Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Distributed Triangle Detection via Expander Decomposition*

Yi-Jun Chang'

Abstract

We present improved distributed algorithms for triangle
detection and its variants in the CONGEST model. We show
that Triangle Detection, Counting, and Enumeration can be

solved in O(n'/?) rounds. In contrast, the previous state-
of-the-art bounds for Triangle Detection and Enumeration

were O(n*?) and O(n®/*), respectively, due to Izumi and
LeGall (PODC 2017).

The main technical novelty in this work is a distributed
graph partitioning algorithm. We show that in O(n'~°)
rounds we can partition the edge set of the network G =
(V, E) into three parts F = E,, U E; U E, such that

e Each connected component induced by E,, has mini-
mum degree Q(n°) and conductance Q(1/polylog(n)).
As a consequence the mixing time of a random wal
within the component is O(polylog(n)).

e The subgraph induced by E, has arboricity at most n°.

e |Er| < |E|/6.

All of our algorithms are based on the following generic
framework, which we believe is of interest beyond this work.
Roughly, we deal with the set Es by an algorithm that is
efficient for low-arboricity graphs, and deal with the set E
using recursive calls. For each connected component induced
by Ep,, we are able to simulate CONGESTED-CLIQUE algo-
rithms with small overhead by applying a routing algorithm
due to Ghaffari, Kuhn, and Su (PODC 2017) for high con-
ductance graphs.

1 Introduction

We consider Triangle Detection problems in distributed
networks. In the LOCAL model [36], which has no limit
on bandwidth, all variants of Triangle Detection can be
solved in exactly one round of communication: every
vertex v simply announces its neighborhood N (v) to all
neighbors. However, in models that take bandwidth into
account, e.g., CONGEST, Triangle Detection becomes
significantly more complicated. Whereas many graph
optimization problems studied in the CONGEST model
are intrinsically “global” (i.e., require at least diameter
time) [2, 11, 12, 15, 16, 21, 27], Triangle Detection is
somewhat unusual in that it can, in principle, be solved
using only locally available information.

" *This work is supported by NSF grants CCF-1514383, CCF-
1637546, and CCF-1815316.

tUniversity of Michigan.

tUniversity of Michigan.

81IIS, Tsinghua University.

821

Seth Pettiet

Hengjie Zhang?

The CONGEST Model. The underlying dis-
tributed network is represented as an undirected graph
G = (V,E), where each vertex corresponds to a com-
putational device, and each edge corresponds to a bi-
directional communication link. It is common in liter-
ature to assume that each v € V initially knows some
global parameters such as n = |V, A = max,cy deg(v),
and D = diameter(G). In this paper, we only require
each vertex to know n = |V|. Each vertex v has a
distinct ©(logn)-bit identifier ID(v). The computation
proceeds according to synchronized rounds. In each
round, each vertex v can perform unlimited local com-
putation, and may send a distinct O(log n)-bit message
to each of its neighbors.

Throughout the paper we only consider the ran-
domized variant of CONGEST. Each vertex is allowed
to generate unlimited local random bits, but there is no
global randomness.

The Congested Clique Model. The
CONGESTED-CLIQUE model is a variant of CONGEST
that allows all-to-all communication. FEach vertex
initially knows its adjacent edges and the set of vertex
IDs, which we can assume w.lo.g. is {1,...,|V]}. In
each round, each vertex transmits n — 1 O(logn)-bit
messages, one addressed to each vertex in the graph.

Intuitively, the CONGEST model captures two
constraints in distributed computing: locality and
bandwidth, whereas the CONGESTED-CLIQUE model
only focuses on the bandwidth constraint. This dif-
ference makes the two models behave very differ-
ently. For instance, the minimum spanning tree
(MST) problem can be solved in O(1) rounds in the
CONGESTED-CLIQUE [24], but its round complexity is
O(D + +/n) in CONGEST [37,39)].

One of the main reasons that some problems can
be solved efficiently in CONGESTED-CLIQUE is due
to the routing algorithm of Lenzen [31]. As long as
each vertex v is the source and the destination of at
most O(n) messages, we can deliver all messages in
O(1) rounds. Using this routing algorithm [31] as a
communication primitive, many parallel algorithms can
be transformed to efficient CONGESTED-CLIQUE algo-
rithms [6]. For example, consider the distributed ma-
trix multiplication problem, where the input matrices
are distributed to the vertices such that the ith vertex

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

initially knows the ¢th row. The problem can be solved
in the CONGESTED-CLIQUE model in O(n1/3) rounds
over semirings, or O(n!~(2/«)te(1)) = o(n0158) rounds
over rings [6].

Distributed Routing in Almost Mixing Time.
A uniform lazy random walk moves a token around an
undirected graph by iteratively applying the following
process for some number of steps: with probability 1/2
the token stays at the current vertex and otherwise it
moves to a uniformly random neighbor. In a connected
graph G = (V, E), the stationary distribution of a lazy
random walk is 7(u) = deg(u)/(2|E|). Informally, the
mizing time Tmix(G) of a connected graph G is the
minimum number of lazy random walk steps needed
to get within a negligible distance of the stationary
distribution. Formally:

DEFINITION 1.1. (MIXING TIME [17]) Let p;(v) be the
probability that after t steps of a lazy random walk
starting at s, the walk lands at v. The mizing time

Tmix(G) is the minimum t such that for all s € V and
v €V, we have |p;(v) — w(v)| < w(v)/|V].

Ghaffari, Kuhn, and Su [17] proved that if each
vertex v is the source and the destination of at most
O(deg(v)) messages, then all messages can be routed to
their destinations in 7mix(G) - 20(Vlognloglogn) 1oyps.
The 20Wlognloglogn) factor has recently been im-
proved [18] to 20(Vg7) The implication of this result
is that many problems that can be solved efficiently in
the CONGESTED-CLIQUE can also be solved efficiently
in CONGEST, but only if mmix(G) is small. In partic-
ular, MST can be solved in 7yix(G) - 20(VIcgn) rounds
in CONGEST [18]. This shows that the Q(,/n) lower
bound [37,39] can be bypassed in networks with small
Tmix(G).

At this point, a natural question to ask is whether
or not this line of research [17,18] can be extended to a
broader class of graphs (that may have high 7,ix(G)),
or even general graphs. The main contribution of
this paper is to show that this is in fact doable, and
based on this approach we improve the state-of-the-
art algorithms for triangle detection, counting, and
enumeration.

Graph Partitioning. It is well known that any
graph can be decomposed into connected components
of conductance Q(e/logn) (and hence poly(e~!,logn)
mixing time) after removing at most an e-fraction of
the edges [5, 35,41, 43]. Moshkovitz and Shapira [32]
showed that this bound is essentially tight. In par-
ticular, removing any constant fraction e of the edges,
the remaining components have conductance at most
O((loglogn)?/logn).

A slightly weaker version of this graph partition
can be constructed in near-linear time (for fixed €) in
the sequential computation model [41]. Their algorithm
uses random walks to explore the graph locally to find
a cut with edge sparsity O(1/logn). If the output cut
is S, then the time spent is O(Vol(S)).! By iteratively
finding a sparse cut and removing it from the graph, in
O(|E|) time a graph partition is obtained in which all
components have (1/polylog(n)) conductance.

This graph partition and the idea of local graph ex-
ploration have found many applications, such as solving
linear systems [41], unique games [5,38,43], analysis of
personalized PageRank [3], minimum cut [25], dynamic
algorithms [33], and property testing [19,29].

In this work, we show that a variant of this graph
partition can be constructed efficiently in the CONGEST
model. The new twist is to partition the edge set in three
parts, rather than two (i.e., removed and remaining
edges).

Distributed Triangle Detection. Many variants
of the triangle detection problem have been studied in
the literature [6,22].

Triangle Detection. Each vertex v reports a bit b,,
and \/, b, = 1 if and only if the graph contains a
triangle.

Triangle Counting. Each vertex v reports a number
tv, and > t, is exactly the total number of trian-
gles in the graph.

Triangle Enumeration. Each vertex v reports a list
L, of triangles, and |J, L, contains exactly those
triangles in the graph.

Local Triangle Enumeration. It may be desirable
that every triangle be reported by one of the three
participating vertices. It is required that L, only
contain triangles involving v.

Dolev, Lenzen, and Peled [9, Remark 1] showed that
Triangle Enumeration can be solved deterministically
in O(n'/?/logn) time in the CONGESTED-CLIQUE.
Censor-Hillel et al. [6] presented an algorithm for Tri-
angle Detection and Counting in CONGESTED-CLIQUE
that takes O(n'~(/@)to()) = o(n%158) time via a re-
duction to matrix multiplication. Izumi and LeGall [22]
showed that in CONGEST, the Detection and Enumer-
ation problems can be solved in O(n?/3) and O(n?/*)
time, respectively. They also proved that in both
CONGEST and CONGESTED-CLIQUE, the Enumera-
tion problem requires Q(n'/3/logn) time, improving an
earlier Q(n'/3/log® n) bound of Pandurangan et al. [34].

TBy definition, Vol(S) = D veg deg(v).

Copyright © 2019 by SIAM

822 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Izumi and LeGall [22] proved a large separation between
the complexity of the Enumeration and Local Enumer-
ation problems. If triangles must be reported by a
participating vertex, Q(n/logn) time is necessary (and
sufficient) in CONGEST/CONGESTED-CLIQUE. More
generally, the lower bound on Local Enumeration is
Q(A/logn) when the maximum degree is A.

In this paper, we show that Triangle Detection,
Enumeration, and Counting can be solved in O(n'/?)
time in CONGEST. This result is achieved by a combi-
nation of our new distributed graph partition algorithm,
the multi-commodity routing of [17,18], and a random-
ized version of the CONGESTED-CLIQUE algorithm for
Triangle Enumeration of [6,9]. We also show that when
the input graph has high conductance/low mixing time,
that Triangle Enumeration can be solved even faster, in

O (Tumix (G)nt/3+°M) time.

1.1 Technical Overview Consider a graph G =
(V, E). For a vertex subset S, we write Vol(S) to denote
> ves deg(v). Note that by default the degree is with
respect to the original graph G. We write S = V'\ S, and
let 9(S) = E(S, S) be the set of edges e = {u,v} with
u € Sandv € S. The sparsity (or conductance) of a cut
(S, 9) is defined as ®(S) = |0(S)|/ min{Vol(S), Vol(S)}.
The conductance ®¢ of a graph G is the minimum value
of ®(.S) over all vertex subsets S.

We have the following relation [23] between the
mixing time 7y,ix(G) and conductance ®g:

1 logn
— | < Tpni < .
o (a) =@ <0 ()

In particular, if the inverse of the conductance is n°(),
then the mixing time is also n°™).

Our Graph Partition. We introduce a new, effi-
ciently computable graph decomposition that partitions
the edge set into three parts.

DEFINITION 1.2. An n®-decomposition of a graph G =
(V, E) is a tripartition of the edge set E = E,, UE;UE,
satisfying the following conditions.

(a) Each connected component induced by E,, has
O(polylogn) mizing time, and each vertex in the
component has Q(n’) incident edges in E,,. That
is, for each vertex v € V, either degy (v) =0 or

degp, (v) = (nd).

(b) Es = Uvev Es., where E, is a subset of edges
incident to v and |Es,| < n®. We view Es, as
oriented away from v. The overall orientation on
E, is acyclic, which certifies that Ey has arboricity?

2The arboricity of a graph is the minimum number « such that

its edge set can be partitioned into « forests.

at most n®. Each vertez v knows Es ..
(c) |E-| <|E|/6.

