
	 1	

PIV/BOS	Synthetic	Image	Generation	in	

Variable	Density	Environments	for	Error	

Analysis	and	Experiment	Design	
	

Lalit	K.	Rajendran
1
,	Sally	P.	M.	Bane

1
	and	Pavlos	P.	Vlachos

2
	

1:	School	of	Aeronautics	and	Astronautics,	Purdue	University,	USA	

2:	School	of	Mechanical	Engineering,	Purdue	University,	USA	

1 Abstract	

We	present	an	image	generation	methodology	based	on	ray	tracing	that	can	be	used	to	render	

realistic	 images	of	Particle	 Image	Velocimetry	 (PIV)	and	Background	Oriented	Schlieren	 (BOS)	

experiments	in	the	presence	of	density/refractive	index	gradients.	This	methodology	enables	the	

simulation	of	aero-thermodynamics	experiments	for	experiment	design,	error,	and	uncertainty	

analysis.	 Images	are	generated	by	emanating	 light	rays	 from	the	particles	or	dot	pattern,	and	

propagating	them	through	the	density	gradient	field	and	the	optical	elements,	up	to	the	camera	

sensor.	The	rendered	images	are	realistic,	and	can	replicate	the	features	of	a	given	experimental	

setup,	like	optical	aberrations	and	perspective	effects,	which	can	be	deliberately	introduced	for	

error	analysis.	We	demonstrate	this	methodology	by	simulating	a	BOS	experiment	with	a	known	

density	field	obtained	from	direct	numerical	simulations	(DNS)	of	homogeneous	buoyancy	driven	

turbulence,	 and	 comparing	 the	 light	 ray	 displacements	 from	 ray	 tracing	 to	 results	 from	 BOS	

theory.	 The	 light	 ray	 displacements	 show	 good	 agreement	 with	 the	 reference	 data.	 This	

methodology	 provides	 a	 framework	 for	 further	 development	 of	 simulation	 tools	 for	 use	 in	

experiment	design	and	development	of	 image	analysis	 tools	 for	PIV	and	BOS	applications.	An	

implementation	of	the	proposed	methodology	in	a	Python-CUDA	program	is	made	available	as	

an	open	source	software	for	researchers.	

2 Introduction	

Particle	Image	Velocimetry	(PIV)[1]	and	Background	Oriented	Schlieren	(BOS)[2]
	
are	widely	used	

techniques	to	investigate	complex	flows.	In	PIV,	the	flow	of	interest	is	seeded	with	particles	and	

the	flow	velocity	is	measured	by	estimating	the	particle	displacements	between	two	successive	

frames.	In	BOS,	the	density	gradients	in	a	flow	are	measured	by	the	apparent	shift	of	a	dot	pattern	

viewed	through	a	variable	density	medium,	where	the	displacement	is	evaluated	using	methods	

similar	to	PIV.	To	assess	and	improve	the	accuracy	of	the	displacement	estimation	algorithms,	

synthetic	particle	and/or	BOS	images	are	required.	For	the	images	to	be	suitable	for	testing	the	

algorithms,	 they	 must	 be	 realistic,	 i.e.,	 they	 should	 display	 real	 world	 artifacts	 like	 optical	

aberrations	due	to	the	camera	setup,	out-of-focus	effects,	etc.	To	simulate	these	effects,	current	



	 2	

synthetic	image	generation	techniques	use	empirical	models	which	are	too	generic	to	be	applied	

to	specific	optical	systems	[1].	In	addition,	these	models	cannot	be	used	to	simulate	effects	like	

ray	 deflection	 due	 to	 the	 presence	 of	 density	 gradients,	 which	 is	 an	 important	 concern	 in	

compressible	flow	experiments.	

	

Ray	tracing	is	a	physically	realistic	alternative,	where	light	rays	generated	from	the	particles/dot	

patterns	are	traced	through	the	flow	under	investigation	and	the	optical	setup,	all	the	way	to	the	

camera	sensor.	This	approach	does	not	require	any	ad-hoc	models	and	can	also	naturally	handle	

effects	 like	 ray	deflection	due	 to	density	 gradients.	Although	 ray	 tracing	 tools	 are	ubiquitous	

across	many	applications,	the	methodology	presented	herein	is	novel	as	it	is	the	first	to	combine	

density	gradients	effects,	specific	user-defined	optics,	and	camera/sensor	parameters	along	with	

fluid	flow	in	one	package	tailored	for	simulating	general	aero-thermodynamics	experiments.	

