-coloring a tree with maximum degree A is O(loga logn + log* n) for any A > 55, whereas
its deterministic complexity is Q(loga n) for any A > 3. This also establishes a large separation
between the deterministic complexity of A-coloring and (A + 1)-coloring trees. There is a gap in the
deterministic complexity hierarchy. We show that any deterministic algorithm for a natural class of
problems that runs in O(1) 4 o(loga n) rounds can be transformed to run in O(log* n — log* A + 1)
rounds. If the transformed algorithm violates a lower bound (even allowing randomization), then
one can conclude that the problem requires Q(loga n) time deterministically. This gives an alternate
proof that deterministically A-coloring a tree with small A takes Q(loga n) rounds. Graph shattering
is necessary. We prove that the randomized complexity of any natural problem on instances of size n
is at least its deterministic complexity on instances of size v/logn. This shows that any randomized
O(1)+o(log s log n)-round algorithm can be derandomized to run in deterministically O(1)+o(loga n)
rounds and hence can be transformed to run in O(log* n — log* A + 1) rounds. This also shows that
a deterministic Q(loga n) lower bound for any problem (A-coloring a tree, for example) implies a
randomized Q(loga logn) lower bound. It illustrates that the graph shattering technique employed
in recent randomized symmetry breaking algorithms is absolutely essential to the LOCAL model.
For example, it is provably impossible to improve the 20(v1081087) terms in the complexities of the
best MIS and (A + 1)-coloring algorithms without also improving the 20(V1og ) _round Panconesi—
Srinivasan algorithms.
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1. Introduction. One of the central problems of theoretical computer science is
to determine the value of random bits. If the distinction is between computable versus
incomputable functions, random bits are provably useless in centralized models (Tur-
ing machines) [39]. However, this is not true in the distributed world! The celebrated
Fischer—Lynch—Paterson theorem [20] states that asynchronous deterministic agree-
ment is impossible with one unannounced failure, yet it is possible to accomplish with
probability 1 using randomization. See Ben-Or [6] and [10, 37, 26]. There are also
a number of basic symmetry breaking tasks that are trivially impossible to solve by
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identical, synchronized, deterministic processes—for example, medium access control
to an Ethernet-like channel.

In this paper we examine the value of random bits in Linial’s [31] LOCAL model.
For the sake of clarity, we bifurcate the LOCAL model into two models, RandLOCAL
and DetLOCAL. In both models the graph G = (V, E) represents the topology of
the communication network. KEach vertex hosts a processor, and all vertices run
the same algorithm. Each edge supports communication in both directions. The
computation proceeds in synchronized rounds. In a round, each processor performs
some computation and sends a message along each incident edge, which is delivered

before the beginning of the next round. Each vertex v is initially aware of its degree
def

deg(v) and certain global parameters such as n %ef V], A = A(G) = maxyey deg(v),

and possibly others.! In the LOCAL model the only measure of efficiency is the

number of rounds. All local computation is free, and the size of messages is unbounded.

Henceforth “time” refers to the number of rounds.

DetLOCAL: In order to avoid trivial impossibilities, all vertices are assumed to hold
unique O(logn)-bit IDs. Except for the registers holding deg(v) and ID(v),
the initial state of v is identical to every other vertex. The algorithm executed
at each vertex is deterministic.

RandLOCAL: In this model each vertex may locally generate an unbounded number
of independent truly random bits. However, there are no globally shared
random bits. Except for the register holding deg(v), the initial state of v
is identical to every other vertex. Algorithms in this model operate for a
specified number of rounds and have some probability of failure, the definition
of which is problem specific. We usually only consider algorithms whose global
probability of failure is at most 1/poly(n).

Observe that the lack of IDs in RandLOCAL is not a practical limitation. Before
the first round each vertex can locally generate a random ©O(logn)-bit ID, which
is unique with probability 1 — 1/poly(n). For technical reasons it is convenient to
assume that vertices are not initially differentiated by IDs. Notice that the role of
n is different in the two LOCAL models: in DetLOCAL it only affects the ID length,
whereas in RandLOCAL it only affects the failure probability.

Early work in the LOCAL models suggested that randomness is of limited help.
Naor [32] showed that Linial’s Q(log" n) lower bound [31] for 3-coloring the ring holds
even in RandLOCAL. Naor and Stockmeyer [33] proved that the class of problems
solvable by O(1)-round algorithms is the same in RandLOCAL and DetLOCAL. See
also [17] for a generalization of this result. However, in the intervening decades we
have seen dozens of examples of symmetry breaking? algorithms for RandLOCAL that
are substantially faster than their counterparts in DetLOCAL; see [5] for an extensive
survey or Table 1.1 for a glimpse at three archetypal problems: MAXIMAL INDEPEN-
DENT SET (MIS), maximal matching, and (A + 1)-coloring.

Graph shattering. The randomized algorithms in Table 1.1 are exponentially
faster than their deterministic counterparts in two ways. Their dependence on A
is exponentially faster, and their dependence on n is usually identical to the best

deterministic complexity, but for poly(logn)-size instances. For example, 20(Vlogn)

IThe assumption that global parameters are common knowledge can sometimes be removed; see
Korman, Sereni, and Viennot [28].

2Informally, the term symmetry breaking refers to any distributed task whose valid solution satis-
fies that the output of the vertices in N(v)U{v} cannot be all the same (e.g., MAXIMAL INDEPENDENT
SET (MIS), maximal matching, and (A + 1)-coloring).
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TABLE 1.1
The impact of “graph shattering” on three archetypal symmetry breaking problems.

Problem Model and result
MIS DetLOCAL: O (min {A + log* n, 20(vVIegn) }) (4, 35]
RandLOCAL: O (log A + 20(VogTog ">) [22]
Lower Bound: Q( min {«/log n/loglogn, log A/loglog A + log* n})
30, 31, 32]
Maximal DetLOCAL: O(min {A + log* n, log? Alog n}) [34, 18]
matching
RandLOCAL: O(log A + log® log n) [5]
Lower Bound: Q (min { v/1logn/loglogn, log A/loglog A + log* n})
[30, 31, 32]
(A + 1)- | DetLOCAL: O(min {\/A Tog Alog* A + log* n, 20(vlogn) }) (3, 21, 35]
coloring
RandLOCAL: 20 (Vloglogn) [13]
Lower Bound: Q(log* n) [31, 32]

becomes 20(VIoglogn) and O(log? Alogn) becomes O(log®logn). This second phe-
nomenon is no coincidence! It is a direct result of the graph shattering approach to
symmetry breaking used in [5] and further in [7, 14, 16, 22, 24, 25, 29, 36]. The idea
is to apply a randomized procedure that fixes some fragment of the output (e.g., part
of the MIS is fixed, part of the coloring is fixed, etc.), thereby effectively removing a
large fraction of the vertices from further consideration. If it can be shown that the
connected components in the subgraph still under consideration have size poly(logn),
one can revert to the best available deterministic algorithm and solve the problem on
each component of the “shattered” graph in parallel.

Lower bounds in the LOCAL model. Until recently, the main principle used to
prove lower bounds in the LOCAL model was indistinguishability. The first application
of this principle was by Linial [31] himself, who argued that any algorithm for coloring
A-regular trees either uses Q(A/log A) colors or takes Q(loga n) time. The proof is
as follows: (i) in o(loga n) time, a vertex cannot always distinguish whether the input
graph G is a tree or a graph with girth Q(loga n); (ii) for all A and all n, there exists a
A-regular graph with girth Q(log, n) and chromatic number x = Q(A/log A); hence?
(iii) any o(loga m)-time algorithm for coloring trees could also color such a graph and
therefore must use at least x colors.