Throughout the paper we assume § € (0,1) is
a constant. The main difference between our graph
partition and the ones in other works [41] is that we
allow a set E that induces a low arboricity subgraph.
The purpose of having the set E, is to allow us to
design an efficient CONGEST algorithm to construct
the partition. In the sequential computation model,
a common approach to find a graph partition is to
iteratively find a vertex set S with small ®(S) =
O(1/polylog(n)), and then include the boundary edges
9(9) in the set E, and remove them from the current
graph. The number of iterations can be as high as ©(n)
since we could have |S| = O(1).

To reduce the number of iterations to at most
O(n'~?), before we start to find S, we do a prepro-
cessing step that removes low degree vertices in such a
way that each vertex has degree at least Q(n’) in the re-
maining graph. This guarantees that |S| = Q(n°), and
so the number of iterations can be upper bounded by
O(n'~%), since the total number of vertices is n.

1.2 Additional Related Works Drucker et al. [10]
showed an Q(W) lower bound for triangle

detection in the broadcast CONGESTED-CLIQUE model,
where each vertex can only broadcast one message to
all other vertices in each round. In the CONGEST
model, lower bounds for finding a triangles and other
motifs (subgraphs) has been studied in [1, 10, 20, 26].
The problem of detecting a k-cycle has an Q(,/n) lower
bound, for any even number k > 4 [10,26]. Detecting a
k-clique requires Q(y/n) rounds for every 4 < k < \/n,
and Q(y/n/k) rounds for every k > v/n [7].

Any one-round deterministic algorithm for the ¢ri-
angle membership problem (each vertex decides whether
it belongs to a triangle) requires messages of size
Q(Alogn) [1], which meets the trivial upper bound;
for the randomized model, there is an Q(A) lower
bound [14]. The distributed triangle detection problem
has also been studied in the property testing setting in
the CONGEST model [13].

Das Sarma et al. [40] first studied the distributed
sparsest cut problem. Specifically, given two parameters
b and ¢, if there exists a cut of balance at least b and
conductance at most ¢, their algorithm outputs a cut of
conductance at most O(v/@) in O((n+(1/))/b) rounds.
This result was later improved by Kuhn and Molla [28]
to O(D + 1/(b¢)).> Their algorithms are built upon
techniques in [8].

3Kuhn and Molla [28] further claimed that the output cut of

Copyright © 2019 by SIAM

823 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

The local graph clustering algorithm of Spielman
and Teng [41] has been improved, both in terms of
running time and the quality of the cuts discovered; see,
e.g., [3,4,30,42].

1.3 Organization In Section 2 we present a new dis-
tributed algorithm for partitioning a graph into expand-
ing subgraphs and a low-arboricity subgraph. A key
subroutine for finding a sparse cut is described in Sec-
tion 3. Section 4 presents Triangle Enumeration algo-
rithms for both expanding graphs and general graphs.
We conclude in Section 5 with a conjecture on the com-
plexity of distributed graph partitioning.

2 Algorithm for Graph Partitioning

We first introduce some notation. Let degy (v) be the
degree of v in the subgraph H, or in the graph induced
by edge/vertex set H. Let V/(E*) be the set of vertices
induced by the edge set E* C E. The strong diameter
of a subgraph H of G is defined as max,, ,ep dist g (u, v)
and the weak diameter of H is max, ,em distg(u, v).

The goal of this section is to prove the following
theorem.

THEOREM 2.1. Given a graph G = (V, E) withn = |V|,
we can find, w.h.p., an n’-decomposition in O(n'~%)
rounds in the CONGEST model.

The algorithm for Theorem 2.1 is based on repeated
application of a black box algorithm A4*, which is given
a subgraph G’ = (V' E’) of the original graph G =
(V,E), where V! = V(E'), n' = |V'|, and m' = |E’|. In
A*, vertices may halt the algorithm at different times.

Specification of the Black Box. The goal of
A* is, given G' = (V', E’), to partition E’ into E' =
E! U E! U E! satisfying some conditions. The edge
set E! is partitioned into E/ = UZ:1 &; for some t.
We write V; = V(&) and G; = (V;,&;), and define

S=V \ (ngl Vi)'

(C1) The vertex sets Vi,...,V, S are disjoint and
partition V.

(C2) The edge set E! can be decomposed as E. =
Uves Es.» where EY | is a subset of edges incident
to v, viewed as oriented away from wv. This
orientation is acyclic. For each vertex v such that
E,, # 0, we have |E, | + degp, (v) < n’. Each
vertex v knows the set £ . "

their algorithm has balance at least b/2, but this claim turns out

to be incorrect (Anisur Rahaman Molla, personal communication,
2018).

(C3) Consider a subgraph G; = (V;,&;). Vertices
in V; halt after the same number of rounds, say
K. Exactly one of the following subcases will be
satisfied.

(C3-1) All vertices in V; have degree Q(n’) in the
subgraph G;, each connected component of
G; has O(polylogn) mixing time, and K =
O(polylogn). Furthermore, every vertex in
V; knows that they are in this sub-case.

(C3-2) |Vi| < n/ — Q(Kn%), and every vertex in V;
knows they are in this subcase.

(C4) Each vertex v € S halts in O(n’/n®) rounds.

(C5) The following inequality is met:

t

B, < (|E'[1og |E'| - Y |&illog|&i]) /(6 1og m).

i=1

(C6) Each cluster V; has a distinct identifier. When a
vertex v € V; terminates, v knows the identifier of
V;. If v € S, v knows that it belongs to S.

We briefly explain the intuition behind these condi-
tions. The algorithm A* will be applied recursively to
all subgraphs G; that have yet to satisfy the minimum
degree and mixing time requirements specified in Theo-
rem 2.1 and Definition 1.2. Because vertices in different
components halt at various times, they also may begin
these recursive calls at different times.

The goal of (C2) is to make sure that once a vertex
v has E{ , # 0, the total number of edges added to Ej ,
cannot exceed n°. The goal of (C3) is to guarantee that
the component size drops at a fast rate. The idea of
(C5) is that the size of E. can be mostly charged to the
number of the edges in the small-sized edge sets &;; this
is used to bound the size of E,. in the final output of our
graph partitioning algorithm.

Note that in general the strong diameter of a
subgraph G; can be much higher than the maximum
running time of vertices in G;, and it could be possible
that G; is not even a connected subgraph of G. However,
(C6) guarantees that each vertex v € V; still knows that
it belongs to V;. This property allows us to recursively
execute A* on each subgraph G;.

LEMMA 2.1. There is an algorithm A* that finds a par-
tition E' = E! UELUE! meeting the above specification
in the CONGEST model, w.h.p.

Assuming Lemma 2.1, we are now in a position to

prove Theorem 2.1.

Copyright © 2019 by SIAM

824 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Proof. [Proof of Theorem 2.1] Let A* be the algorithm
for Lemma 2.1. Initially, we apply A* with G’ = G, and
this returns a partition E' = E] U E! U E!.

For each subgraph G; in the partition output by an
invocation of A*, do the following. If G; satisfies (C3-
1), by definition it must have O(poly log n) mixing time,
and all vertices in G; have degree Q(n5) in G;; we add
the edge set &; to the set E,, and all vertices in V; halt.
Otherwise we apply the algorithm recursively to G;, i.e.,
we begin by applying A* to G’ = G; to further partition
its edges. All recursive calls proceed in parallel, but
may begin and end at different times. Conditions (C1)
and (C6) guarantee that this is possible. (Note that if
G; is disconnected, then each connected component of
G; will execute the algorithm in isolation.)

Initially E, = () and E, = (). After each invocation
of A*, we update E,. + E,UE., E; + E;UF. and
By < Es . U B, for each vertex u.

Analysis. We verify that the three conditions of
Definition 1.2 are satisfied. First of all, note that each
connected component of E,, terminated in (C3-1) must
have O(poly logn) mixing time, and all vertices in the
component have degree Q(n®) within the component.
Condition (a) of Definition 1.2 is met. Next, observe
that Condition (b) of Definition 1.2 is met due to
(C2). If the output of A* satisfies that E, # 0,
then |E,,| together with the number of remaining
incident edges (i.e., the ones in E’)) is less then n°.
Therefore, | E;.,,| cannot exceed n®, since only the edges
in E/ that are incident to v can be added to Ej,
in future recursive calls. Lastly, we argue that (C5)
implies that Condition (c¢) of Definition 1.2 is satisfied.
Assume, inductively, that a recursive call on edge set
&; eventually contributes at most |&;|log |E;|/(6logm)
edges to F,. It follows from (C5) that the recursive call
on edge set E’ contributes |E’|log|E’|/(6logm) edges
to E,.. We conclude that |E,| < |E|log|E|/(6log|E|) =
IEI/6.

Now we analyze the round complexity. In one
recursive call of A*, consider a component G; in the
output partition, and let K be the running time of
vertices in V;. Due to (C3), there are two cases. If
G; satisfied (C3-1), it will halt in K = O(polylogn)
rounds. Otherwise, (C3-2) is met, and we have |V;| <
n' — Q(Kn®). Let v € V be any vertex, and let
Ky,...,K, be the running times of all calls to A*
that involve v. (Whenever v ends up in S or in
a component satisfying (C3-1) it halts permanently,
so Ki,...,K,_1 reflect executions that satisfy (C3-2)
upon termination.) Then we must have > . | K; <
O(n/n®) + O(poly log n) = O(n1_5). Thus, the whole
algorithm stops within O(n'~%) rounds. d

2.1 Subroutines Before proving Lemma 2.1, we first
introduce some helpful subroutines. Lemma 2.3 shows
that for subgraphs of sufficiently high strong diameter,
we can find a sparse cut of the subgraph, with runtime
proportional to the strong diameter. Lemma 2.4 offers a
procedure that removes a set of edges in such a way that
the vertices in the remaining graph have high degree,
and the removed edges form a low arboricity subgraph.
Lemma 2.5 shows that if a subgraph already has a low
conductance cut, then we can efficiently find a cut of
similar quality.

All these subroutines are applied to a connected
subgraph G* = (V* E*) of the underlying network
G = (V,FE), and the computation does not involve
vertices outside of G*. In subsequent discussion in this
section, the parameters n and m are always defined as
n = |V] and m = |E|, which are independent of the
chosen subgraph G*.

LEMMA 2.2. Let m and D be two numbers. Let
(a1,-..,ap) be a sequence of positive integers such that
D > 48 log2 m and Zi’il a; < m. Then there exists an
indez j such that j € [D/4,3D/4] and

min Eaz, E a;

1210gm i

Proof. Define S, = Zle a; to be the kth prefix sum.
By symmetry, we may assume S|p;2) < Sp — S|p/2;
since otherwise we can reverse the sequence. Scan
each index j from D/4 to D/2. If an index j does
not satisfy a; < m - Sj_1, then this implies that
S; > S;4 (1+ o) If no index j € [D/4,D/2]
satisfies this condition then S|p o) is larger than

1 D/4
St/ - (1 * 1210gm>

12log“m
1
> S\pya) - <1 + 1210gm>

> S\ pjaj - m,

which is impossible since Zil a; < m. Therefore,
there must exist an index j € [D/4,D/2] such that
1 _ 1 J 1
aj < 12logm Sj_l — T12logm =1 - By our
assumption that S| p/) < Sp — SLD/QJ, we also have

. 1 : J—1 D)
a; < 12logm - min (Ei:l ai, Zi:j+1 az)~ O

In Lemma 2.3, the requirement that there are no

edges linking two vertices in Vi, implies that the strong
diameter of G* = (V*, E*) is O(n'™%), and so the
runtime of Lemma 2.3 is always at most O(n'~?).

Copyright © 2019 by SIAM

825 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

LEMMA 2.3. (HIGH DIAMETER SUBROUTINE) Let
G* = (V*,E*) be a connected subgraph and x € V* be a
vertex for which D = max,cy- distg-(z,v) > 48log® m.
Define View = {v € V* | degg.(v) < n?/2}.
Suppose there are mno edges linking two ver-
tices in View- Then we can find a cut (C,C)
of G* such that min(|C|,|C|) > gn‘s and
d(C) < min(Vol(C), Vol(C))/(12logm) in O(D)
rounds deterministically in the CONGEST model. Fach
vertex in V* knows whether or not it is in C.