	

A	significant	challenge	is	that	ray	tracing	is	computationally	expensive	due	to	the	large	number	

of	rays	required	to	faithfully	reproduce	an	image.	For	example,	a	typical	tomographic	(Tomo)	PIV	

experiment	 would	 have	 about	 100,000	 particles	 inside	 a	 laser	 sheet	 volume	 of	 300	 cm
3
.	 To	

simulate	 a	 particle	 with	 sufficient	 dynamic	 range,	 about	 10,000	 rays	 are	 required,	 which	

corresponds	 to	 a	 total	 of	 1	 billion	 rays	 to	 render	 a	 single	 image,	 thus	 posing	 a	 significant	

computational	challenge.	However,	since	the	path	of	each	light	ray	is	independent	of	all	other	

rays,	this	process	can	be	very	efficiently	parallelized	and	implemented	on	Graphics	Processing	

Units	(GPUs)	which	can	launch	several	thousand	threads	at	a	time	in	addition	to	about	a	trillion	

floating	point	operations	(FLOPs)	per	second.	This	capability	of	GPUs	is	exploited	in	the	current	

work	to	significantly	accelerate	the	image	generation	process.	

	

In	 the	 subsequent	 sections,	 we	 first	 describe	 in	 detail	 the	 synthetic	 image	 generation	

methodology	used	to	render	realistic	particle/BOS	images	in	a	varying	density/refractive-index	

medium,	and	then	present	an	application	for	Background	Oriented	Schlieren	(BOS)	experiments.	

This	 approach	 renders	 images	unique	 to	a	given	optical	 setup	and	can	be	a	 valuable	 tool	 for	

guiding	the	choice	of	optical	elements	and	their	placements	in	the	experimental	setup	to	mitigate	

adverse	effects	like	optical	aberrations	and	steep	viewing	angles.	On	the	other	hand,	these	effects	

can	be	deliberately	 included	 for	error	analysis	 so	 that	 the	 robustness	of	 an	algorithm	can	be	

tested	 for	 a	 wide	 variety	 of	 conditions.	 Some	 sample	 particle	 images	 generated	 using	 the	

proposed	methodology	are	shown	in	Figure	1.	

	







	 5	

3.2 Tracing	Rays	through	Density	Gradients	

A	 light	 ray	will	 experience	 changes	 in	 its	 direction	 as	 it	 passes	 through	 a	medium	 containing	

density	gradients	due	to	the	dependence	of	the	refractive	index	on	the	local	density	as	expressed	

by	the	Gladstone-Dale	relation:		

	 𝑛 = 𝐾𝜌 + 1	 (1)	

where	𝑛	 is	 the	 refractive	 index	of	 the	medium,	𝜌	 is	 the	density,	and	𝐾	 is	 the	Gladstone-Dale	

constant,	which	has	a	value	of	0.226	cm3
/g	for	air.	Therefore,	regions	of	density	gradients	also	

contain	refractive	index	gradients.	For	a	medium	containing	a	continuous	change	of	refractive	

index,	Fermat’s	principle	from	geometric	optics	enables	a	fast	and	accurate	computation	of	the	

trajectory	of	a	light	ray	through	the	medium,	and	the	equation	for	the	ray	curve	is	given	by	[5],		

	
𝑑

𝑑𝜉
𝑛
𝑑𝑥

𝑑𝜉
= 	∇𝑛	 (2)	

Here	𝑥(𝜉)	represents	the	ray	curve	and	(𝜉, 𝜂)	are	the	ray-fitted	co-ordinates	as	shown	in	Figure	

2.	Equation	(2)	is	transformed	and	discretized	using	a	4
th
	order	Runge-Kutta	algorithm	following	

the	method	of	Sharma	et.	al.	[6] 	and	the	position	and	direction	of	the	light	ray	passing	through	

the	 variable	 density	medium	 can	 be	 updated	 based	 on	 the	 local	 refractive	 index	 gradient	 as	

follows,	

	

𝑅567 = 𝑅5 + 𝑇5 +
1

6
𝐴 + 2𝐵 𝛥𝜉	

𝑇567 = 𝑇5 +
1

6
𝐴 + 4𝐵 + 𝐶 	

(3)	

where	𝑅, 𝑇	are	1D	arrays	representing	the	position	and	direction,	respectively,	and	are	given	by,	

	

																																								𝑅 =

𝑥

𝑦

𝑧
; 		𝑇 = 𝑛

𝑑𝑥/𝑑𝜉

𝑑𝑦/𝑑𝜉	

𝑑𝑧/𝑑𝜉

																																			.	 (4)	