A more subtle indistinguishability argument was used by Kuhn, Moscibroda, and
Wattenhofer [30], who showed that O(1)-approximate vertex cover, maximal match-
ing, MIS, and several other problems have Q(min{log A/loglog A, \/logn/loglogn})
lower bounds. Recently, Bar-Yehuda, Censor-Hillel, and Schwartzman [1] showed that
a (2+¢)-approximate vertex cover can be found in O(log A/loglog A) time, matching
the above lower bound.

By its nature, indistinguishability is not very good at separating randomized
and deterministic complexities. Very recently, Brandt et al. [11] developed a lower
bound technique that explicitly incorporates error probabilities and proved that sev-
eral problems on graphs with constant A take Q(loglogn) time in RandLOCAL (with
error probability 1/poly(n)) such as sinkless orientation, sinkless coloring, and A-
coloring. Refer to section 2 for definitions of these problems. Since the existence

3Linial [31] actually only used the existence of A-regular graphs with high girth and chromatic

number Q(v/A). See [8] for constructions with chromatic number Q(A/log A).
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of a sinkless orientation can be proved with the Lovész local lemma (LLL), this
gave Q(loglogn) lower bounds on distributed algorithms for the constructive LLL.
See [12, 14, 19, 22, 23, 36] for upper bounds on the distributed LLL.

1.1. New results. In this paper we exhibit an exponential separation between
RandLOCAL and DetLOCAL for several specific symmetry breaking problems. More
generally, we give new connections between the randomized and deterministic com-
plexities of all locally checkable labeling (LCL) problems (refer to section 2 for a def-
inition of LCLs), a class that includes essentially any natural symmetry breaking
problem.

Separation of RandLOCAL and DetLOCAL. We extend Brandt et al.’s [11] random-

ized lower bound as follows: A-coloring A-regular graphs takes (loga logn)
time in RandLOCAL and Q(loga n) time in DetLOCAL. The hard graphs in
this lower bound have girth Q(loga n), so by the indistinguishability principle,
these lower bounds also apply to A-coloring trees.
On the upper bound side, Barenboim and Elkin [2] showed that for A > 3,
A-coloring trees takes O(logs n+log” n) time in DetLOCAL. We give an ele-
mentary proof that for A > 55, A-coloring trees can be done in O(loga log n+
log™ n) time in RandLOCAL, matching Brandt et al.’s [11] lower bound up to
a log*n additive term. A more complicated algorithm for A-coloring trees
could be derived from [36] for A > Ay and some very large constant Ag.%

There is a gap in the deterministic complexity hierarchy. We prove the exis-
tence of a large “gap” in the spectrum of possible complexities in DetLOCAL.
The proof shows that any f(A)+ o(loga n) time algorithm for an LCL prob-
lem can be transformed in a black box way to run in O((1 + f(A))(log* n —
log* A + 1)) time. Thus, on bounded-degree graphs, there are no “natural”
deterministic time bounds between w(log®n) and o(logn). Any w(log” n)
lower bound for bounded degree graphs (in either RandLOCAL or DetLOCAL)
immediately implies an Q(logn) lower bound in DetLOCAL. For small A, this
gives an alternate proof that A-coloring trees takes Q(loga n) time.

This reduction can be parameterized in many different ways. For example, if
one were to develop a deterministic O(y/logn/loglog n)-time MIS or maximal
matching algorithm—matching one of the Kuhn-Moscibroda—Wattenhofer
(KMW) [30] lower bounds—it would immediately imply an O((log A/loglog A)-
(log™ n — log™ A + 1))-time MIS/maximal matching algorithm, which almost
matches the other KMW lower bound. We show that any O(logl_k%1 n)-
time DetLOCAL algorithm for an LCL problem can be transformed to run
in O(log” A(log* n — log™ A 4 1)) time. By some strange coincidence, [5]
gave an analogous reduction for MIS/maximal matching in bounded arboric-
ity graphs, but for RandLOCAL and in the reverse direction. Specifically,
any O(log® A + f(n))-time RandLOCAL MIS/maximal matching algorithm

for general graphs can be transformed into an O(logl_kTlrl n + f(n))-time
RandLOCAL algorithm for bounded arboricity graphs.

Graph shattering is necessary. We prove that the RandLOCAL complexity for any
LCL problem on instances of size n is at least its DetLOCAL complexity on

4The reason we are interested in minimizing the A9 < A for which the algorithm works is
somewhat technical. It seems as if A-coloring trees is a problem whose character makes a qualitative
transition when A is a small enough constant. Using our technique (graph shattering), we may be
able to replace 55 with a smaller constant, but not too small. Any algorithm that 3-colors 3-regular
trees, for example, will need to be qualitatively very different in its design.
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instances of size y/logn. This reverses the implication proved above. For
example, if we begin with a proof that A-coloring takes Q(loga n) time
in DetLOCAL, then we conclude that it must take (loga logn) time in
RandLOCAL.

This result has a very clear take-away message: the graph shattering tech-
nique applied by recent randomized symmetry breaking algorithms [5, 14,
16, 22, 25, 7, 29, 36] is inherent to the RandLOCAL model, and every opti-
mal RandLOCAL algorithm for instances of size n must, in some way, encode
an optimal DetLOCAL algorithm on poly(logn)-size instances. It is there-
fore impossible to improve the 20(v1°g1ogn) termg in the RandLOCAL MIS
and coloring algorithms of [5, 22, 25, 13, 16] without also improving the
20(VIogn)_time DetLOCAL algorithms of Panconesi and Srinivasan [35], and
it is impossible to improve the O(log®logn) term in the RandLOCAL maxi-
mal matching algorithm of [5, 18] without also improving the O(log?® Alogn)
DetLOCAL maximal matching algorithm of [18].

Moreover, this result shows that any randomized O(1) + o(loga log n)-round
algorithm can be derandomized to run in deterministically O(1) 4 o(loga n)
rounds and hence can be transformed to run in O(log"* n—log™ A+ 1) rounds.
This implies the existence of a gap in the complexities in the RandLOCAL
model.

2. Preliminaries.

Notation. For a graph G = (V, E) and for u,v € V, let distg (v, u) be the distance
between v and w in G. Let N(v) = {u | (v,u) € E} be the neighborhood of v and
let N"(v) = {u | distg(v,u) < r} be the set of all vertices within distance r of v,
including v. Throughout the paper, logn is the logarithm to the base 2, i.e., log, n.

Locally checkable labeling. The class of locally checkable labeling (LCL) [33] prob-
lems is intuitively those graph problems whose solutions can be verified in O(1) rounds,
given a suitable labeling of the graph. Formally, an LCL problem is defined by a fixed
radius r, a fixed set X of vertex labels, and a set C of acceptable labeled subgraphs.
For any legal solution I to the problem there is a labeling Ay : V — ¥ that encodes
I (plus possibly other information) such that for each v € V, the labeled subgraph
induced by N"(v) lies in C. Moreover, for any nonsolution I’ to the problem, there
is no labeling A;» with this property. The following symmetry breaking problems are
LCLs for r = 1.

e MAXIMAL INDEPENDENT SET (MIS). Given a graph G = (V, E), find a set
I C V such that for any vertex v € V, we have N(v)NI =0 iff v € I.

e k-COLORING. Given a graph G = (V, E), find a labeling V' — {1,2,...,k}
such that for each edge {u,v} € E, v and v are labeled with different numbers
(also called colors).

For MIS it suffices to label vertices with ¥ = {0, 1} indicating whether they are
in the MIS. For k-COLORING we use ¥ = {1,...,k}. The definition of LCLs is easily
generalized to the case where the input graph G is supplemented with some labeling
(e.g., an edge coloring) or where X labels both vertices and edges. Brandt et al. [11]
considered the following problems.

e A-SINKLESS COLORING. Given a A-regular graph G = (V, E) and a proper
A-edge coloring of E using colors in {1,2,...,A}, find a A-coloring of V
using colors in {1,2,...,A} such that there is no edge {u,v} € E for which
u, v, and {u,v} all have the same color.

e A-SINKLESS ORIENTATION. Given a A-regular graph G = (V,E) and a
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proper A-edge coloring of E, find an orientation of the edges such that all
vertices have out-degree > 1.