Proof. The algorithm is as follows. First, build a BFS
tree of G* rooted at x € V* in O(D) rounds. Let L; be
the set of vertices of level i in the BFS tree, and let p;
be the number of edges e = {u, v} such that u € L; and
v € Liy;. We write Ly, = U?:a L;. In O(E) rounds
we can let the root « learn the sequence (p1,...,pp).

Note that in a BFS tree, edges do not connect two
vertices in non-adjacent levels. By Lemma 2.2, there
exists an index j € [D/4,3D/4] such that

min zpl, S

i=j+1

- min (Vol(Ll,.j),VOI(LH_L.D)) ,

<
Py = 12logm

1
~ 12logm

and such an index j can be computed locally at the
vertex x.

The cut is chosen to be C' = L _;, so we have
9(C) < min(Vol(C), Vol(C))/(121logm). As for the sec-
ond condition, due to our assumption in the statement
of the lemma, for any two adjacent levels L;, L;11, there
must exist a vertex v € L; U L;y; such that v ¢ Vioy.
By definition of Vigy, v has more than n’/2 neighbors
in G*, and they are all within L;_1_;12. Thus, the num-
ber of vertices within any four consecutive levels must
be greater than n’/2. Since j € [D/4,3D/4], we have

_ D
i > /4.n%/2> —nd.
min(|C|, |C[) > 4/ n°/ Z 33"

O

To let each vertex in V* learn whether or not it is in C,
the root x broadcasts the index j to all vertices in G*.
After that, each vertex in level smaller than or equal to
j knows that it is in C; otherwise it is in C. O

Intuitively, Lemma 2.4 says that after the removal
of a subgraph of small arboricity (i.e., the edge set E?),
the remaining graph (i.e., the edge set E°) has high
minimum degree. The runtime is proportional to the
number of removed vertices (i.e., |V*| —|V°|) divided
by the threshold n?. Note that the second condition of
Lemma 2.4 implies that £, = () for all v € V°.

LEMMA 2.4. (Low DEGREE SUBROUTINE) Let G* =
(V*,E*) be a connected subgraph with strong diameter
D. We can partition E* = E° U ES meeting the
following two conditions.

1. Let V° be the set of vertices induced by E°. Fach
v € V° has more than n° /2 incident edges in E°.

2. The edge set E? is further partitioned as ES =
Uvev*\vo ES ., where ES , is a subset of incident

edges of v, and |E2 | < n’. Each vertez v knows
E?,.

This partition can be found in O(D + (|[V*| — |V°])/n®)
rounds deterministically in the CONGEST model.

Proof. To meet Condition 1, a naive approach is to
iteratively “peel off” vertices that have degree at most
n‘S/Q, i.e., put all their incident edges in Fjs, so long as
any such vertex exists. On some graphs this process
requires §2(n) peeling iterations.

We solve this issue by doing a batch deletion. First,
build a BFS tree of G* rooted at an arbitrary vertex
x € V*. We use this BFS tree to let x count the number
of vertices that have degree less than n° in the remaining
subgraph in O(D) rounds.

The algorithm proceeds in iterations. Initially we
set E° < E* and E{ < (. In each iteration, we
identify the subset Z C V* whose vertices have at most
n? incident edges in E°. We orient all the E°-edges
touching Z away from Z, if one endpoint is in Z, or away
from the endpoint with smaller ID, if both endpoints
are in Z. Edges incident to v oriented away from v are
added to EY , and removed from E°. The root = then
counts the number z = |Z] of such vertices via the BFS
tree. If z > 116/27 we proceed to the next iteration;
otherwise we terminate the algorithm.

The termination condition ensures that each vertex
has degree at least (n°+1)—z > n%/2, and so Condition
1 is met. It is straightforward to see that the set E?
generated by the algorithm meets Condition 2, since
for each v, we only add edges to EY, once, and it is
guaranteed that |EY | < n?. Tie-breaking according to
vertex-1D ensures the orientation is acyclic.

Throughout the process, each time one vertex puts
any edges into E?, it no longer stays in V°. Each
iteration can be done in O(D) time. We proceed to the
next iteration only if there are more than n’/2 vertices
being removed from V. A trivial implementation can
lead to an algorithm taking O(D [([V*| — [V°])/n?]))
rounds. The round complexity can be further improved
to O(D + (|V*|—|V°|)/n®) by pipelining the iterations.
At some point the root = detects that iteration i was
the last iteration; in O(D) time it broadcasts a message

Copyright © 2019 by SIAM

826 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

to all nodes instructing them to roll back iterations

i+ 1,14 2,..., which have been executed speculatively.
O

The proof of the following lemma is deferred to
Section 3. It is a consequence of combining Lemmas 3.4
and 3.5.

LEMMA 2.5. (Low CONDUCTANCE SUBROUTINE) Let
G* = (V*,E*) be a connected subgraph with strong
diameter D. Let ¢ < 1/12 be a number. Suppose that
there exists a subset S C V* satisfying

Vol(S) < (2/3VOlV?) and #(5) < 1o e T o)

Assuming such an S exists, there is a CONGEST algo-
rithm that finds a cut C C V* such that ®(C) < 12¢
in O(D + poly(log |E*|,1/¢)) rounds, with failure prob-
ability 1/poly(|E*|). Each vertez in V* knows whether
or not it belongs to C.

2.2 Proof of Lemma 2.1 We prove Lemma 2.1 by
presenting and analyzing a specific distributed algo-
rithm, which makes use of the subroutines specified in
Lemmas 2.3, 2.4, and 2.5.

Recall that we are given a subgraph with edge set
E’ and must ultimately return a partition of it into
E!, U E! U E!. The algorithm initializes E], < E’,
E! < (), and E] < (. There are two types of special
operations.

Remove. In an Remove operation, some edges are
moved from E!, to either E or E/.. For the sake of a
clearer presentation, each such operation is tagged
Remove-i, for some index 1.

Split. Throughout the algorithm we maintain a parti-
tion of the current set E/,. In a Split operation,
the partition subdivided. Each such operation is
tagged as Split-i, for some index 4, such that Split-i
occurs right after Remove-i.

Throughout the algorithm, we ensure that any part
E* of the partition of E/, has an identifier that is known
to all members of V(E*). It is not required that each
part forms a connected subgraph. The partition at the
end of the algorithm, E/ = Ule&, is the output
partition.

Notations. Since we treat E, as the “active” edge
set and E. and E! as repositories of removed edges,
deg(v) refers to the degree of v in the subgraph induced
by the current E/,. We write Vigyw = {v € V' | deg(v) <
nd}.

Algorithm. In the first step of the algorithm, we
move each edge {u,v} € E/ in the subgraph induced
by View to the set Ef , (Remove-1), assuming ID(u) <
ID(v). Note that breaking ties by vertex-ID is critical to
keep the orientation acyclic. This step only removes all
edges in the subgraph induced by Viuy; edges between
Viow and V' \ Vi, are left as is, so the identity of Viow
is unchanged after this step.

After that, E/ is divided into connected compo-
nents. Assume these components are G; = (Vq, Ey),
Gy = (Va, E3), ..., where V; = V(FE;). Let D; be the
depth of a BF'S tree rooted at an arbitrary vertex in G;.
In O(D;) rounds, the subgraph G; is assigned an iden-
tifier that is known to all vertices in V; (Split-1). Note
that this step is done in parallel for each G;, and the
time for this step is different for each G;. From now
on there will be no communication between different
subgraphs in {G1, Ga, ...}, and we focus on one specific
subgraph G; in the description of the algorithm.

Depending on how large D; is, there are two cases.
If D; > 481og® m, we go to Case 1, otherwise we go to
Case 2.

Case 1: In this case, we have D; > 4810g2 m.
Since there are no edges connecting two vertices
in Viow, we can apply the High Diameter subrou-
tine, Lemma 2.3, which finds a cut (C,C) of G
such that min(|C|,|V; \ C|) > Zin® and 0(C) <
min(Vol(C), Vol(V; \ C))/(121logm) in O(D;) rounds.
Every vertex in V; knows whether it is in C' or not.
All edges of the cut (C,C) are put into E’. (Remove-2).
Then FE; splits into two parts according to the cut (C, C)
(Split-2). After that, all vertices in V; terminate. (Ob-
serve that the part containing the BF'S tree root is con-
nected, but the other part is not necessarily connected.)

Case 2: In this case, we have D; < 481log? m. Since
G; = (V;, E;) is a small diameter graph, a vertex v € V;
is able broadcast a message to all vertices in V; very
fast. We apply the Low Degree subroutine, Lemma 2.4,
to obtain a partition F; = E° U E?. We add all edges
in £ to £ in such a way that Ef , < E{ ,UEY, for
all v € V; \ V°, where V° = V(E°) (Remove-3).

After removing these edges, the remaining edges
of F; are divided into several connected components,
but all remaining vertices have degree larger than
nd /2. Assume these connected components are G; 1 =
(‘/;’1, Ei,l); Gi,2 = (%,2, Ei,2)7 Let Diyj be the depth
of the BFS tree from an arbitrary root vertex in G; ;. In
O(D; ;) rounds we compute such a BFS tree and assign
an identifier that is known to all vertices in V; ; (Split-3).
That is, the remaining edges in F; are partitioned into
E11'717 E1727 Ceee

In what follows, we focus on one subgraph G; ; and
proceed to Case 2-a or Case 2-b.

Copyright © 2019 by SIAM

827 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Case 2-a: In this case, D;; > 48log’m. The
input specification of the High Diameter subroutine
(Lemma 2.3) is satisfied, since every vertex has degree
larger than n?/2. We apply the High Diameter subrou-
tine to G, j. This takes O(D; ;) rounds. This case is
similar to Case 1, and we do the same thing as what
we do in Case 1, i.e., remove the edges in the cut found
by the subroutine (Remove-4), split the remaining edges
(Split-4), and then all vertices in V; ; terminate.

Case 2-b: In this case, D;; < 48 log2 m. Note
that every vertex has degree larger than n’°/2, and G
has small diameter. What we do in this case is to
test whether G;; has any low conductance cut; if yes,
we will split F; ; into two components. To do so, we
apply the Low Conductance subroutine, Lemma 2.5,
with ¢ = m. Based on the result, there are two
cases.

Case 2-b-i: The subroutine finds a set of vertices
C that ®(C) < 12¢ = m, and every vertex knows
whether it is in C' or not. We move 9(C) to E.
(Remove-5), and then split the remaining edges into two
edge sets according to the cut (C,C) (Split-5). After
that, all vertices in V; ; terminate.

Case 2-b-ii: Otherwise, the subroutine does not
return a subset ', and it means with probability at
least 1 — 1/poly(|E;;|) = 1 — 1/poly(n), there is no

3

cut (S,.9) with conductance less than WM =

O(log™®m). Recall the relation between the mix-
ing time 7.,ix(Gi,;) and the conductance ® = ®@g, :

O(3) < Tmix(Gij) < @(%) [23]. Therefore,
w.h.p., G; ; has O(polylogn) mixing time. All vertices
in V; ; terminate without doing anything in this step.

Note that in the above calculation, we use the fact
that every vertex in V; ; has degree larger than n°/2 in
Gi;, and this implies that |V; ;| = Q(n%) and |E; ;| =
Q(n??), and so O(logm) = O(logn) = O(log |E; ;|) =
O(log |V ;1)-

Analysis. We show that the output of A* meets
its specifications (C1)—(C6). Recall that E] = Ule &
is the final partition of the edge set E,, when all vertices
terminate. Once an edge is moved from E/, to either E.
or E., it remains there for the rest of the computation.
Condition (C1) follows from the fact that each time we
do a split operation, the induced vertex set of each part
is disjoint. Condition (C6) follows from the fact that
each vertex knows which part of E/, it belongs to after
each split operation. In the rest of this section, we prove
that the remaining conditions are met.