The	variable	𝑛	is	the	refractive	index	and	the	subscript	𝑖	represents	the	grid	point	corresponding	

to	the	given	location	of	the	ray.	The	constants	𝐴,	𝐵	and	𝐶	are	functions	of	the	refractive	index	

gradients	and	are	given	by,	

	 𝐴 = 𝐷 𝑅5 𝛥𝜉	

𝐵 = 𝐷 𝑅5 +
1

2
𝑇D +

1

8
𝐴 𝛥𝜉 𝛥𝜉	

𝐶 = 𝐷 𝑅5 + 𝑇D +
1

2
𝐵 𝛥𝜉 𝛥𝜉	

(5)	

and	the	function	𝐷	is	given	by	



	 6	

	

																								𝐷 = 𝑛

𝜕𝑛/𝜕𝑥

𝜕𝑛/𝜕𝑦

𝜕𝑛/𝜕𝑧

=
1

2

𝜕𝑛G/𝜕𝑥

𝜕𝑛G/𝜕𝑦

𝜕𝑛G/𝜕𝑧

																								.	 (6)	

An	open-source	implementation	of	solving	Fermat’s	equation	on	a	GPU	with	a	piecewise	linear	

approximation	(1
st
	order)	was	provided	by	SchlierenRay,	an	artificial	schlieren	image	rendering	

software	developed	by	Brownlee	et.	 al.	 [7]	 Their	methodology	has	been	extended	 to	 include	

higher	order	approximations	and	integrated	with	a	full	light	field-based	ray	tracing	approach	for	

the	present	application.	

3.3 Propagating	Light	Rays	through	Optical	Elements	

When	light	rays	pass	through	optical	elements,	they	can	undergo	one	or	more	of	the	following	

processes:	(1)	reflection	(mirrors),	(2)	refraction	(lenses,	windows),	and	(3)	selective	transmission	

(apertures).	All	of	 theses	processes	are	modeled	 in	 the	ray	 tracing	methodology,	as	shown	 in	

Figure	2.	In	all	cases,	the	intersection	of	a	ray	with	the	optical	element	is	first	computed	based	

on	the	element’s	geometry.	For	example,	in	the	case	of	a	spherical	mirror/lens	the	intersection	

point	 is	 calculated	 based	 on	 the	 element	 center,	 diameter,	 and	 radius	 of	 curvature.	 After	

computing	the	intersection,	the	effect	of	the	element	is	modeled	as	follows:		

1) Reflection	due	to	mirrors	is	modeled	using	the	law	of	reflection	based	on	the	direction	of	

the	light	ray	with	respect	to	the	local	surface	normal.	

2) Refraction	due	to	lenses/windows	is	modeled	using	Snell’s	Law	[8],	given	by	

	 𝑛5 sin 𝜃5 = 𝑛L sin 𝜃L ,	 (7)	

where	𝜃5 	is	the	angle	of	incidence,	𝜃L	is	the	angle	of	refraction,	and	𝑛5 	and	𝑛L		are	the	

refractive	indices	of	the	two	media	on	either	side	of	the	refractive	surface.	For	elements	

with	multiple	refractive	surfaces	like	a	lens,	the	refraction	is	performed	sequentially	on	

each	surface,	considering	the	possibility	of	total	internal	reflection	if	the	ray	passes	from	

a	medium	of	higher	refractive	index	to	a	medium	of	lower	refractive	index.	It	should	be	

noted	that	this	approach	is	quite	general	and	does	not	require	assumptions	regarding	the	

paraxial	nature	of	the	light	rays	(as	used	in	matrix	methods)	or	the	thickness	of	the	lens,	

and	 it	 is	 straightforward	 to	 include	 transmittance	and	dispersive	effects	of	 the	 lens	as	

required.	Further,	an	array	of	lenses	as	in	a	Plenoptic	camera,	for	example,	can	also	be	

modeled	using	this	approach.	

3) Selective	 transmission	 due	 to	 apertures	 is	 enforced	 by	 only	 allowing	 light	 rays	 that	

intersect	the	plane	of	the	aperture	and	lie	within	its	opening	area	(or	pitch)	and	blocking	

the	rest.	