Observe that both A-SINKLESS COLORING and A-SINKLESS ORIENTATION are
LCL graph problems with r = 1. For SINKLESS ORIENTATION ¥ = {—, <} encodes
the directions of all edges incident to a vertex, and the radius » = 1 is necessary and
sufficient to verify that the orientations declared by both endpoints of an edge are
consistent.

In this paper we require that the radius r and the number of labels |X| are both
constants. There exists some task that can be encoded by a constant radius LCL only
if nonconstant |X| is allowed. For instance, any LCL with » = 1 for a spanning tree
must have |X| = Q(poly(n)) (i.e., the length of label must be Q(logn)), and indeed
there is a labeling scheme matching the label complexity lower bound [27].

Linial’s coloring. In the DetLOCAL model the initial ©(logn)-bit IDs can be
viewed as an n®M-coloring of the graph. Our algorithms make frequent use of
Linial’s [31] coloring algorithm, which recolors the vertices using a smaller palette.
Notice that the O(logn)-bit IDs in DetLOCAL can be viewed as a poly(n)-coloring.

THEOREM 2.1 ([31]). Let G be a graph which has been k-colored.
e There is a DetLOCAL algorithm that computes a 5A? log k-coloring in one
round.
o There is a DetLOCAL algorithm that computes a 3-A2-coloring in O(log* k —
log* A + 1) time, where 8 > 0 is a universal constant.

3. The necessity of graph shattering. Theorem 3.1 establishes that the
graph shattering technique [5] is optimal and unavoidable in RandLOCAL. In par-
ticular, the randomized complexity of any symmetry breaking problem always hinges
on its deterministic complexity.

THEOREM 3.1. Let P be an LCL problem. Define Detp(n, A) to be the complexity
of the optimal deterministic algorithm for P in the DetLOCAL model, and define
Randp(n, A) to be its complexity in the RandLOCAL model, with global error probability
1/n. Then, for sufficiently large n,

Detp(n,A) < Randp (2"2,A).

Proof. Let Arand be a randomized algorithm for P. Each vertex running Agrang
generates a string of r(n, A) random bits and proceeds for ¢(n, A) rounds, where r
and t are two arbitrary functions. The probability that the algorithm fails in any way
is at most 1/n. Our goal is to convert Agang into a deterministic algorithm Ape in
the DetLOCAL model. Let G = (V, E) be the network on which Apet runs. Initially
each v € V knows n = |V|, A, and a unique ID(v) € {0,1}°1°¢". Let G,, o be the set
of all n-vertex graphs with unique vertex IDs in {0,1}¢°2" and maximum degree at
most A. Since ¢ is a constant, for sufficiently large n,

2d£fN

)

G0l < 2 enonn o

regardless of A.

Imagine simulating Agang on a graph G’ € G, o whose vertices are given input
parameters (N, A); that is, we imagine G’ is disconnected from the remaining N —n
vertices. The probability that Agrang fails on an N-vertex graph is at most 1/N, so
the probability that any vertex in G’ witnesses a failure is also certainly at most 1/N.

Suppose we select a function ¢ : {0, 1}¢1°8™ — {0,1}"V+A) uniformly at random
from the space of all such functions. Define Apet[¢] to be the deterministic algorithm
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that simulates Agang for t(N, A) steps, where the string of random bits generated by
v is fixed to be ¢(ID(v)). We shall call ¢ a bad function if Apet[¢] fails to compute
the correct answer on some member of G, A. By the union bound,

Pr(¢ is bad) < Z Pr(Apet[¢] errs on G')
¢ G'€Gn,A ¢

Z Pr(Agand errs on G, with input parameters (N, A))
G'€Gn,a

<|Gnal| /N < 1.
Thus, there exists some good ¢. Any ¢ can be encoded as a long bit-string (¢) def
#(0)p(1) - -- p(2¢1°8™ — 1). Define ¢* to be the good function for which (¢*) is lexico-
graphically first.

The algorithm Ape; is as follows. Each vertex v, given input parameters (n, A),
first computes N = 2"2,t(N, A),r(N,A) and then performs the simulations of ARgand
necessary to compute ¢*. Once ¢* is computed, it executes Apet[¢p*] for (N, A)
rounds. By definition, Apet[¢*] never errs when run on any member of G, a.

By the definition of LCL, the problem P does not depend on n. Therefore, the
output resulting from a successful execution of Agrang with input parameters (N, A)
is also a legal solution when the input parameters are (n, A). Therefore, the output
of Apet is guaranteed to be a legal solution. 0

Remark 1. Theorem 3.1 works equally well when ¢ and r are functions of n, A,
and possibly other quantitative global graph parameters. For example, the time may
depend on measures of local sparsity (as in [16]), arboricity /degeneracy (as in [2, 5]),
or neighborhood growth (as in [38]).

Remark 2. The role of the LCL assumption in the proof of Theorem 3.1 is to make
sure that P does not depend on n. This rules out some silly tasks. For example, if P
were the task that asks each vertex v to report the number of vertices in N \/m(v),
then clearly P is not an LCL, and the RandLOCAL and DetLOCAL complexities of P

are both O(y/logn).

Naor and Stockmeyer [33] proved that the class of truly local (O(1)-time) prob-
lems in RandLOCAL and DetLOCAL is identical for bounded A. Theorem 3.1 offers
a slight improvement over the Naor-Stockmeyer derandomization, since log*n and
log™(y/log n) differ by a constant.

COROLLARY 3.2. Any RandLOCAL algorithm for an LCL taking t(n) = 208" )
time can be derandomized without asymptotic penalty. The corresponding DetLOCAL
algorithm runs in O(t(n)) time.

4. Lower bounds for A-coloring A-regular trees. In this section we prove
that on A-regular graphs with girth Q(loga n), A-coloring takes Q(loga logn) time
in RandLOCAL and Q(loga n) time in DetLOCAL. Since the girth of the graphs used
to prove these lower bounds is Q(loga n), by the indistinguishability principle they
also apply to the problem of A-coloring trees.

Sinkless coloring and sinkless orientations. Brandt et al. [11] proved 2(loglogn)
lower bounds on RandLOCAL algorithms that have a 1/poly(n) probability of failure,
for sinkless coloring and sinkless orientation of 3-regular graphs. We say that a sinkless
coloring algorithm A has failure probability p if, for each individual edge e = {u, v},
the probability that color(u) = color(v) = color({u,v}) is at most p. Thus, by the
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union bound, the global probability of failure is at most p|F|. We say that a sinkless
orientation algorithm A has failure probability p if, for each v € V', the probability
that v is a sink is at most p. We say that monochromatic edges and sinks are forbidden
configurations for sinkless coloring and sinkless orientation, respectively.

The following two lemmas are proven in [11] for A = 3. Tt is straightforward to
go through the details of the proof and track the dependence on A.

LEMMA 4.1 ([11]). Let G = (V,E,v) be a A-regular graph with girth g that
is equipped with a proper A-edge coloring 1. Suppose that there is a RandLOCAL
algorithm A for A-SINKLESS COLORING taking t < % rounds such that for each
e € E, A outputs a forbidden configuration at e with probability at most p. Then
there is a RandLOCAL algorithm A’ for A-SINKLESS ORIENTATION taking t rounds
such that for each v € V., A’ outputs a forbidden configuration at v with probability
at most 2Apt/3.