CrLAam 2.1. Condition (C2) is met.

Proof. Note that only Remove-1 and Remove-3 involve
E;. In Remove-1, any EY, that becomes non-empty

must have had u € Vi, so deg(u) < n® before
Remove-1, and therefore |E, | + deg(u) < n’ after
Remove-1. In Remove-3, the Low Degree subroutine of
Lemma 2.4 computes a partition E; = E° U E¢, and
then we update EY , « E{,UE?, forall u € V;\ V°.
By Lemma 2.4, for any u such that EJ, # 0, we have
|E2,| < n° and u ¢ V°, where V° is the vertex
set induced by the remaining edge set E°. In other
words, once u puts at least one edge into E’ ., we have

s,u?

deg(u) = 0 after Remove-3. 0
CrLam 2.2. Conditions (C3) and (C4) are met.

Proof. We need to verify that in each part of the
algorithm, we either spend only O(polylogn) rounds,
or the size of the current component shrinks by Q(n?)
vertices per round.

After removing all edges in the subgraph induced
by View, the rest of E’ is partitioned into connected
components £1,E&5,.... Consider one such component
&;, and suppose it goes to Case 1. We find a sparse
cut (C,C), and moving O(C) to E!. breaks &; into &}
and £2. By Lemma 2.3, we have min(|C|, |C|) > %n‘s,
so the size of both V(€}) = C and V(€?) = C are at
most |V (&;)| — 3D2 nd < n' —Q(D;)n?. Since the running
time for each vertex in V(&!) and V(€?) is O(D;), the
condition (C3-2) is met.

Now suppose that &; goes to Case 2. Note that the
total time spent before it reaches Case 2 is O(D;) =
polylogn. In Case 2 we execute the Low Degree
subroutine of Lemma 2.4, and let the time spent in this
subroutine be 7. By Lemma 2.4, it is either the case
that (i) 7 = O(D;) or (ii) the remaining vertex set V°
satisfies |V (E;)| — |V°| = Q(rn?). In other words, if we
spend too much time (i.e., w(D;)) on this subroutine,
we must lose (n®) vertices per round.

After that, &; is split into &; 1, & 2, We consider
the set & ;. If & ; goes to Case 2-a, then the analysis
is the same as that in Case 1, and so (C3-2) is met.

Now suppose that &; ; goes to Case 2-b. Note that
the time spent during the Low Conductance subroutine
of Lemma 2.5 is O(polylogn). Suppose that a low
conductance cut (C,C) is found (Case 2-b-i). Since the
cut has conductance less than m, by the fact that

every vertex has degree higher than n’ /2, we must have
min(|C|, |C|) = Q(n?). Assume & ; \ 9(C) is split into
&l; and E7;. The size of both V(£} ;) and V/(£7;) must
be at most [V(&; ;)| — Q(n?). Thus, (C3-2) holds for
both parts E;j and 52]-.

Suppose that no cut (C,C) is found (Case 2-b-
ii). If the running time K among vertices in V;; is
O(polylogn), then (C3-1) holds. Otherwise, we must
have |V; ;| < n' — Q(Kn’) due to the Low Degree
subroutine, and so (C3-2) holds.

Copyright © 2019 by SIAM

828 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Condition (C4) follows from the the above proof of
(C3), since for each part of the algorithm, it is either
the case that (i) this part takes O(polylogn) time, or
(ii) the number of vertices in the current subgraph is
reduced by Q(n%) per round. O

Cram 2.3. Condition (C5) is met.

Proof. Condition (C5) says that after the algorithm A*
completes, |E.| < f, where

t
f= <|E'| log |E'] =) |&[log |5i|> /(61logm).

i=1

We prove the stronger claim that this inequality holds
at all times w.r.t. the current edge partition & U---U&;
of E! . In the base case this is clearly true, since ¢t = 1
and E' = E/ = & and E] = (. Moving edges from E],
to E. increases f and has no effect on E., so we only
have to consider the movement of edges from E, to E.
Note that this only occurs in Remove-i and Split-7, for
i € {2,4,5}, where in these operations we find a cut
(C,C) and split one of the parts & according to the
cut. In all cases we have

min(Vol(C), Vol(C))
12logm '

10(C)| <
Suppose that removing (C) splits &; into £f and E7,
with |€}| < [€7| and C' = V/(£}). We bound the change
in |El| and f separately. Clearly

21EH +9(C &l
A oy < 28O g1 o)
12logm 6logm 12logm
and
1 k k
Af = Giogm | 1Ellog &1 - Y I€flog €S|
ke{1,2}
> Somm (1€} 1og(I&;1/IEX]) + A(C) log |€;1)
> A|E. (Because |£]] < [&;]/2)

Thus, |E]| < f also holds after Remove-i and Split-i, for
i€{2,4,5). O

3 Algorithm for Finding a Sparse Cut

Recall that in our decomposition routine, we search
for a sparse cut in a subgraph G* = (V(E*),E*) of
G. In this section, we do not care about anything
outside of G*, and so we slightly abuse the notation
to write G = (V, E) to denote the subgraph G*, and
we use n = |V(G*)] and m = |FE(G*)| to be the

number of vertices and edges in the subgraph. In this
section we prove Lemma 2.5, which concerns an efficient
distributed analogue of Spielman and Teng's [41, 42]
Nibble routine.

Many existing works [3, 8,28, 41] have shown that
looking at the distribution of random walks is a good
approach to finding a sparse cut. The basic idea is to
first sample a source vertex s according to the degree
distribution, i.e., the probability that v is sampled
is deg(v)/(2m), and do a lazy random walk from s.
Assume there is a sparse cut S with conductance ®(5),
and Vol(S) < Vol(V)/2. If s € S, then the probability
distribution of the random walk will be mostly confined
to S within the initial ¢y = O(ﬁ) steps. A common
way to utilize this observation is to sort the vertices
(v1,...,v,) in decreasing order of their random walk
probability, and it is guaranteed that for some choice
of j, the subset C' = {v1,...,v;} is a sparse cut that is
approximately as good as S.

The papers [28,40] adapted this approach to the
CONGEST model. If the cut S satisfies that b - 2|E| <
Vol(S) (i.e., S has balance b), then a cut C satisfying
®(C) = O(y/®(S)logn) can be found in O(D +
1/(b®(S5))) rounds. The algorithm is inefficient when
1/b = O(|E|/Vol(S)) is large. The main source of this
inefficiency is that if we sample a vertex s according
to the degree distribution, then the probability that
s € S is only O(b). This implies that we have to
calculate many random walk distributions before we
find a desired sparse cut. If we calculate these random
walk distributions simultaneously, then we may suffer
from a huge congestion issue.

Spielman and Teng [41] show that a random walk
distribution with truncation (rounding a probability to
zero when it becomes too small) can reveal a sparse cut,
provided the starting vertex of the random walk is good.
The main contribution of this section is a proof that the
Spielman-Teng method for finding cuts of conductance
roughly ¢ can be implemented in poly(¢~! logn) time
in the CONGEST model, i.e., with no dependence on the
balance parameter b.

Terminology. We first review some definitions
and results from Spielman and Teng [41]. Let A be
the adjacency matrix of the graph G. We assume a 1-1
correspondence between V(G) and {1,...,n}. In a lazy
random walk, the walk stays at the current vertex with
probability 1/2 and otherwise moves to a random neigh-
bor of the current vertex. The matrix realizing this walk
can be expressed as T' = (AD~! +1)/2, where D is the
diagonal matrix with (d(1),...,d(n)) on the diagonal,
and d(i) = deg(7).

Let p} be the probability distribution of the lazy
random walk that begins at v and walks for ¢ steps. In

Copyright © 2019 by SIAM

829 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

the limit, as ¢ — oo, p(x) approaches d(x)/2m, so it is
natural to measure py(z) relative to this baseline.

pr(x) = pi(x)/d(z),

Define m; to be the permutation that sorts V =
{1,...,n} in decreasing order of pi-values, breaking
ties by vertex ID. We never actually compute .
To implement our algorithms, it suffices that given
pr(u), pe(v), ID(u),ID(v), we can determine whether or
not u precedes v according to 7.

pe(m (i) > pe(me(i 4 1)), for all 4.

Let p be a distribution on V. The truncation
operation [p]. rounds p(x) to zero if it falls below a
threshold that depends on .

(@) = {p(w) if p(z) > 2ed(a),

0 otherwise.

The truncated random walk starting at vertex v is
defined as follows. In subsequent discussion we may
omit v if it is known implicitly.

3 () = 1 z=wvandl>2ed(z),
Po 10 otherwise.
ﬁt = [Tﬁtfl}e

The description of the algorithm Nibble and
Lemma 3.1 in [41] implies the following lemma.*

LEMMA 3.1. ([41]) For each ¢ < 1, define the param-
eters

491In(me*)
ty= ——
¢
and ~ =90
77 302 In(me*)’

For each subset S C 'V satisfying

Vol(S) < = - Vol(V)

d)S
192081n? (met)’

3
and ®(5) <

there exists a subset S9 C S with the following proper-
ties. First, Vol(S9) > Vol(S)/2. Second, S9 is parti-
tioned into S9 = ;28 S such that if a random walk
is initiated at any v € Sg with truncation parameter
m, then there exists a number t € [1,to]
and an index j such that the following four conditions
are met for the cut C = {7y (1),...,7(4))}

€ =

TThere are many versions of the paper [41] available; we refer

to https://arxiv.org/abs/cs/0310051v9.

(i) ©(C) < ¢,

(ii) pe(7e(5)) = ~v/Vol(C),
(iii) Vol(C' N S) > (4/7)20~ 1,
(iv) Vol(C) < (5/6)Vol(V).

In subsequent discussion, with respect to a given
parameter ¢ < 1, for any subset S C V satisfying
the condition of Lemma 3.1, we fix a subset §9 C S
and its decomposition S9 = zo:glm S} to be any choices
satisfying Lemma 3.1.

3.1 Distributed Algorithm Now we give our al-
gorithm Distributed Nibble. To simplify things, we
present it as a sequential algorithm, and prove in
Lemma 3.5 that it can be implemented efficiently in
the CONGEST model. For any permutation mw, we
use the notation m(i..j) to denote the set {m(i),n(i +

1,...,7m(4)}

Algorithm 1 Distributed Nibble

Input: ¢.
for parameter b =1 to [logm] do
Set parameters ty = 49In(me*)/¢?, and ¢ =

¢ .
S6Tn(menyigar» s in Lemma 3.1.

(1) Independently randomly sample K = clogm -
Voé(bv) vertices vy, ..., Vg proportional to their de-
grees, where c is a large enough constant.
Initialize pg'.
for t =1 to tq, for every v; do
(2) Calculate py* = [Tpy" 4],
Denote jmqae as the largest index such that
b (7 (Jmaz)) > 0.
for z = 0 to log;, ,(5/6)Vol(V) do
(3) Set j < Jjmaz to be the largest index
that VOI(Tl't (1..4) <1 +¢)".

(4) U ®(7}7(1..5)) < 12¢, output the sparse
cut C' = 7;"(1..5) and halt.
end for
end for
end for

Return failed.

From Lemma 3.1 we know that we can obtain a cut
C with some good properties if we start the truncated
random walk at a vertex v € Sy with parameter ¢,.
Therefore, what we do in Distributed Nibble is to
just sample sufficiently many vertices as the starting
points of random walks so that with sufficiently high
probability at least one them is in the set S7. The
danger here is that calculating all these random walk

Copyright © 2019 by SIAM

830 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

distributions simultaneously may be infeasible if any
part of the graph becomes too congested.