	 7	

3.4 Intersecting	a	Ray	with	the	Camera	Sensor	and	Incrementing	Pixel	Intensities	

The	final	step	in	the	ray	tracing	process	is	the	intersection	of	a	light	ray	with	the	camera	sensor,	

which	is	solved	as	a	line-plane	intersection	problem.	The	diffraction	spot	is	described	by	an	Airy	

function	and	is	approximated	by	a	Gaussian	in	this	application	[9],	and	the	integrated	intensity	

across	 a	 pixel	 is	 calculated	 using	 an	 error	 function,	 as	 in	 the	 case	 of	 synthetic	 PIV	 image	

generation	[10].	The	point	of	peak	intensity	is	the	point	of	intersection	of	the	light	ray	with	the	

camera	sensor,	and	the	diffraction	diameter	is	a	function	of	the	optical	system	as	given	by,	

	 																				𝑑M = 2.44𝜋𝑓# 𝑀 + 1 𝜆																	.	 (8)	

Here	𝑑M	is	the	diffraction	diameter,	𝑓#	is	the	f-number	of	the	camera,	𝑀	is	the	magnification,	and	

𝜆	is	the	wavelength	of	light	[9].	For	white	light	illumination	in	the	case	of	BOS/calibration	targets,	

an	effective	wavelength	corresponding	to	the	green	color	is	used.	

	

This	procedure	is	repeated	for	all	light	rays	that	intersect	the	camera	sensor	to	obtain	an	image	

of	the	particle	field/dot	pattern.	The	dynamic	range	of	the	final	intensity	distribution	increases	

with	 the	 number	 of	 light	 rays	 used	 to	 render	 a	 particle	 or	 dot,	 but	 this	 also	 increases	 the	

computational	cost	and	run	time.	It	was	observed	from	trials	that	about	10,000	rays	are	sufficient	

to	provide	a	16-bit	dynamic	range.	

3.5 Parallelization	using	CUDA	

The	ray	tracing	methodology	just	described	is	computationally	intensive	due	to	the	large	number	

of	 light	rays	(~	1	billion)	required	to	render	an	image	with	sufficient	dynamic	range.	Since	the	

trajectories	of	the	light	rays	are	independent	of	each	other,	the	ray	tracing	calculations	can	be	

parallelized	using	Graphics	Processing	Units	(GPUs).	This	methodology	was	implemented	using	a	

CUDA	framework	with	a	Python	front-end.	The	images	in	the	present	work	were	generated	using	

an	NVIDIA	Tesla	C2050	GPU,	which	has	14	streaming	multi	processors	each	containing	32	cores	

for	an	overall	total	of	448	cores.	Each	multi-processor	can	launch	a	maximum	of	1536	threads	

amounting	to	a	total	of	about	21,000	threads	at	a	time.		

	

The	details	of	the	parallelization	in	terms	of	grids,	blocks	and	threads	are	as	follows.	Each	thread	

on	 the	GPU	corresponds	 to	 a	 single	 light	 ray,	 and	all	 the	 computations	 starting	 from	 the	 ray	

generation	 to	 the	 intersection	with	 the	 camera	 sensor	 are	done	 independently.	All	 light	 rays	

originating	from	the	same	particle/dots	are	organized	in	blocks,	to	take	advantage	of	the	shared	

memory	in	CUDA	which	has	very	fast	read	and	write	speeds	[11].	Thus	the	information	common	

to	all	light	rays	originating	from	the	same	particle	are	stored	in	shared	memory,	which	frees	up	

the	local	memory	and	enables	launching	a	larger	number	of	threads.	The	number	of	threads	that	

can	be	stored	in	a	block	and	the	number	of	blocks	that	can	be	launched	are	subject	to	hardware	

limitations.	





	 9	

Dot	density	 20	dots	/	32x32	pix.	

	

The	contours	of	the	input	density	and	density	gradients,	the	theoretical	displacements,	and	the	

light	 ray	 displacements	 from	 ray	 tracing	 simulations	 are	 shown	 in	 Figure	 4.	 The	 theoretical	

displacements	for	a	BOS	experiment	are	given	by	

 

𝛥𝑋 =
𝑀𝑍U

𝑛[
𝛻𝑛	𝑑𝑧	

Y]

Y^

		

≈ 	
𝑀𝑍U𝐾

𝑛[
	 𝛻𝜌 `ab𝐿Y																	

(9)	

where	𝛥𝑋	is	the	theoretical	deflection	of	a	light	ray,	 𝛻𝜌 `ab	is	the	path-averaged	value	of	the	

density	gradient,	𝐾	is	the	Gladstone-Dale	constant,	𝑛[	is	the	ambient	refractive	index,	and	𝐿Y	is	

the	depth/thickness	of	the	density	gradient	field	[2].	The	values	of	the	experimental	parameters	

were	taken	from	Table	1,	and	the	depth	averaged	density	gradient	 𝛻𝜌 `ab	 is	taken	to	be	the	

two-dimensional	density	gradient	field	shown	in	Figure	4,	as	identical	2D	slices	were	stacked	to	

create	a	3D	density	field	during	the	simulations.	