LEMMA 4.2 ([11]). Let G = (V,E,v) be a A-regular graph with girth g that
is equipped with a proper A-edge coloring 1. Suppose that there is a RandLOCAL
algorithm A’ for sinkless orientation taking t < % rounds such that for each v € V,
A’ outputs a forbidden configuration at v with probability at most p. Then there is a
RandLOCAL algorithm A for A-SINKLESS COLORING taking t — 1 rounds such that

for each e € E, A outputs a forbidden configuration at e with probability at most
4pl/(A+1)

The following theorem generalizes Corollary 25 in [11] to allow nonconstant A
and arbitrary failure probability p.

THEOREM 4.3. Any RandLOCAL algorithm for A-coloring a graph with degree at
most A and error probability p takes at least t = min{elogs 1) In(1/p), €logan}—1
rounds for a sufficiently small constant € > 0.

Proof. We assume that €loggia,q) In(1/p) > 1, since otherwise the theorem is
trivial as ¢t < 0. For any A > 3 there exists a bipartite A-regular graph with girth
Q(loga n); see [15, 9]. Such graphs are trivially A-edge colorable. Moreover, any
A-coloring of such a graph is also a valid A-SINKLESS COLORING. Applying Lem-
mas 4.1 and 4.2, we conclude that any t-round A-SINKLESS COLORING algorithm with
error probability p can be transformed into a (¢ — 1)-round A-SINKLESS COLORING
algorithm with error probability ZL(QA)A#+1 pm < 7pm. Iterating this process
t times, it follows that there exists a 0-round A-SINKLESS COLORING algorithm with
failure probability O(p(m)t). Notice that

clogg(a1) n(1/p)

plaam)’ < pleaem) = pI/P)™" = exp(—(In(1/p))* ™).
Because the graph is A-regular and the vertices are undifferentiated by IDs, any 0-
round RandLOCAL algorithm colors each vertex independently according to the same
distribution. The probability that any vertex is involved in a forbidden configuration
(a monochromatic edge) is therefore at least 1/A2. Since €logsay1yn(l/p) > 1 we
have A < In(1/p), but

% > exp(—2InIn(1/p)) > exp (— (ln(l/p))l_e) :

This is a contradiction since we obtain a 0-round A-SINKLESS COLORING algorithm
with failure probability less than 1/A2. Thus, there is no RandLOCAL A-SINKLESS
COLORING algorithm that takes ¢-rounds and errs with probability p. 0
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Corollary 4.4 is an immediate consequence of Theorem 4.3.

COROLLARY 4.4. Any RandLOCAL algorithm for A-coloring a graph with global
error probability 1/poly(n) takes Q(loga logn) time.

Theorem 4.3 does not immediately extend to DetLOCAL. It is tempting to feel
that setting p = 0 yields a Q(loga n) DetLOCAL lower bound. But this is not a
correct inference. Recall that in the DetLOCAL model vertices are initially endowed
with O(log n)-bit IDs, whereas in RandLOCAL they are undifferentiated, and the naive
way of generating such IDs in RandLOCAL has failure probability 1/poly(n).

THEOREM 4.5. Any DetLOCAL algorithm that A-colors A-regular graphs with
girth Q(loga n) or A-reqular trees requires Q(loga n) time.

Proof. Let Apet be a DetLOCAL algorithm that A-colors a graph in t = t(n, A)
rounds, and let G be the input graph. We construct a RandLOCAL algorithm Agang
taking O(t) rounds as follows. Before the first round each vertex locally generates a
random n-bit ID. Assume for the time being that these IDs are unique and therefore
constitute a 2"-coloring of G. Let G’ = (V,{{u,v} | distg(u,v) < 2t + 1}).5 The
maximum degree A’ in G’ is clearly less than n. We apply one step of Linial’s
recoloring algorithm (Theorem 2.1) to G’ and obtain a coloring with palette size
O(A%10g(2™)) = O(n?). A step of Linial’s algorithm in G’ is simulated in G using
O(t) time. Using these colors as (3logn + O(1))-bit IDs, we simulate Apet in G for ¢
steps. Since no vertex can see two vertices with the same ID, this algorithm necessarily
behaves as if all IDs are unique. Observe that because Ape; is deterministic, the
only way ARrand can err is if the initial n-bit IDs fail to be unique. This occurs with
probability p < n?/2". By Theorem 4.3, Arand takes Q(min{logx log(1/p), loga n}) =
Q(loga n) time. d

5. Gaps in deterministic and randomized time complexity. The time hi-
erarchy theorem informally says that a Turing machine can solve more problems given
more time. A similar question can be asked in the setting of distributed computation.
For example, are there natural or contrived problems with DetLOCAL complexity
O((log* n)?), O(loglogn), or © (v/logn), when A = O(1)? In this section, we demon-
strate a general technique that allows one to speed up deterministic algorithms in the
DetLOCAL model. Based on this technique, we demonstrate the existence of a “gap”
in possible DetLOCAL and RandLOCAL complexities, answering the above question in
the negative.

A graph class is hereditary if it is closed under removing vertices and edges.
Examples of hereditary graph classes are general graphs, forests, bounded arboricity
graphs, triangle-free graphs, and planar graphs. We prove that, for graphs with
constant A, the DetLOCAL complexity of any LCL problem on a hereditary graph
class is either Q(logn) or O(log™ n). Moreover, if the hereditary graph class is also
closed under taking disjoint union, then the RandLOCAL complexity of any LCL
problem is either (loglogn) or O(log" n).

THEOREM b5.1. Let P be an LCL graph problem with parameters r, ¥, and C,
and let A be a DetLOCAL algorithm for solving P. Let B be the universal constant

5The parameter 2t + 1 is explained as follows. Whether an edge e = {u,v} is monochromatic
depends on the colors of u and v, and this depends on the graph topology and the IDs in the subgraph
induced by N¢(u)UN?(v). If all vertices in N*(u) UN!(v) have distinct IDs, u and v must be colored
differently. Notice that the maximum distance within N¢(u) U Nt(v) is 2¢t 4+ 1. In general, for LCL
of radius 7, a deterministic algorithm works correctly as long as all vertices within distance 2t 4 27
have distinct IDs.
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from Theorem 2.1. Suppose that the runtime of A on an n-vertex graph taken from a
hereditary graph class is at most f(A)+eloga n, where f(A) >0 and e = m
is a constant. Then there exists a DetLOCAL algorithm A’ that solves P on the same

instances in O (1 + f(A))(log™ n —log" A+ 1)) time.

Proof. Notice that for any instance of P with n vertices and ID length ¢, it must
be that ¢ > logn, and so the running time of A on such instances is bounded by
T(A€) < f(A) + 525

Let G = (V, E) be a graph in a hereditary graph class. The algorithm A’ on G
works as follows. Let 7 = 1 + log 8 be a constant. We use Linial’s coloring technique
to produce short IDs of length ¢ that are distinct within distance 4f(A) + 27 + 27.

Let G’ = (V, E’) be the graph with

E = {{u,v} € (‘2/) ‘ distg(u,v) < 4f(A) + 27+ 21"}.

The maximum degree in G’ is clearly at most A*/(A)+27+2r  EFach vertex u € V
simulates G’ by collecting N4/ (A)+274+27 (4} in O(f(A) + 7 +r) time.

We simulate the algorithm of Theorem 2.1 on G’ by treating each of the £-bit
IDs of vertices in V as a color. This produces a 3 - A8/ (A)+47+47_coloring, which is
equivalent to identifiers of length ¢ = (8 f(A) 447 +4r)log A +1log 8. Although these
identifiers are not globally unique, they are distinct in N2/(2)+7+7(3,) for each vertex
u € V. The time complexity of this process is

Af(A)+27+2r)-O(log"n—log" A+1).