In this section we analyze the behavior of
Distributed Nibble (as a sequential algorithm) and
prove that it operates correctly. In Section 3.2 we ar-
gue that Distributed Nibble can be implemented ef-
ficiently in the CONGEST model, in poly(logm,1/¢)
time.

Roughly speaking, Lemma 3.2 shows that if the sets
m(1..5) and 7(1..5') have similar volume, then the cuts
resulting from these two sets have similar sparsity. This
justifies lines (3) and (4) of Distributed Nibble and
allows us to examine a small number of prefixes of the
permutation 7.

LEMMA 3.2. Let m be any permutation, and let ¢ <
1/12. If, for some index j, ®(n(1..j)) < ¢ and
Vol(m(1..5)) < (5/6)Vol(V), then ®(n(1..5")) < 12¢ for
all indices j' > j such that

Vol(m(1..5")) < (1 + ¢)Vol(x(1..5)).

Proof. Let © = Vol(n(1..j)) and y = Vol(n(1..5)).
Recall that 2m = 2|E| = Vol(V), and so = <
(5/6)Vol(V) = (5/6)2m. We have z < y < (1 + ¢)z.
Since z < (5/6)2m and ¢ < 1/12, we have ¢z < z/12 <
(2m — x)/2. Therefore,

2m—y >2m —x — ¢z > (2m — x)/2.
We calculate an upper bound of ®(7(1..5")) as follows.

O(w(1..5"))
min(y, 2m — y)
O (Lg) + S dlm(i)
min(z, (2m — z)/2)
A(m(1..5)) + ¢z
~ min(z, (2m — x))/2
< 12¢.

O(m(1..j)) =

We explain the details of the derivation. The first
inequality is due to z < y and (2m — z)/2 < 2m — y,
which follow from the above discussion. The second
inequality is due to the fact that 7 d(m(z)) =

=j+1
Vol(r(1..4")) — Vol(r(1..7)) < ¢ - Vol(n(L..j)) = ¢a. For
the third inequality, note that % < ¢ and
W < 5¢, since x < (5/6)2m. O

LEMMA 3.3. Let S CV be any subset satisfying

¢3
Vol(S) < (2/3)Vol(V) and @(5) < ——————.
() < (2/3)Vol(V) (5) = 192081n2(me4)
Then there exists a number b such that Vol(SJ) > 2b/32.

831

Proof. Denote © = Vol(S). From Condition (iii) of
Lemma 3.1 we deduce that if S7 # (), then there exists
a set of vertices C' such that Vol(S) > Vol(C N S) >
(4/7)2b=1. Thus, for all b such that b > [logx] + 2, we
must have Sy = (. If the statement of this lemma is
false, i.e., Vol(S]) < 2°/32 for all b, then

[log z]+1 b 9llog z]+2

b=1

< x/4,

which contradicts the requirement Vol(S9) > Vol(S)/2
specified in Lemma 3.1. O

LEMMA 3.4. (CORRECTNESS) For any ¢ < 1/12, if
there exists a subset S C 'V satisfying

3
and ®(9) < —¢2)
19208 In*(me?)
then Distributed Nibble outputs a set of vertices C
such that ®(C) < 12¢ with probability at least 1 —
1/poly(m).
Proof. From Lemma 3.3 we know there exists a number

b such that Vol(SY) > 2°/32. Since we sample v;
proportional to the degree distribution,

Vol(S}) o 2b

Vol(S) < (2/3)Vol(V)

Priv: € 57 = Vol(V) = 32- Vol(V)’
Since we sample K = clogm - VO;(E,V) number of vertices,
o clog m Y2V
Pr(3ist. v; €)] >1— <1 - 32\/01(‘/))

>1—m 20,

Now we focus on the truncated random walk start-
ing at this vertex v; € Sy. We fix two numbers t € [1, to]
and j such that the four conditions in Lemma 3.1 are
satisfied. In particular, Condition (i) and Condition (iv)
in Lemma 3.1 say that

Vol(7y#(1..7)) < (5/6)Vol(V),
P77 (1.9)) < 0

Therefore, we are able to apply Lemma 3.2, and so we
have ®(7;7(1..5")) < 12¢ for all indices j’ such that
Vol(7¥%(1..5)) < Vol(77i(1..5")) < (1 4+ ¢)Vol(7* (1..5)).

In Distributed Nibble, we search for a cut with
target volume (14 ¢)*, for all possible integers x. Note
that Condition (ii) in Lemma 3.1 implies j < jmaz-
Therefore, in Step (3) of Distributed Nibble, at least
one index j* picked by the algorithm satisfies

Vol(7¥%(1..5)) < Vol(77i(1..5)) < (1 + ¢)Vol(77 (1..5)).
By Lemma 3.2, the cut C = 7}*({1,...,j*}) associated

with this index j* found in Step (4) meets the require-
ment ®(C') < 12¢ of the lemma. O

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

3.2 Implementation We show how to implement
Distributed Nibble in the CONGEST model. The
goal of this section is to prove Lemma 3.5. Note that
Lemma 2.5 is a consequence of Lemmas 3.4 and 3.5.

LEMMA 3.5. Distributed Nibble can be implemented
in the CONGEST model using O(D + log®m/¢')
rounds, with success probability 1 — 1/poly(m), where
D s the diameter of graph. If Distributed Nibble
outputs a set C' successfully, then each vertexr knows
whether or not it belongs to C.

To prove this lemma, we shall analyze Distributed
Nibble step by step.

LEMMA 3.6. (STEP (1)) The samples for every level b
(from 1 to [logm]) can be generated in O(D + logm)
time.

Proof. We build a BFS tree rooted at an arbitrary
vertex x. For each vertex v, define s(v) as the sum
of d(u) for each w in the subtree rooted at v. In O(D)
rounds we can let each vertex v learn the number s(v)
by a bottom-up traversal of the BFS tree.

In the beginning, for each b = 1,..., [logm], we
generate Kj = clog m%&v) number of b-tokens at the
root z. Let L = O(D) be the number of layers in
the BFS tree. For i = 1,...,L, the vertices of layer
i do the following. When a b-token arrives at v, the
token disappears at v with probability d(v)/s(v) and
v includes itself in the bth sample; otherwise, v sends
the token to a child v with probability %. Note
that v only needs to tell each child v how many b-
tokens u gets. Thus, for each b, the process of choosing
Ky =clog va;(bV) vertices from the degree distribution
can be done in L rounds. By pipelining, we can do this
for all b in O(D + logm) rounds.

This method has the virtue of selecting exactly K
vertices in the bth sample. We can also select K}, vertices
in expectation, in just O(D) time, simply by computing
Vol(V) with a BFS tree, disseminating it to all vertices,
and letting each v join the sample independently with
probability K3 deg(v)/Vol(V). O

It is not obvious why Step (2) of Distributed
Nibble should be efficiently implementable in the
CONGEST model. Before analyzing it, we give some
helpful lemmas about lazy random walks.

LEMMA 3.7. ([41]) For allu,v, andt, p}(u) = pi(v).

Proof. This lemma was observed in [41] without proof.
For the sake of completeness, we provide a short proof
here. A sequence of vertices W = (zg,x1,...,¢) is

called a walk of length ¢ if x;,11 € N(z;) U{z;} for each
i €]0,t). We write Pr[IV] to be the probability that the
first ¢ steps of a lazy random walk starting at xq tracks
W. Let W = (z4,24_1,...,70) be the reversal of W.

Let WY be the set of walks of length ¢
starting at w and ending at wv. It is clear
that p¥(v) = ZWewg"” Pr[W]/d(v) and p}(u) =
Swewr Pr(W]/d(u). Since Wy = {(WE | W €
W;""}, to prove the lemma it suffices to show that
Pr[W]/d(v) = Pr[WZ%]/d(u) for each W € W;"".

Fix any W € W,"" and let W, = (yo,.-.,¥s)
be the subsequence of W resulting from splicing out
immediate repetitions in W. It is clear that Pr[W] =

27 T1;Z) 1/d(y:), and so

Pe(W] _PeW] .,y 1 Pr[WH
aw) H)d(yz) Cod(yw) dw)

LEMMA 3.8. Fiz the parameter b (which influences €,
and hence the truncation operation of the random walk)

and define
Zy(u) = {v; | v; is in the bth sample and p;* | (u) > 0}.

For every vertex uw and every t, with high probability,
|Z4(w)| < O(log® m/¢?).

Proof. Define S = {v € V| py_;(u) > 0}. By definition
Zy(u) = SN {vi,...,vk,}. For each v € S, we have
pY_(u) > p¥_4(u) > 2epd(u). Recall that p;—q is the
probability distribution obtained after ¢ — 1 steps of the
lazy random walk without truncation. By Lemma 3.7,

pi-1(v) = (p{-1(u)/d(w))d(v) = 2e, - d(v).

Therefore, 2¢, - Vol(S) < > copi1(v) < 1, and so
Vol(S) < 2—;, which implies
1

Prfo; €] < —— .
€81 = 5 Saim

4
Recall that tg = % and €, = que‘l)toﬁ'

Rewrite the number K; = clog m%gv) as Kp = O(ep -
Vol(V) - log® m/¢?). Since each of vy, ..., v, is chosen
independently, using a Chernoff bound we conclude that
there exists a constant ¢’ > 0 depending on ¢ such that

Pr(|Z,(u)] > ¢'log’ m/¢°] < exp(~Q(log® m/¢%)).
0

LEMMA 3.9. (STEP (2)) Fiz the parameter b. Suppose
each vertex v knows p;* | (v), for all v; in the bth sample.
Then with high probability, each vertex v can calculate
pYi(v), for all vs, within O(log® m/¢?®) rounds.

Copyright © 2019 by SIAM

832 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Proof. The normal way to calculate [T'p;—1(u)le, is as
follovqujs. For each v;, each vertex v broadcasts the num-

ti(v
ber péﬁéi))
sages from neighbors. The vertex v can calculate p;" (v)
locally by adding py*,(v)/2 and all numbers received
from its neighbors, then applying the truncation opera-
tion. Note that a straightforward analysis of this proto-
col leads to a terrible round complexity, since we have
to do this for each v;.

One crucial observation is that a vertex v does
not need to care about those v; with p;”,(v) = 0 at
time t. We modify this protocol a little bit in such
a way that we never send a number if it is 0. Define
Zy(u) ={v; | py~1(u) > 0} as in Lemma 3.8, and so each
vertex v only needs to spend | Z;(v)| rounds to simulate
the time step ¢ of the lazy random walk. By Lemma 3.8
and the discussion above, we have proved that Step (2)
can be executed in O(log® m/¢?) time, for every v; and
any specific t. O

to all its neighbors, and then v collects mes-

LEMMA 3.10. (STEPS (3,4)) Fiz parameters b, t and
x. Steps (3) and (4) can be implemented in
O(log® m/¢7) rounds for all v; in the bth sample. For
any sparse cut C found in Step (4), every vertex in C
knows that it belongs to C.

Proof. Now we focus on the random walk starting at v;.
Let U = {u | ' < t, pj(u) > 0}. We claim that U
is a connected vertex set. Suppose U is disconnected.
Let W be a connected subset of U such that v; ¢ W.
Let ¢’ be the minimum number such that there exists a
vertex v’ € W with p,/(u") > 0. By our choice of v/,
there is no neighbor v” of «’ such that p,;_,(v") > 0, and
this contradicts the fact that p;’(u’) > 0. Therefore, U
must be a connected vertex set.