	

	

	

	

	
Density	 Density	Gradient	 Theoretical	Displacements	 Light	Ray	Displacements	

	 	 	 	

	 	 	 	
Figure	4.	Contours	of	density,	density	gradients,	theoretical	displacements,	and	simulated	light	ray	

displacements	from	the	ray	tracing	simulations	using	DNS	data.	

	

The	light	ray	displacements	from	the	ray	tracing	simulations	will	be	randomly	scattered	on	the	

camera	sensor	due	to	the	random	positions	of	the	dots	on	the	target	from	which	the	light	rays	

originate.	The	ray	displacements	corresponding	to	a	single	dot	are	averaged	and	 interpolated	

onto	a	regular	grid	using	a	bilinear	interpolation	and	displayed	in	Figure	4.The	figure	shows	that	



	 10	

the	contours	of	light	ray	displacements	from	the	simulations	closely	correspond	to	the	theoretical	

displacements	except	that	they	are	smoothed	out.	The	mismatch	between	the	theoretical	and	

simulated	 light	ray	deflections	 is	due	to	two	reasons:	 (1)	the	theoretical	equation	 is	based	on	

small	 angle	approximations,	 and	 (2)	 the	 spatial	 resolution	 limitation	of	 the	BOS	experimental	

setup	whereby	the	light	ray	deflection	of	a	dot	is	the	average	light	ray	displacement	of	all	rays	

comprising	a	ray	cone.	Both	these	effects	are	consistent	with	well-known	characteristics	of	BOS	

experiments	[2],	[17],	[18].	

	

These	results,	in	addition	to	the	sample	particle	images	shown	in	Figure	1,	illustrate	the	capability	

of	the	proposed	image	generation	methodology	to	accurately	generate	realistic	PIV/BOS	images.	

The	 methodology	 thus	 enables	 the	 introduction	 of	 experimental	 artifacts	 such	 as	 optical	

aberrations	and	distortions	due	to	density	gradient	fields	into	the	image	generation	process	in	a	

deliberate	and	controlled	manner.	

5 Conclusion	
An	image	generation	methodology	was	proposed	and	implemented	to	render	realistic	PIV	and	

BOS	images	in	variable	density	environments	with	a	user-defined	optical	setup.	The	methodology	

involves	 generation	of	 light	 rays	 from	a	particle	or	dot	pattern,	 propagation	of	 the	 light	 rays	

through	 density	 gradients	 using	 Fermat’s	 equation	 and	 a	 4
th
	 order	 Runge-Kutta	 scheme,	

reflection/refraction/transmission	of	the	light	rays	by	optical	elements,	and	intersection	of	the	

rays	 with	 the	 camera	 sensor	 to	 update	 pixel	 intensities	 using	 a	 diffraction	 model.	 The	

computationally	intensive	ray	tracing	process	was	parallelized	and	implemented	on	GPUs	using	

CUDA,	resulting	in	a	significant	acceleration	of	the	computations.	The	developed	methodology	

was	 used	 to	 simulate	 a	 BOS	 experiment	 with	 a	 known	 density	 field	 obtained	 from	 DNS	 of	

buoyancy-driven	turbulence.	The	light	ray	deflections	from	the	ray	tracing	show	good	agreement	

with	 the	 theoretical	 estimates.	 This	 methodology	 provides	 a	 strong	 framework	 for	 further	

development	 of	 simulation	 tools	 for	 use	 in	 experiment	 design	 by	 incorporating	 additional	

features	specific	to	a	given	experiment.	The	methodology	can	also	be	a	valuable	tool	for	error	

analysis	to	study	the	effect	of	various	elements	of	an	optical	setup	on	the	final	error,	and	provide	

directions	to	improve	image	analysis	tools	for	PIV	and	BOS	applications.	

6 Acknowledgment	

This	material	is	based	upon	work	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	

Office	of	Fusion	Energy	Sciences	under	Award	Number	DE-SC0018156.	