Finally, we apply A on G while implicitly assuming that the graph size is 2¢ and
using the shorter IDs. The runtime of this execution of A is

el e((8f(A) + 471 + 4r)log A + log 3)
f(A)+10gA—f(A)+ g A
— (14 89f() + 1+ 50 (47 +4r) = 1
<(1+8)f(A)+ 7 logA>1e<1
2
< 2f(A) +T. 8€:T+r§1

Whether the output labeling of u € V' is legal depends on the labeling of the ver-
tices in N"(u), which depends on the graph structure and the IDs in N2f(A)+r+r (u).
Due to the hereditary property of the graph class under consideration, for each u € V,
N2F(B)+747(4;) is isomorphic to a subgraph of some 2% vertex graph in the same class.
Moreover, the shortened IDs in N2f (A)JFTJ”’(U) are distinct. Therefore, it is guaran-
teed that the output of the simulation is a legal labeling.

The total time complexity is

(Af(A)+27+2r)-O(log"n —log" A+ 1)+ 2f(A)+ 7
=0 ((1+4 f(A))(log"n —log" A +1)). 0
Combining Theorem 5.1 with Corollary 4.4 and setting f(A) = O(1) provides a
new proof of Theorem 4.5 for small enough A. To see this, notice that any lower

bound for the RandLOCAL model with error probability 1/poly(n) can be adapted
to DetLOCAL since we can randomly pick O(logn)-bit IDs that are distinct with
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probability 1 — 1/poly(n). From Corollary 4.4 any DetLOCAL algorithm that A-
colors a A-regular tree requires Q(loga logn) time. However, Theorem 5.1 states
that any DetLOCAL algorithm running in O(1) + o(loga n) time can be sped up
to run in O (log* n —log” A + 1) time. This contradicts the lower bound whenever
loga logn > log*n —log" A + 1. Hence A-coloring a A-regular tree takes Q(loga n)
time in DetLOCAL for small enough A such that log logn > log* n — log" A + 1.

Theorem 5.1 implies that the deterministic time complexity of any LCL problem
is either O ((1 4 f(A))(log" n —log™ A + 1)) or Q(f(A)+loga n). In particular, when
A is a constant, Theorem 5.1 implies the following corollary.

COROLLARY 5.2. The DetLOCAL complezity of any LCL problem on any heredi-
tary graph class with A = O(1) is either Q(logn) or O(log* n).

A simple adaptation of the proof of Theorem 5.1 shows an even stronger dichotomy
when A = 2.

THEOREM 5.3. The DetLOCAL complezity of any LCL problem on any hereditary
graph class with A = 2 is either Q(n) or O(log™ n).

We remark that an intuitive explanation of the time complexity requirement in
Theorems 5.1 and 5.3 is that the diameter of a graph with maximum degree A is at
least Q(loga n) for A > 3 and Q(n) when A = 2. These theorems imply that any
LCL problem is either local (i.e., it can be solved in O(log™ n) time) or nonlocal (i.e.,
it needs diameter time on some instances), and there is nothing in between the two
extremes.

Combining Theorems 5.1 and 3.1 also yields a gap in the complexities of the
RandLOCAL model.

THEOREM 5.4. Let P be an LCL graph problem with parameters r, ¥, and C,
and let A be a RandLOCAL algorithm for solving P. Let G be a hereditary graph
class that is closed under taking disjoint union. Let B be the universal constant from
Theorem 2.1. Suppose that the runtime of A on an n-vertex graph taken from G is
at most f(A) + (e/2)loga logn, where f(A) >0 and ¢ = ngﬁ%" is a constant.
Then there exists a DetLOCAL algorithm A’ that solves P on the same instances in
O((1+ f(A)(log™n —log™ A+ 1)) time.

Proof. Since G is closed under taking disjoint union, by Theorem 3.1, for suffi-
ciently large n, the deterministic complexity of P is at most f(A)+(e/2) loga log 27" =
f(A) + €loga n. Since G is a hereditary graph class, by Theorem 5.1, there exists a
DetLOCAL algorithm A’ that solves P in O ((1+ f(A))(log" n —log™ A + 1)) time. O

Setting A = O(1) gives us the following corollary.

COROLLARY 5.5. Let G be any hereditary graph class with A = O(1) that is closed
under taking disjoint union. The RandLOCAL complexity of any LCL problem on G
is either Q(loglogn) or O(log™ n). Moreover, any O(log* n) algorithm can be imple-
mented in DetLOCAL.

Given a O(y/log n)-time deterministic algorithm, one may feel that it is possible
to use Theorem 5.1 to improve the time complexity to O(log*n) since /logn =
o(loga n) for the case A = exp(o(v/logn)). However, the class of graphs with A =
exp(o(y/logn)) is not hereditary, and so Theorem 5.1 does not apply. Nonetheless,
Linial’s coloring technique can be used to speed up algorithms with time complexity
of the form f(A) + g(n).

THEOREM 5.6. Let P be an LCL graph problem with parameters r, ¥, and C,
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and let A be a DetLOCAL algorithm for solving P. Let k be a number such that
0 < k < O(1). Suppose that the runtime of the algorithm A on an n-vertex graph

taken from a hereditary graph class is at most O(logk A—i—logk%l n). Then there exists
a deterministic algorithm A’ that solves P on the same instances in O(log® A(log* n—
log* A + 1)) time.

Proof. Let the ID length be ¢; then it must be that ¢ > logn, and so the running
time of A on such instances is bounded by €1 logk A+ Qék%l for some constants €, €5.

We set 7 = elog® A, with the parameter € to be determined. Similar to the proof
of Theorem 5.1, the algorithm A’ first produces shortened IDs that are distinct for
vertices within distance 27 + 2r and then simulates A on the shortened IDs in 7
rounds.

Let G' = (V, E’) be the graph with
o {{u,v} e(¥) ’ diste (u, v) < 27 + 2r}.

The maximum degree in G’ is at most A%27 2", Each vertex u € V simulates G’ by
collecting N27F2"(u) in O(7 + r) time.

We simulate the algorithm of Theorem 2.1 on G’ by treating each of the £-bit IDs
of vertices in V as a color. This produces a - A% +4"_coloring, which is equivalent
to identifiers of length ¢ = (47 + 4r)log A + log 8. Although these identifiers are
not globally unique, they are distinct in N7 (u) for each vertex u € V. The time
complexity of this process is

(274+2r)-O(log"n—log" A+1).

Finally, we apply A on G while implicitly assuming that the graph size is 2t
and using the shorter IDs. We set € as a large enough number such that e¢; +
es (d(e+ 7+ log,é’))’“%1 <e. Since 0 < k < O(1), we have e = O(1). The runtime of
this execution of A is

€1 logh A + €, ((’)’”‘%1 = e11log" A + e (47 4 4r) log A + logﬁ)k%1

k

k+1

< e logh A+ e (4(6 log® A + 7 +1log ) log A

k
E+1

<erlogh A+ ey (4(6 + 7+ log 3) loghtt A)

= (@1 + €2 (4 + 7 +10g )77 ) logh A
< elogk A

=T

Whether the output labeling of u € V is legal depends on the labeling of the
vertices in N"(u), which depends on the graph structure and the IDs in N™*"(u). Due
to the hereditary property of the graph class under consideration, for each u € V,
NT*7(u) is isomorphic to a subgraph of some 2% vertex graph in the same class.
Moreover, the shortened IDs in N7*"(u) are distinct. Therefore, it is guaranteed that
the output of the simulation is a legal labeling.