Obviously all 7% (5) for j < jmas are in U. We build
a BF'S tree of U rooted at v;, which has ¢t + 1 levels. We
will execute Step (3) and Step (4) by sending requests
from the root to all vertices in U, collecting information
from U to the root, and making a decision locally at
the root. Recall that each v; has its own BFS tree, and
in general a vertex u belongs to multiple BFS trees for
different v;. Luckily, each vertex u only belongs to the
BFS tree of those v; € UJ;<;<;, 1 Zt(u), so with only
a (to + 1) - max,; | Z:(u)| = O(log* m/¢°) overhead of
running time, we can do Step (3) and Step (4) for all v;
in parallel.

To find each index j specified in Step (3), we can do
a “random binary search” on vertices in U. Let 7# = 7,"
and g = py* be with respect to py¢. Note that by our
choice of U we can assume U is a prefix set of 7. We
maintain two indices L and R that control the search
space. Initially, L < 1 and R «+ |U|. In each iteration,

we randomly pick one vertex 7(j) among 7(L..R) and
calculate Vol(7w(1,---,4)) by broadcasting p(7(j)) to
all vertices in U and propagating information up the
BFS tree.® If Vol(7(1,---,75)) < (1 + ¢)*, we update
L < j; otherwise we let R = j — 1. In each iteration,
with probability 1/2 we sample j in the middle half of
[L, R] and the size of search space [L, R] shrinks by a
factor of at least 3/4. Therefore, w.h.p., after O(logm)
iterations, we will have isolated L = R = j. Each
iteration can be done in O(t) = O(¢p) rounds. Due to
the congestion overhead, Step (3) can be implemented
in O(logm - to - log* m/¢®) = O(log® m/¢7) rounds.
Step (4) can be done by simply collecting infor-
mation about 9(7;7(1..5)) and Vol(7;*(1..5)); its round
complexity is of a lower order than that of Step (3). If
the root v; finds a cut C' with ®(C') < 12¢, it broadcasts
p(7(j)) to all vertices in U to let the vertices in C' know
that they are in C. Note that for each vertex u in U,
it can infer whether it is in C' by comparing p(u) and

p(7(5))- O

Proof. [Proof of Lemma 3.5] Combining Lemmas 3.6,
3.9, and 3.10, the running time in Step (1) is
O(D + logm), Step (2) is O(log® m/¢%), and Steps (3)
and (4) are O(log” m/¢'). The dominating term
O(log” m/¢'%) comes from enumerating logm - to -
logm/¢ = O(log®m/¢?) combinations of (b,t,z),
spending O(log®m/¢7) rounds for each combination.
Whenever a vertex v; finds a sparse cut C, it
broadcasts a message to the entire graph saying that
it has found a cut, and this takes O(D) rounds. If
multiple cuts are found by different vertices, we can
select exactly one cut, breaking ties arbitrarily. A more
opportunistic version of the algorithm could also take a
maximal independent set of compatible cuts. O

4 Triangle Enumeration

We use the routing algorithm from [17,18]. Theorem 4.1
was first stated in [17, Theorem 1.2] with round com-
plexity Tmix(G) - 20(Vlognloglogn). this was recently im-
proved to Tmix(G) - 20(Vlogn) iy [18].

THEOREM 4.1. ([17,18]) Consider a graph G =
(V, E) and a set of point-to-point routing requests, each
given by the IDs of the corresponding source-destination
pair. If each vertex v is the source and the destination
of at most deg(v) - 20(vIogn) messages, there is a ran-
domized distributed algorithm that delivers all messages
in Tmix(G) - 20(V108 1) rounds, w.h.p., in the CONGEST
model.

5Each vertex u € U does not know the index j such that

u = 7(j), so we cannot do the search deterministically.

Copyright © 2019 by SIAM

833 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

REMARK 4.1. The claim of Theorem 4.1 appears to
be unproven for arbitrary ID-assignments (Hsin-Hao
Su, personal communication, 2018), but is true for
well-behaved ID-assignments, which we illustrate can
be computed efficiently in CONGEST. In [17, 18] each
vertex v € V simulates deg(v) virtual vertices in a
random graph Gy which is negligibly close to one drawn
from the Erdds-Rényi distribution G(2m,p) for some
p. Presumably the IDs of v’s wirtual wvertices are
(ID(v),1),...,(ID(v),deg(v)). It is proven [17, 18] that
effecting a set of routing requests in Gy takes 20(v1osn)
time in Gg; however, to translate a routing request
ID(z) ~ ID(y) in G to Gy, it seems necessary to map
it (probabilistically) to (ID(z),i) ~ (ID(y),j), where
i,j are chosen uniformly at random from [1,deg(z)]
and [1,deg(y)], respectively. (This is important for the
global congestion guarantee that y’s virtual nodes receive
roughly equal numbers of messages from all sources.)
This seems to require that x know how to compute
deg(y) or an approzimation thereof based on ID(y).
Arbitrary ID-assignments obviously do not betray this
information.

LEMMA 4.1. In O(D + logn) time we can compute an
ID assignment ID : V. — {1,...,|V|} and other infor-
mation such that ID(u) < ID(v) implies |logdeg(u)] <
[logdeg(v)|, and any vertex u can locally compute
|log deg(v)| for any v.

Proof. Build a BFS tree from an arbitrary vertex z in
O(D) time. In a bottom-up fashion, each vertex in
the BF'S tree calculates the number of vertices v in its
subtree having |logdeg(v)] = i, for i« = 0,...,logn.
This takes O(D+logn) time by pipelining. At this point
the root = has the counts ng,...,niegn for each degree
class, where n = . n;. It partitions up the ID-space
so that all vertices in class-0 get IDs from [1, ng], class-1
from [no+1,n9+n1], and so on. The root broadcasts the
numbers ng, ..., Niogn, and disseminates the IDs to all
nodes according to their degrees. (In particular, the root
gives each child logn intervals of the ID-space, which
they further subdivide, sending logn intervals to the
grandchildren, etc.) With pipelining this takes another
O(D + logn) time. Clearly knowing ng, ..., niegn and
ID(v) suffice to calculate |logdeg(v)]. d

Lemma 4.1 gives us a good ID-assignment to apply
Theorem 4.1. It is also useful in our triangle enumera-
tion application. Roughly speaking, vertices with larger
degrees also have more bandwidth in the CONGEST
model, and therefore should be responsible for learning
about larger subgraphs and enumerating more triangles.

Before we present our triangle enumeration algo-
rithm for general graphs, we address the important spe-

cial case of finding triangles with at least one edge in a
component of high conductance.

4.1 Triangle Enumeration in High Conduc-
tance Graphs Recall that our graph decomposition
routine returns a tripartition F,, U E5 U E,.. Triangles
that intersect E; will be enumerated separately. The
purpose of this section is to provide a routine to enu-
merate triangles that intersect F,, but not Eg, i.e., they
are (i) completely contained in E,, or (ii) have at least
one edge in E,, and E,.5 Whereas each component of
F,, has low mixing time, we can say nothing about the
mixing time of a component of E,, plus all incident FE,.
edges.

Definitions. The underlying network is G =
(V,E). The input is a subgraph Gi, = (Vin, Ein) with
low mixing time, together with some additional edges
E,yt joining vertices in Vi, to V. Let deg;,(v) and
deg, .+ (v) be the number of F;, and Foy edges incident
to v. In this section we write n = |V| and mi, = |Fiy|.
We assume V = V(Ei, U Eoyt). Note that Condition (i)
of Theorem 4.2 implies that mi, < |Eip U Eout| < 3myy.

THEOREM 4.2. Suppose that Gy, and Eo. meet the
following conditions:

(i) For each v € Vin, deg;,(v) > degg, (v).
(”) Tmix(Gin) = no(l)'

In the CONGEST model, all triangles in Ei, U Foys
can be counted and enumerated, w.h.p., in O(n'/3+toM)
rounds.

Note that Theorem 4.2 applies to the class of graphs
with n°() mixing time by setting Eou = 0. We first
describe the algorithm behind Theorem 4.2 and then
analyze it in Lemmas 4.2-4.5.

The Easy Case. We first check whether any ver-
tex v* € V(Eiy U Egyt) has

degin(v*) + degout (’U*) 2 m/(40n1/3 IOg n) = C

If so, we apply Theorem 4.1 to the subgraph Gi"r'l induced
by Ej, and all edges FE,,; incident to v*, and have
every vertex u € Vi, transmit to v* all its incident
edges in Ei, U Eoy.” Condition (i) of Theorem 4.2

60ur algorithm for constructing the tripartition E,, UEs U E,

satisfies the property that there is no triangle with two edges in
FE,, and one edge in E,. However, all algorithms in Section 4 do
not rely on this property.

"Note that when v* € V' \ Vin, Tmix(Gin) = n°() implies that
‘rmix(GiJ;) = n°M) as well. This follows from the observation that
the conductance ® 4 of G; is at least 1/3 of the conductance

&g of Gi,. Pick a sparsest cut (S,S) of Gii, and let (S,5")

Copyright © 2019 by SIAM

834 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

implies that |Eiy U Eout| < 3miy, so the total volume of
messages entering v* is O(myy,). Therefore the routing
takes O(Tmix(Gih) - 20(vlogn) -m/¢) = n'/3*t°M and
thereafter, v* can report all triangles in Fi, U Foyt. In
the analysis of the following steps, we may assume that
the maximum degree in the graph induced by Ei, U Eoyt
is at most mjy, /(40n'/3 logn).

Vertex Classes. Let § = 2llos@mn/n)] he the
average number of incident edges in Ej, among all n
vertices V', rounded down to the nearest power of 2.
Write deg;,(v) = k, - §, and call v a class-0 vertez if
k, € [0,1/2) and a class-i vertex if k, € [2072,2¢71).
We use the fact that

Z 2k, > n.

vEVin 1 ky>1/2

By applying Lemma 4.1 to reassign IDs, we may assume
that the ID-space of Vi, is {1,...,|Viy|} and that any
vertex can compute the class of v, given ID(v).

Randomized Partition. Our algorithm is a ran-
domized adaptation of the CONGESTED-CLIQUE al-
gorithm of [9]. We partition the vertex set V into
ViU---UV,1s locally, without communication. Each
vertex v € V selects an integer r, € [1,n'/3] uniformly
at random, joins V, , and transmits ‘r,’ to its imme-
diate neighbors in Vi,. We allocate the (less than) n
triads

T ={Godads) |1 <1 < o < js <!/}

to the vertices in Vi, in the following way. Enumerate
the vertices in increasing order of ID. If v is class-0,
then skip v. If v is class-i, ¢ > 1, then k, < 2¢71/6.
Allocate to v the next 2°/§ > 2k, triads from T, and
stop whenever all triads are allocated.

We use Lemma 4.1 to generate the IDs of vertices in
Vin. In view of how vertex class is defined, Lemma 4.1
guarantees that each vertex v € Vj, knows the class of all
vertices in Vj,, and can therefore perform this allocation
locally, without communication.

A vertex v € V that is assigned a triad (j1, j2,J3) is
responsible for learning the set of all edges E(V},,V;,)U
E(V;,,V,,) U E(V;,,V;,) and reporting/counting those
triangles (1, x2, z3) with z € V;,.8

be the corresponding cut of Gi,. The sparsity ®(S) of (S,5)

must be at least 1/3 of the sparsity ®(S’) of (S’,5’), because
Vol(S) < 2|S’| + Vol(S’) < 3Vol(S’). Therefore, (I)Git = ®(S) >
10(8) > 1 0¢,, .

8In the Triangle Counting application, it is important that v
not count every triangle it is aware of. For example, if v is assigned
(4,4,3"), v knows about triangles in the subgraph induced by V;
but should not count them; these triangles will be counted only
by the vertex w that is assigned (J, 7, 7).