7 References	
[1]	 M.	Raffel,	C.	E.	Willert,	S.	T.	Wereley,	and	J.	Kompenhans,	Particle	image	velocimetry:	a	

practical	guide.	Springer,	2013.	

[2]	 M.	Raffel,	“Background-oriented	schlieren	(BOS)	techniques,”	Exp.	Fluids,	vol.	56,	no.	3,	



	 11	

pp.	1–17,	2015.	

[3]	 H.	C.	Van	de	Hulst,	Light	Scattering	by	Small	Particles.	1981.	

[4]	 C.	F.	Bohren	and	D.	R.	Huffman,	Absorption	and	Scattering	of	Light	by	Small	Particles.	

Weinheim,	Germany:	Wiley-VCH	Verlag	GmbH,	1998.	

[5]	 M.	Born	and	E.	Wolf,	Principles	of	optics:	electromagnetic	theory	of	propagation,	

interference	and	diffraction	of	light.	New	York:	Pergamon	Press,	1950.	

[6]	 A.	Sharma,	D.	V.	Kumar,	and	A.	K.	Ghatak,	“Tracing	rays	through	graded-index	media:	a	

new	method.,”	Appl.	Opt.,	vol.	21,	no.	6,	pp.	984–987,	1982.	

[7]	 C.	Brownlee,	V.	Pegoraro,	S.	Shankar,	P.	McCormick,	and	C.	Hansen,	“Physically-based	

interactive	schlieren	flow	visualization,”	IEEE	Pacific	Vis.	Symp.	2010,	PacificVis	2010	-	

Proc.,	pp.	145–152,	2010.	

[8]	 F.	Pedrotti,	L.	Pedrotti,	and	L.	Pedrotti,	Introduction	to	optics.	1998.	

[9]	 R.	J.	Adrian	and	C.	S.	Yao,	“Pulsed	laser	technique	application	to	liquid	and	gaseous	flows	

and	the	scattering	power	of	seed	materials.,”	Appl.	Opt.,	vol.	24,	no.	1,	pp.	44–52,	1985.	

[10]	 M.	Raffel,	C.	E.	Willert,	S.	T.	Wereley,	and	J.	Kompenhans,	Particle	Image	Velocimetry.	

Berlin,	Heidelberg:	Springer	Berlin	Heidelberg,	2007.	

[11]	 NVIDIA,	CUDA	C	Programming	Guide.	2015.	

[12]	 D.	Livescu,	C.	Canada,	K.	Kalin,	R.	Burns,	I.	Staff,	and	Pulido,	“Homogeneous	Buoyancy	

Driven	Turbulence	Data	Set,”	no.	1,	pp.	1–7,	2014.	

[13]	 D.	LIVESCU	and	J.	R.	RISTORCELLI,	“Variable-density	mixing	in	buoyancy-driven	

turbulence,”	J.	Fluid	Mech.,	vol.	605,	pp.	145–180,	2008.	

[14]	 D.	LIVESCU	and	J.	R.	RISTORCELLI,	“Buoyancy-driven	variable-density	turbulence,”	J.	Fluid	

Mech.,	vol.	591,	pp.	43–71,	2007.	

[15]	 Y.	Li,	E.	Perlman,	M.	Wan,	Y.	Yang,	C.	Meneveau,	R.	Burns,	S.	Chen,	A.	Szalay,	and	G.	

Eyink,	“A	public	turbulence	database	cluster	and	applications	to	study	Lagrangian	

evolution	of	velocity	increments	in	turbulence,”	J.	Turbul.,	vol.	9,	no.	December	2016,	p.	

N31,	2008.	

[16]	 E.	Perlman,	R.	Burns,	Y.	Li,	and	C.	Meneveau,	“Data	exploration	of	turbulence	simulations	

using	a	database	cluster,”	Proc.	2007	ACM/IEEE	Conf.	Supercomput.	(SC	’07),	2007.	

[17]	 G.	E.	Elsinga,	B.	W.	Van	Oudheusden,	F.	Scarano,	and	D.	W.	Watt,	“Assessment	and	

application	of	quantitative	schlieren	methods:	Calibrated	color	schlieren	and	background	

oriented	schlieren,”	Exp.	Fluids,	vol.	36,	no.	2,	pp.	309–325,	Feb.	2004.	

[18]	 M.	J.	Hargather	and	G.	S.	Settles,	“A	comparison	of	three	quantitative	schlieren	

techniques,”	Opt.	Lasers	Eng.,	vol.	50,	no.	1,	pp.	8–17,	Jan.	2012.	

	