The total time complexity is at most

(27 4 2r) - O(log* n — log" A + 1) + 7 = O(log" A(log* n — log" A + 1)). 0
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A note about MIS lower bounds. Kuhn, Moscibroda, and Wattenhofer demon-
strated that for a variety of problems (including MIS) there is a lower bound of
Q(min{log A/loglog A, \/logn/loglogn}) rounds [30]. The lower bound graph they
used to prove this result has log A/loglog A = O(4/logn/loglogn). The proof frame-
work of Theorem 5.6 can be used to show that if there is a deterministic algorithm

A for MIS that runs in O(y/logn/loglogn) time, then there is another determin-
istic algorithm A’ running in O(log A/loglog A) - (log™ n — log" A + 1)) time. Let
the runtime of A be €14/¢/log¢ for ID length £. Set 7 = elog A/loglog A. Then
0 = (47 + 4r)log A + log B = O(log? A/loglog A). The runtime of A for ID length
0 is e14/€/1logl = €1 - y/€/loge- O(log A/loglog A) < 7, by choosing a large enough
constant e.

Interestingly, Barenboim et al. [5] showed that an MIS algorithm in RandLOCAL
running in O(logk A+ f(n)) time implied another RandLOCAL algorithm running in
O(log" X + 10g17ﬁ n + f(n)) time on graphs of arboricity A. This is analogous to
Theorem 5.6 but in the reverse direction.

6. Algorithms for A-coloring trees. In section 4, we showed that the problem
of A-coloring trees has an Q(loga n) DetLOCAL lower bound and an Q(loga logn)
RandLOCAL lower bound. These lower bounds have matching upper bounds, up to
an additive log™ n term.

The algorithm of Barenboim and Elkin [2] demonstrates that the deterministic
bound is essentially tight. They proved that A-coloring unoriented trees, where A > 3,
takes O(loga n+log™ n) time. This is actually a special case of their algorithm, which
applies to graphs of bounded arboricity A.

THEOREM 6.1 ([2]). For q > 3, there is a DetLOCAL algorithm for g-coloring
trees in O(log, n +log" n) time, independent of A.

Pettie and Su [36] gave randomized algorithms for (4 + o(1))A/In A-coloring
triangle-free graphs. Their algorithm makes extensive use of the distributed Lovasz
local lemma [14] and runs in Q(logn) time. Pettie and Su sketched a proof that
A-coloring trees takes O(loga logn + log* n) time, at least for sufficiently large A.

THEOREM 6.2 ([36]). There exists a large constant Ao such that when A > Ay,
there is a RandLOCAL algorithm for A-coloring trees in O(loga logn + log™ n) time.

The nature of the proof of Theorem 6.2 makes it difficult to calculate a specific
Ag for which the theorem applies. Moreover, the proof is only sketched, hidden inside
more complicated ideas. We address both of these issues. First, we provide a simple
algorithm and elementary proof of Theorem 6.2. Second, we prove Theorem 6.4, which
combines Theorem 6.2 with a new technique for constant A > 55, thereby providing
a randomized algorithm for A-coloring a tree that runs in O(logx logn +log™* n) time
for any constant A > 55.

6.1. A simple proof of Theorem 6.2. For a graph G = (V, E) we say that a
subset S C V is a distance-k set if the following two conditions are met:
1. The distance between any two distinct vertices u,v € S is at least k.
2. Define G¥ = (V, E¥), where there is an edge {u,v} € E* if and only if
distg(u,v) = k. Then S is connected in G*.
We make use of the following lemma in the proof of Theorem 6.2. While the proof of
this lemma is implicit in [5], we reproduce it here for the sake of clarity.

LEMMA 6.3 ([5]). The number of distinct distance-k sets of size t is less than
4t . - Ak(tfl)‘
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Proof. A distance-k set is spanned by a tree in G*. There are fewer than 4°
distinct unlabeled trees of ¢ vertices, and there are fewer than nA*‘¢—1 ways to
embed a t-vertex tree in G*. The lemma follows since there is an injective mapping
from the family of distance-k sets of size ¢ to subtrees of t vertices in G*. 0

Proof of Theorem 6.2. Our algorithm has two phases. The first phase, which
takes O(log* A) rounds, partially colors the graph using colors in {1,2,...,A —vA}.
The second phase, which takes O(loga logn + log* n) rounds, applies a deterministic
algorithm to v/A-color the remaining uncolored vertices using colors in {A - VA +
1,...,A}. We assume throughout the proof that A is at least a large enough constant.

Phase 1. The first phase of the algorithm takes O(log" A) rounds. In each round,
the algorithm attempts to color some uncolored vertices. We will explain soon how
uncolored vertices decide if they participate in a given round. In the beginning of
round i, for each vertex v € V, let ¥;(v) denote v’s available palette (i.e., the set
of colors that v can choose in round i), and let N;(v) denote the set of uncolored
vertices adjacent to v that are trying to color themselves in this round. Initially, we
set Ni(v) = N(v), and ¥y (v) = {1,2,...,A — A}, for all v. That is, in the first
round all vertices attempt to color themselves, and they all have the full palette of
this phase available for choices of a color.

We maintain the following two properties at each vertex v that is not marked bad
at round 4. Only nonbad vertices attempt to color themselves at round i:

Pi1(v): (Large Palette Property at v) [¥;(v)| > 5.
Pa(v): (Small Degree Property at v) |N;(v)| < c%, where ¢; is defined as ¢; = 1,
¢ =200/199, and ¢; = min{AO'l7 Ci—1 ~exp(3'28i0ﬁ)} for ¢ > 2.

Let t be the smallest number i such that ¢; = A%!. Notice that t = O(log* A) is
the number of the rounds in the first phase.

The intuition behind the two properties P (v) and Po(v) is that they ensure that
(i) participating vertices always have a large enough palette to use, and (ii) there is a
large separation between the number of available colors and the number of uncolored
neighbors so that we can color a large fraction of vertices in each round.

For each 1 < 47 < ¢, the ith round consists of two constant time subroutines
ColorBidding(¢) and Filtering(¢). In ColorBidding(i), each participating vertex v selects
a random subset of colors S,. If there is a color in S, that does not belong to
Uwen; () Sus the vertex v succeeds and colors itself with any such color. If such a color
is chosen, denote it by Color(v). After ColorBidding(), we execute Filtering(¢), which
filters out some vertices and thereby prevents P; and Ps from being violated. Such
vertices are called bad vertices, and they will no longer participate in the remaining
rounds of Phase 1.

ColorBidding(i).
Do the following steps in parallel for each uncolored vertex v that is not bad:
1. If ¢; = ¢ = 1, then S, contains one color chosen uniformly at random
from ¥q(v). Otherwise (¢; > 1), construct the set S, by independently
including each color of ¥;(v) with probability ¢;/|¥;(v)|.
2. If S, \UueNi(U) Sy # (), then permanently color v by picking an arbitrary
color in Sy \ U,en; (v) Su for Color(v).
3. Uip1(v) < ¥;(v) \ {Color(u) | u € N;(v) is permanently colored}.

We define N/(v) as the set of participating vertices after ColorBidding(: — 1) and
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before Filtering(i — 1) that are adjacent to v. In other words,

N/(v) = N;_1(v) \ {u | u is permanently colored in ColorBidding(i — 1)} .

(2

Filtering(4).

For each uncolored vertex v that is not bad:
1. If i =1 and |W2(v)| — |[Nj(v)| < 555, then mark v as a bad vertex.
2. If 1 <i <tand [N/ (v)] > ﬁ, then mark v as a bad vertex.

3. If i = ¢, then mark v as a bad vertex.

Phase 2. By the filtering rule for ¢ = ¢, all the remaining uncolored vertices after
Phase 1 are bad vertices. We color the bad vertices in Phase 2. We will later prove
that after Phase 1, with high probability any connected component induced by bad
vertices has size at most A*logn. We use Theorem 6.1 to v/A-color such connected
components using the /A reserved colors.