Transmitting Edges. Every vertex v € V;;, knows
the IDs of all its neighbors in V' and which part of
the vertex partition they are in. For each v € Vi,
each incident edge (v,u) € Fi, U Eoyt, and each index
r* € [1,n'/3], v transmits the message “(v,u), 7y, 7, to
the unique vertex = handling the triad on {ry,r,,r*}.
Observe that the total message volume is exactly
O(mian'/3).

We analyze the behavior of this algorithm in the
CONGEST model, where the last step is implemented
by applying Theorem 4.1 to Gi,. Recall from Condition
(i) of Theorem 4.2 that the number of edges in the graph
we consider, m = |Ej,UFEoyut, is in the range [min, 3miy].

LEMMA 4.2. Consider a graph with m edges and n ver-
tices. We generate a subset S by letting each wver-
tex join S independently with probability p. Suppose
that the mazimum degree is A < mp/20logn and
p?m > 40010g2 n. Then, with probability at least
1 — 10(logn)/n>, the number of edges in the subgraph
induced by S is at most 6p*m.

Proof. For an edge e;, define x; = 1 if both two
endpoints of edge e; join §, otherwise x; = 0. Then
X = Z:il x; is the number of edges in the subgraph
induced by S. We have E[X] = p?m, and by Markov’s
inequality,

c o o 1 E[X]
Pr(X > 6B[X]] = Pr{X* > (BELX])] < - .
where ¢ = 5logn is a parameter.
ElX9) = Z E H Li;

11,00 €[1,mM)] j=1

2c

k=2
where fj, is the number of choices {i1,...,i. € [1,m]}
such that the number of distinct endpoints in the edge

set ey, ..., is k.

For any choice of (i1,...,i. € [1,m]), we project it
to a vector (ki,...,k.) € {0,1,2}¢, where k; indicates
the number of endpoints of ¢;; that overlap with the
endpoints of the edges e;, , ..., e;;_,. Note that 2c—) k;
is the number of distinct endpoints in the edge set
{€iy,--- €. }. We fix a vector (ki,...,k.) and count
how many choices of (i1,...,%.) project to this vector.

Suppose that the edges e;,,...,e;,_, are fixed. We
bound the number of choices of e;; as follows. If k; = 0,
the number of choices is clearly at most m. If k; = 1,
the number of choices is at most (2¢)(pm/20logn),
since one of its endpoints (which overlaps with the

Copyright © 2019 by SIAM

835 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

endpoints of the edges e;,,...,e;,_,) has at most 2c
choices, and the other endpoint (which does not overlap
with the endpoints of the edges e;,,...,e;,_,) has at
most A < mp/20logn choices. If k; = 2, the number
of choices is at most (2c)2.

Based on the above calculation, we upper bound fj
as follows. In the calculation, x is the number of indices
j such that k; = 1, and y is the number of indices j that
k; = 2. Note that (¢) (“;z) is the number of distinct
vectors (ki, ..., k) realizing the given parameters ¢, x,
and y. The number fi is at most

mcxy(c> (c— CL‘> (2cpm >$ (4c2)v
Z T Y 20logn

x <c

QCfiiJQ_y:k

_ 2ep \" [4c2\Y
< 030 =+ _
- Z " <20 logﬁ> < m >

z+y<c
2c—x—2y=k

- 20p x+2y
< 3m)¢
- Z (8m) < 20log ﬁ)

z+y<c
2c—x—2y=k

26p 2c—k
< c(3m)° (20 logn) '

The third inequality is due to the fact p?m > 400 log2 n,
which implies (2¢p/20log 71)? > (4¢2/m). Using the fact

that 2012% < 1/2, we upper bound E[X¢] as follows.

2c
EXT <Y fi-p"
k=2

2c 2 2c—k
_ —\c, 2¢c
= cBm)p Z (2010gn)

k=2
< 2¢(3m)p*e.

Therefore,

1 E[X¢] _ 2¢3° _10logn
Pr[X > 6E[X]] < — < < .
I‘[=6 [H - 6¢ pZCmc - 6c — no°
Note that the probability can be amplified to 7 ~? for

any constant t by setting ¢ = tlogn and using different
constants in the statement of the lemma. O

LEMMA 4.3. With probability at least 1 — 1/n*, we
have |E(V;,,V;,)| < 6|Ein U Eou|/n?? for all jy,j2 €
[1,n1/3].

Proof. Recall that each v € V joins the set V; with
probability 1/n'/3. Thus, the probability that a vertex
v € VisinVj UV, is at most p = 2n~1/3.9

9For the case of j; = jo, the probability is n—1/3,

We apply Lemma 4.2 to the subgraph induced by
Ein U Eoyt having m = |Ej, U Egye| edges and 72 = n
vertices, with sampling probability p = 2n~/3 and
S =V;, UV;,. By assumption, the maximum degree
(of the subgraph induced by Ei, U Egyt) is at most
minp/(20logn) < mp/(20log i), since otherwise we go
to the easy case. The maximum degree upper bound
implies 2 > (20log @) /p, and p*m > (pi)? > 400 log” 7.
By Lemma 4.2, we conclude that Pr[|E(Vj,,V},)|
6m/n?3) < 100%en Note that |E(Vj, U Vj,)| >
BV, Vi)

By a union bound over all n*/° choices of j; and
J2, the stated upper bound holds everywhere, with
probability at least 1 — 1/n*. O

\%

2/3

LEMMA 4.4. With high probability, each vertex v € Vi,
receives O(degy, (v) - n'/?3) edges.

Proof. Consider any vertex v € Vi,. If k, < 1/2, then
v receives no message; otherwise v is responsible for
between 2k, and 4k, triads, and v collects the edge
set E(V},,V},) for at most 12k, pairs of Vj,, Vj,. By
Lemma 4.3, w.h.p., |E(V},,V},)| = O(min/n?*3). Re-
member that our choice of k, implies k, = ©(deg;, (v) -
n/mi,), and so v receives

O(min/n2/3) 12k, = O(degin(v) -n1/3)
messages, with high probability. 0

LEMMA 4.5. Each verter v € Vi, sends O(deg;,(v) -
n'/3) edges with probability 1.

Proof. By Condition (i) of Theorem 4.2, v € Vi, is
responsible for deg;, (v)+deg, . (v) < 2deg;,(v) incident
edges, and each is involved in exactly n'/? triads. [

Lemmas 4.2-4.5 show that the message volume in
to/out of every vertex is close to its expectation. By
applying Theorem 4.1 and Lemma 4.1, all messages can
be routed in n!/3t°() time. This concludes the proof
of Theorem 4.2. Corollary 4.1 is a simple consequence
of Theorem 4.2.

COROLLARY 4.1. Let G be a graph with Tmix(G) =
n°D . In the CONGEST model, Triangle Detection,
Enumeration, and Counting can be solved on G, with
high probability, in n/3+°() time.

4.2 Triangle Enumeration and Counting in
General Graphs The algorithm for Theorem 4.3 is
based on an n'/?-decomposition. Since the connected
components induced by F,, have low mixing time, we
can solve Triangle Enumeration/Counting on them very
efficiently using Theorem 4.2, in n!/3+°() time, i.e.,
much less than the time required to compute the n'/2-
decomposition.

Copyright © 2019 by SIAM

836 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

THEOREM 4.3. In the CONGEST model, Triangle De-
tection, Counting, and Enumeration can be solved,
w.h.p., in O(n*/?) rounds.

Proof. The underlying graph is G = (V, E). We set
the parameter § = 1/2. By Theorem 2.1, we compute
an n’-decomposition E = E,, U E,; U E, using ON(nl";)
rounds. We divide the task of enumerating triangles into
three cases. By ensuring that every triangle is output by
exactly one vertex, this algorithm also solves Triangle
Counting.

The algorithm has three steps. In the first step, we
list all triangles intersecting F. In the second step, we
identify a subset E°V C E,,, and in this step we list
all triangles intersecting E,, \ Er°V. At this point, all
remaining triangles that are not yet listed are contained
in EPV U E,, and they will be listed in the third step.

Case 1: All Triangles Intersecting FE;. We
handle this case as follows. By Condition (b) of
Definition 1.2, E, = UvGV Es ,, where {E; ,} defines
an acyclic n’-orientation. We let each v announce Es,
to all its neighbors, in O(n?) time. For the Triangle
Counting application it is important that every triangle
{z,y,z} intersecting E; be reported by exactly one
vertex. If (r,y) and (z,z) are oriented and ID(y) <
ID(z), then y detects and reports the triangle. If (z, z)
is oriented, {z, y} is unoriented, and {y, z} is unoriented
or oriented as (z,y), then y detects and reports the
triangle. If (z,2), (y, 2z) are oriented but {z,y} is not,
and ID(y) < ID(x), y reports the triangle.!?

Case 2: Some Triangles Intersecting F,,.
Consider a single connected component Gi, = (Vip, Ein)
induced by E,,, which has mixing time n°"). We clas-
sify vertices in Vi, as good or bad depending on whether
they naturally satisfy Condition (i) of Theorem 4.2. A
vertex is good if deg;,(v) > degg, (v). Let Eoy be the
subset of F.-edges incident to good vertices in Vi, and
let E?*V be the subset of E,,-edges incident to bad ver-
tices in Vi,. We now apply Theorem 4.2 to enumer-
ate/count all triangles in the edge set Ei, U Eoyt.

Because triangles completely contained in E}°V
will also be found in Case 3, the Triangle Counting
algorithm should refrain from including these in the
tally for Case 2.

Case 3: Triangles Contained in E!V U E,.
Since each edge in E}°V can be charged to an endpoint
of an edge in E,, we have |El*V U E,| < 3|E,| < |E|/2.
We apply the algorithm recursively to the graph induced
by E}Y U E,. The depth of the recursion is obviously
at most logm.

T0Most of these cases do not occur in the parital orientations

produced by our algorithm; nonetheless, they can occur in
arbitrary partial acyclic orientations.

Round Complexity. Computing an n’-

decomposition £ = FE, U E, U E, takes O(n1_5)
rounds. The algorithm for Case 1 takes O(n%) rounds.
The algorithm for Case 2 takes O(n'/3+t°(1)) rounds.
The number of recursive calls (Case 3) is logm. Thus,
the overall round complexity is

logm - (O(n‘s) +0(n*=%) + O(n1/3+°(1))> = O0(n'/?).
Il

4.3 Subgraph Enumeration In this section we
show that Corollary 4.1 can be extended to enumerat-
ing s-vertex subgraphs in O(n(*~2)/5+°(1)) rounds. Note
that the Q(n'/3/log n) lower bound for triangle enumer-
ation on Erdés-Rényi graphs G(n, 1/2) [22] can be gen-
eralized to an Q(n*=2)/*/logn) lower bound for enu-
merating s-vertex subgraphs. This implies that Theo-
rem 4.4 is nearly optimal on G(n,1/2).

THEOREM 4.4. Let s = O(1) be any constant. Given a
graph G of n vertices with Tyix(G) = n°M | we can list
all s-vertex subgraphs of G in O(n(3=2/s+0(W)) rounds,
w.h.p., in the CONGEST model.

It has been shown in [9] that listing all s-vertex
subgraphs of G can be done in O(n(*=2)/%/logn)
rounds in the deterministic CONGESTED-CLIQUE
model. This result, together with the routing algorithm
of Lemma 4.1, does not immediately imply Theorem 4.4,
since deg(v) could be much less than n.

Theorem 4.4 is proved using a variant of Theo-
rem 4.2 with E, = 0. The proof of Theorem 4.4 is
almost the same as that of Theorem 4.2, and so in what
follows we only highlight the difference.

Let G = (V,E) and m = |E|. Similarly, we
assume the maximum degree is m/ (40n1/ % log n), since
otherwise we are in the easy case, where we can apply
Theorem 4.1 to have one vertex v learn the entire edge
set E in O(n'/st°)) < O(n(s=2/s+0() rounds, and
we are done after that.