Runtime. The runtime of Phase 1 is ¢t = O(log™ A) rounds. The runtime of Phase
2is O(log /x (A*logn) + log” (A*logn) ) = O (log logn +1log* n) . Thus, the total
runtime is O (log logn + log™ n) rounds.

Analysis. The analysis of Phase 2 relies only on proving that, with high proba-
bility, all connected components induced by bad vertices after Phase 1 are of size at
most A*logn. Thus, we focus on analyzing Phase 1.

A vertex v that participates in round ¢ may be marked bad, depending on the
random bits generated by vertices in N?(v) in this round. Our analysis applies to
any partial coloring of N2(v) that satisfies properties P; and Py and is entirely inde-
pendent of the random bits generated by vertices outside of N2(v). The probability
that a vertex is marked bad is exp(—poly(A)). This proof is based on the following
claim, which is proved by applying standard Chernoff bounds. The proof of the claim
is deferred to Appendix A for the sake of presentation.

CramM 1. The probability that a vertex v is marked as bad in round 1 is at most
exp(—Q(A)). For 1 < i <t, the probability that a vertex v that participates in round
i is marked bad in Tound i is at most exp(—Q(A%1)).

By the union bound for all rounds in Phase 1, the probability that any vertex v
becomes a bad vertex after Phase 1 is O(log" A) - exp(—poly(A)) = exp(—poly(A)),
regardless of the choice of random bits for all vertices not in N?(v). Observe that for
any two distinct vertices u and v in any distance-5 set T', we must have u ¢ N?(v).
Therefore, just before Phase 2, for any distance-5 set T of size s, the probability
that all vertices in T are bad is at most exp(—s - poly(A)). By Lemma 6.3, there
are at most 4° - n - A*5=1) distinct distance-5 sets T of size s. By the union bound,
with probability at least (4° - n - A*~1)) . exp(—s - poly(A)), there is no distance-5
set of size s that contains only bad vertices. This probability is upper bounded by
n~¢ for any ¢ when s = logn. Therefore, with high probability all of the connected
components induced by bad vertices after Phase 1 are of size at most A*logn.

This concludes the proof of Theorem 6.2. 0

6.2. Algorithm for A > 55. The proof of Theorem 6.2 in the previous section
(and also the one in [36]) is hard to analyze quantitatively without the aid of O(-)
notation to hide large, unspecified constants. It seems to require a very large A for the
proof to go through, since in each round several Chernoff bounds are applied to make
sure that key requirements are met. In what follows we present a different algorithm
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with a significantly simpler analysis for A-coloring trees with small constant A. Its
dependence on A is polynomial, which is fine if A = O(1).

THEOREM 6.4. For A > 55, there exists a RandLOCAL algorithm that computes
a A-coloring of a tree G in O(log logn + log™ n) time.

Proof. We assume that A = O(1) is constant, since otherwise we can apply
Theorem 6.2. Our algorithm has three phases:

Phase 1. We execute the following procedure to partially color the graph with
colors in {4,5,...,A}.

Initially U « V.
For i from A down to 4, do the following steps in parallel for each vertex
veU:

1. Choose a real number x(v) € [0, 1] uniformly at random.

2. Let K = {v | z(v) < min,en(nv #(u)} be the set of all vertices holding
local minima.

3. Find any MIS I O K of U. All vertices in I are colored 1.

4. Set U «+— U \ I (remove all colored vertices).

The above procedure ensures that the number of uncolored neighbors of a vertex
v € U is at most ¢ — 1 after Step 4. Therefore, at the end of Phase 1, we have
|N(v) NU| < 3 for any uncolored vertex wv.

The MIS required in Step 3 can be computed in O(A + log* n) = O(log™ n) time
[4], or in O(A? +log™ n) = O(log™ n) time via Theorem 2.1.

Phase 2. We will later show that at the end of Phase 1 the set of vertices S =
{veU||N@w)NU| =3} forms connected components of size at most O(logn) with
probability > 1 — n™¢ We apply Theorem 6.1 to 3-color the set S using the colors
1,2,3 in O(loglogn) time. We then update U < U \ S after coloring the vertices in
S.

Phase 3. For each vertex v that remains uncolored, the number of its available
colors (i.e., {1,...,A}\{color(u) | u € N(v) is colored}) is greater than the number of
its uncolored neighbors (i.e., [N (v)NU|). In other words, there must exist two distinct
vertices u,u’ € N(v) that are colored by the same color. We apply an O(log” n)-time
MIS algorithm twice to get a 3-coloring of vertices in U with the colors 1’,2’,3’. For
i/ = 1/,2',3’, we then recolor each vertex in color class ¢’ using any available color
from its palette (which must be nonempty). This finishes a A-coloring of the tree G.

In view of the above, to prove the theorem, it suffices to show that the set S =
{v e Ust. IN(w)NU| = 3} defined in Phase 2 forms connected components of size
at most O(logn) with probability > 1 —n~°.

With respect to a distance-3 set T' of size t, we select any vertex in V' \ T as a
root to make the tree G rooted. For each v; € T, we write w; to denote the parent
of v; in G. We also define D; = U, e n ;)\ fw;y IV () for each v; € T. Observe that
for all v;,v; € T,D; N Dj =0, as T is a distance-3 set. We have the following claim,
whose proof is deferred to Appendix A.

CLAIM 2. There is some constant € such that the probability for a vertex v; to be
in S conditioned on arbitrary behavior of vertices not in D; is at most i%g.

Thus, the probability that all vertices in T" belong to S is at most (igg)t. By

Lemma 6.3, the number of distinct distance-3 sets of size t is at most 4'nA3(t—1),
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Therefore, as long as
(c+1)logn — log(A?)
> 5 ,
1—e

log
with probability at most

t
4tnA3(t_1) . (1 _ 6) = (n/AS) . (1 _ €)t — (H/AB) . 2—(c+1)logn+log(A3) < n_(;,

4A3 -

there is no distance-3 set of size t whose vertices are all in S.

Since (for A > 2) any connected subgraph with the number of vertices being
at least A%t must contain a distance-3 set of size ¢, we conclude that, with high
probability, S forms connected components of size at most O(A%logn) = O(logn). O

Appendix A. Missing proofs.
In this appendix, we present the proofs of Claim 1 and Claim 2. We make use of
the standard Chernoff bound in the proof of Claim 1.

LEMMA A.1 (Chernoff bound). Let X be the sum of n i.i.d. random 0/1 vari-
ables. For any 0 < § < 1, we have the following:

For0<d<1, Pr[X
For0<d<1, Pr[X
Foré>1, Pr[X

A.1. Proof of Claim 1. The proof relies on the Large Palette Property P;(v)
and the Small Degree Property P2(v). First, observe that our filtering rules imply
that these two properties hold after each round:

e The filtering rule for ¢ = 1 guarantees that the Large Palette Property P;(v)
is met for all vertices that remain after the filtering. Notice that |¥q(v)| —

|NS(v)] > ﬁ implies |¥;(v)| > 2% for all s.
e The filtering rule for ¢ = 1 and 1 < ¢ < ¢ ensures that the Small Degree
Property Pz (v) holds for all ¢, since | N/ (v)| < cﬁl implies that |N;11(v)| <

cﬁl. For the case of i = 1, [Na(v)| < |N4(v)| < [Wa(v)]| — % < 13?)'0A = %_

The I;roof of Claim 1 is divided into three cases based on the round number.

CraM 3. The probability that a vertex v is marked as bad in round 1 is at most
exp(—Q(A)).

Proof. Recall that a vertex v is marked as bad in round 1 only if |Ua(v)| —
|Nj(v)] < o55. We assume |N(v)| > 1232 since otherwise v is definitely not marked
as bad in round 1.

In round 1, each vertex chooses a color uniformly at random, and a vertex v
successfully colors itself if its choice of color is different from all its neighbors. For
each u € N(v), let E, denote the event that u is colored in the first round. Since the
available colors for all vertices are identical, by symmetry, we assume that the color
choice of v is fixed. Since the graph is a tree, the events { £, },en(v) are independent.
Assuming sufficiently large A, we have

Pr[Eu]2<1_A_1\/K>|N(u)Z(l—A_l\/Z)AZ;
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By a Chernoff bound (with § = 199, and the expected number of colored neighbors
being at least %gg —) the number of colored neighbors of v in the first round is at

least £ = (1—0) - 109 £ with probability at least

200
2
1_exp<—<£:9> <>>

2

Let S = {u1,ug,...} be the colored subset of N(v). In what follows, we assume

that |S| > £. Conditioned on the event that S is the colored subset of N(v), the

choice of the color of each u; is independent and uniform from {1,..., A —vA}\ {c},
where c is the color chosen by v. We will argue that, with high probability, many colors
appear repeatedly among the vertices in S, thereby creating a separation between the
palette size and the number of uncolored neighbors.

A& — U Color(uy)}] > A then |Wa(v)| — [N5(v)| > 555, and v is not

marked as bad Otherwise, each u;, j > chooses a color that is already chosen by

10’

some uy, k < with probability at least

— 10’

A A

0200 > i
11°

A—vVA-1

As a result, the expected value of |S| — | U‘S‘l{Color(u])H is at least & L = 3.
By a Chernoff bound (with § = %), this value is at least 200 =(1-9)- % with

probability at least

_(9)?. A _162.
1—exp< (20)2 110>=1—exp< 1(121 A>.

By definition, [Ws(v)| = [¥;(v)|— U, {Color(uy)}|, and [N5(v)] = [Ny (v)\ S| =
|N1(v)| — |S]. In view of the above, with probability at least

_ (792 (199 . A _
1—exp< (199) 2(200 3)>—exp( 11612A>:1—exp(—Q(A)),

we have |Uy(v)| — |Na(v)| > and v is not marked as bad. |

2007

CrLAaM 4. For 1 < i < t, the probability that a vertex v that participates in round
i is marked as bad in round i is at most exp(—Q(A%1)).

Proof. Our goal is to show that

N, A A
N ()] < max ) PO ool < T—
exp (5300700 ) min{c; - exp (ggpeczn ) , A1} cipa

holds with high probability.
Each available color for a vertex v is added to S, independently with probability

Ci

.oy SO the expected value of |Sy| is ¢;. By a Chernoff bound, the event of |S,| <
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2 = (1+0)¢;,° where § = (555— — 1), happens with probability at least

2:200 27200-¢,
A
) - (2-200-ci - 1) "G .- —A
— € — € .
P 3 =TSP\ 7200

For any u € N;(v), a color in W;(u) \ Sy, belongs to Su \ U, e, () Sw with prob-
ability at least

G Al (1‘|w;iw>|>2|wffu>|'<1‘6i§00)é_12M'

weN; (u)\{v}

Notice that the term A (u)‘ is the probability that a color in ¥;(u) \ S, is chosen to
be in Sy, and the term [],, ¢, oy (1 — m) is the probability that a color in
Wi(u)\ S, does not belong to |J,,cx, (u) Sw

Under the condition that |.S,| <
Then the set S, \ J

we have |¥;(u )\S|>200 TR = A

2-200 200’ 2:200 2-200°

wEN;( Sw is empty with probability at most

C; ZL?W < C; ﬁ < C;
L= 00w, ()] = (1 - 620%) =P (_2 200 - 6200) '

Hence u € N;(v) remains uncolored with probability at most exp(—g5geiszor )"

Case 1. exp(—gggeio) - | Ni(v)| > A%!. We choose 6 to be the number such that
(14 0) exp(—55p0-0200) = €XP(— 5550200 ). Notice that § = exp(gzg5iszo0) —
1> eXp(m — 1, which is at least a positive constant. By a Chernoff
bound on all vertices in N;(v), we have | N/, (v)| < exp(—z55655200) - | NVi(v)]
with probability at least

| oxp (—min{é, 62} - exp(—g3peizmo ) - | N (v)]

. ) > 1 exp(—0(A%1)).

Case 2. exp(—z5eizon) - [Ni(v)| < A%!. By a Chernoff bound (with § = A%® — 1)
on all vertices in N;(v), we conclude that |N/ ;(v)] < A%®.exp(—
|N;(v)| < A% with probability at least

1 —exp <_(A048 — 1) - exp(— gggg-gzm) - [ Ni(v))

ci ) .
2-200-€200

) > 1 - exp(—Q(A%?)).

3
In both cases, we have [N/, (v)| < max{wiv)l) AO9Y = +1, and so v
X (57350 200 ci
is marked as bad with probability at most max{exp(—Q(A°?)),exp(—Q(A%!))} =
exp(—Q(A%Y)). d

CraM 5. The probability that a vertex v that participates in round t is marked
as bad in round t is at most exp(—Q(A°1)).

6The purpose of bounding |Sy| is to make sure that the set W¥;(u) \ Sy is large enough for all

u € Nj(v). If v chooses too many colors, then it is more likely that w € N;(v) remains uncolored
after this round, and this implies an unwanted positive correlation between neighbors of v not being
colored.

"The calculation of this probability considers colors in ¥;(u) \ Sy instead of ¥;(u). This special
treatment of v is to create independence among the vertices in N;(v), allowing us to use a Chernoff
bound on N;(v) to bound [N/, (v)].
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Proof. A color in W¥;(v) belongs to Sy \ U,en; 1) Su with probability at least
A

C; ) H <1_ C; >> C; '(1_200'01)”> C; .
Wi (v) ) Wi(w)| )~ [Wi(v)] A — L1200 (v)]

u€N; (v

Therefore, with probability at most

. ¢ [T (v)] _ AO-1
T 11 20, ()] =P LT e )

the vertex v remains uncolored and is marked as bad. 0

Claim 1 follows from the above three claims.

A.2. Proof of Claim 2. For notational simplicity, we write v def v; and w def W;.

Observe that v € S iff (i) v is not colored in Phase 1, and (ii) for each i = A
down to 4, at most one neighbor of v is colored with ¢ in Step 2. In addition, in the
beginning of Step 1, we must have |N(v) NU| =i for each i = A down to 4.

Now, assume that we are at the beginning of Step 1, the vertex v still has no
neighbors of repeated colors, and |N(v) NU| = i. The probability that a neighbor
u € N(v)\ {w} is colored i in Step 2 when x(v) = z € [0,1] is at least

y=z y==z i1 1-— (1 — Z)l
. Pl e (V@ 0\ fohatr) < ity > [ =gty = =5k
y= y=

Notice that the variable y represents the random variable x(u), and w is colored
when (i) y € [0, 2), and (ii) z(r) € (y,1] for all r € (N(u)NU) \ {v}. Also notice that
(N(w)nU)\{o} <i—-1.
We write p;(z) e M Then the probability that at most one neighbor of v
is colored with ¢ in Step 2 can be upper bounded by

z=1
P, = Pr[binom(|(N(v) NU) \ {w}|,pi(2)) < 1]dz

z=0

< [ 0= nE) T+ - D - i)

=0

The notation binom(n,p) denotes the binomial random variable with parameters
(n,p). Notice that [(N(v) NU)\ {w}| >i—1.

When i = 4, the value of P, is about 0.88718. As ¢ increases, P; decreases
monotonically, approaching 0.73576. By a numerical calculation, so long as A > 55,
the probability that v is in S conditioned on arbitrary behavior of vertices not in

UueN(v)\{w} N(u) is at most

as desired.
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