We partition V into n'/* subsets Vi,...,V,i/..
Instead of considering triads, here we consider s-tuples:
{(i1,...,is) | 1 <id1 < ... <dy <nl/5}. After a vertex
v learns the edge set U; . cp g £(Vi,, Vi,), it has
ability to list all s-vertex subgraphs in which the jth
vertex is in V;;. We prove a variant of Lemma 4.3, as
follows.

LEMMA 4.6. W.h.p., |E(V;,V;)| = O(m/n?'*) for all
i,j € [1,n'/%].

Proof. We set p = 2n~'/*. The maximum degree is
at most m/ (40n'/*logn) < mp/20logn, and p*m >

Copyright © 2019 by SIAM

837 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

4001log®n. By applying Lemma 4.2 and use the same
analysis in Lemma 4.3, we conclude this lemma. U

Proof. [Proof of Theorem 4.4] Here we only consider
the time complexity to deliver all messages. Consider
a vertex v. If k, < 1/2, then v receives no message.
Otherwise v is responsible for between 2k, and 4k,
s-tuples, and v collects E(V;,V;) for at most 45%k,
pairs (V;,V;). By Lemma 4.6, w.h.p., |[E(V;,V})| =
O(m/n?/*) for all i,j. Hence the number of edges v
received is at most O(m/n?/*) - 4s%k, = O(deg(v) -
n(s—2)/s).

Note that each vertex v sends at most
O(deg(v)n(5=2)/%) messages since for each incident
edge e of v, there are at most O(n(*=2)/%) s-tuples in-
volving e. By Theorem 4.1, the delivery of all messages
can be done in O(n(*=2)/st°(M)) rounds, w.h.p. O

5 Conclusion

In this paper we have shown that all variants of Triangle
Detection, Enumeration, and Counting can be solved in
O(n'/?) rounds in the CONGEST model. The bottleneck
in our algorithm is not triangle-finding per se, but in the
decomposition of the graph into expanding subgraphs.
Our graph decomposition routine takes O(n'/?) time
and produces three edge sets, the third one inducing a
subgraph with arboricity O(n'/2). We believe that this
third set is unnecessary, and that the running time can
be improved substantially.

HypoTHESIS 1. In the CONGEST model, the edge set
E can be partitioned into E = E,, UE,. such that |E,| <
|E|/6 and connected components induced by E.,, have
conductance Q(1/polylog(n)) and hence O(polylog(n))
mizing time. The time required to compute (E,, E;)
is at most or n°1) time (weak version), or polylog(n)
time (strong version).

Observe that in the triangle enumeration applica-
tion, an even weaker version of Hypothesis 1 is sufficient
to improve our algorithm’s running time to n'/3+e(),
It is enough to find a decomposition in n'/3+°(M) time
achieving n°") mixing time in E,,. However, we suspect
that the weak and strong variants of Hypothesis 1 will
become more meaningful as this decomposition tech-
nique finds more applications in CONGEST.

Assuming Hypothesis 1 (either variant), the upper
bound for triangle enumeration, detection, and counting
as a function of n and A is:

min { O(A), nt/3+e) } ,

i.e., depending on the magnitude of A, we should
execute one of two algorithms. Is there a third algorithm

that is substantially better than these two for some
triangle problem and some graph density?

References

[1] A. ABBouD, K. CENSOR-HILLEL, S. KHOURY, AND
C. LENZEN, Fooling views: A new lower bound tech-
nique for distributed computations under congestion,
arXiv preprint arXiv:1711.01623, (2017).

[2] U. AGARWAL, V. RAMACHANDRAN, V. KING, AND
M. PONTECORVI, A deterministic distributed algorithm
for ezact weighted all-pairs shortest paths in O(n>/?)
rounds, in Proceedings 38th ACM Symposium on
Principles of Distributed Computing (PODC), 2018,
pp. 199-205.

[3] R. ANDERsSEN, F. R. K. CHUNG, AND K. J. LANG,
Local partitioning for directed graphs using PageRank,
Internet Mathematics, 5 (2008), pp. 3-22.

[4] R. ANDERSEN, S. O. GHARAN, Y. PERES, AND
L. TREVISAN, Almost optimal local graph clustering us-
ing evolving sets, J. ACM, 63 (2016), pp. 15:1-15:31.

[5] S. ARORA, B. BARAK, AND D. STEURER, Subezponen-
tial algorithms for unique games and related problems,
J. ACM, 62 (2015), pp. 42:1-42:25.

[6] K. CENsORrR-HILLEL, P. Kaski, J. H. KORHONEN,
C. LENZEN, A. PAZ, AND J. SUOMELA, Algebraic meth-
ods in the congested clique, Distributed Computing,
(2016).

[7] A. CzumAal AND C. KONRAD, Detecting Cliques in
CONGEST Networks, in Proceedings 32nd Interna-
tional Symposium on Distributed Computing (DISC),
U. Schmid and J. Widder, eds., vol. 121 of Leib-
niz International Proceedings in Informatics (LIPIcs),
Dagstuhl, Germany, 2018, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, pp. 16:1-16:15.

[8] A. DAS SARMA, S. GOLLAPUDI, AND R. PANIGRAHY,
Sparse cut projections in graph streams, in Proceed-
ings 17th European Symposium on Algorithms (ESA),
2009, pp. 480—491.

[9] D. DoLEv, C. LENZEN, AND S. PELED, “Tri, tri
again”: Finding triangles and small subgraphs in a
distributed setting, in Proceedings 26th International
Symposium on Distributed Computing (DISC), 2012,
pp. 195-209.

[10] A. DRUCKER, F. KuHN, AND R. OSHMAN, On the
power of the congested clique model, in Proceedings
33rd ACM Symposium on Principles of Distributed
Computing (PODC), 2014, pp. 367-376.

[11] M. ELKIN, Distributed exzact shortest paths in sublinear
time, in Proceedings 49th Annual ACM Symposium on
Theory of Computing (STOC), 2017, pp. 757-770.

[12] M. ELKIN, A simple deterministic distributed MST al-
gorithm, with near-optimal time and message complex-
ities, in Proceedings 37th ACM Symposium on Princi-
ples of Distributed Computing (PODC), 2017, pp. 157—
163.

Copyright © 2019 by SIAM

838 Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

(13]

[15]

[16]

[17]

18]

G. EveEn, O. FiscHEr, P. Fraigniauvp, T. Go-
NEN, R. Levi, M. MEeDINA, P. MONTEALEGRE,
D. OriverTi, R. OsHMAN, I. RAPAPORT, AND 1. TOD-
INCA, Three Notes on Distributed Property Testing,
in Proceedings 31st International Symposium on Dis-
tributed Computing (DISC), vol. 91 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), 2017,
pp. 15:1-15:30.

O. FiscHER, T. GONEN, F. KuHN, AND R. OSHMAN,
Possibilities and impossibilities for distributed subgraph
detection, in Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures (SPAA),
New York, NY, USA, 2018, ACM, pp. 153-162.

M. GHAFFARI AND B. HAEUPLER, Distributed algo-
rithms for planar networks I: Planar embedding, in Pro-
ceedings 36th ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2016, pp. 29-38.

M. GHAFFARI AND B. HAEUPLER, Distributed algo-
rithms for planar networks II: Low-congestion short-
cuts, MST, and min-cut, in Proceedings 27th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2016, pp. 202-219.

M. GHAFFARI, F. KunN, AND H.-H. Su, Distributed
MST and routing in almost mixing time, in Proceedings
37th ACM Symposium on Principles of Distributed
Computing (PODC), 2017, pp. 131-140.

M. GHAFFARI AND J. LI, New distributed algorithms
i almost mizing time via transformations from paral-
lel algorithms, in Proceedings 32nd International Sym-
posium on Distributed Computing (DISC), U. Schmid
and J. Widder, eds., vol. 121 of Leibniz International
Proceedings in Informatics (LIPIcs), Dagstuhl, Ger-
many, 2018, Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, pp. 31:1-31:16.

O. GOLDREICH AND D. RON, A sublinear bipartiteness
tester for bounded degree graphs, Combinatorica, 19
(1999), pp. 335-373.

T. GONEN AND R. OSHMAN, Lower bounds for sub-
graph detection in the CONGEST model, in Proceed-
ings 21st International Conference on Principles of Dis-
tributed Systems (OPODIS), vol. 95 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), 2018,
pp. 6:1-6:16.

C. Huang, D. NANONGKAI, AND T. SARANURAK,
Distributed exact weighted all-pairs shortest paths in
O(n®*) rounds, in Proceedings 58th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS), 2017, pp. 168-179.

T. Izumi AND F. LE GALL, Triangle finding and listing
in CONGEST networks, in Proceedings 37th ACM
Symposium on Principles of Distributed Computing
(PODC), 2017, pp. 381-389.

M. JERRUM AND A. SINCLAIR, Approximating the
permanent, SIAM Journal on Computing, 18 (1989),
pp. 1149-1178.

T. JURDZINSKI AND K. Nowicki, MST in O(1) rounds
of congested clique, in Proceedings 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),

839

(34]

2018, pp. 2620-2632.

K.-1. KAWARABAYASHI AND M. THORUP, Determinis-
tic global minimum cut of a simple graph in near-linear
time, in Proceedings 47th Annual ACM Symposium on
Theory of Computing (STOC), 2015, pp. 665—674.

J. H. KORHONEN AND J. RYBICKI, Deterministic sub-
graph detection in broadcast CONGEST, in Proceed-
ings 21st International Conference on Principles of Dis-
tributed Systems (OPODIS), vol. 95 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), 2018,
pp. 4:1-4:16.

S. KRINNINGER AND D. NANONGKAIL, A faster dis-
tributed single-source shortest paths algorithm, in Pro-
ceedings 59th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2018, pp. 686-697.
F. KunuN AND A. R. MoLLA, Distributed sparse cut ap-
proxzimation, in Proceedings 19th International Confer-
ence on Principles of Distributed Systems (OPODIS),
2015, pp. 10:1-10:14.

A. KUMAR, C. SESHADHRI, AND A. STOLMAN, Finding
forbidden minors in sublinear time: a O(n'/*°W).
query one-sided tester for minor closed properties on
bounded degree graphs, in Proceedings 59th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), 2018, pp. 509-520.

T. C. Kwok AND L. C. LAu, Finding small sparse
cuts by random walk, in Proceedings 15th International
Workshop on Approximation, Randomization, and
Combinatorial Optimization (APPROX/RANDOM),
2012, pp. 615-626.

C. LENZEN, Optimal deterministic routing and sorting
on the congested clique, in Proceedings 33rd ACM
Symposium on Principles of Distributed Computing
(PODC), 2013, pp. 42-50.

G. MOSHKOVITZ AND A. SHAPIRA, Decomposing a
graph into expanding subgraphs, Random Struct. Al-
gorithms, 52 (2018), pp. 158-178.

D. NANONGKAI, T. SARANURAK, AND C. WULFF-
NILSEN, Dynamic minimum spanning forest with sub-
polynomial worst-case update time, in Proceedings of
IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2017, pp. 950-961.
G. PANDURANGAN, P. ROBINSON, AND M. ScQuiz-
ZATO, On the distributed complezity of large-scale graph
computations, in Proceedings of the 30th on Sympo-
sium on Parallelism in Algorithms and Architectures
(SPAA), New York, NY, USA, 2018, ACM, pp. 405—
414.

M. PATRASCU AND M. THORUP, Planning for fast
connectivity updates, in Proceedings 48th IEEE Sym-
posium on Foundations of Computer Science (FOCS),
2007, pp. 263-271.

D. PELEG, Distributed Computing:
Sensitive Approach, STAM, 2000.

D. PELEG AND V. RUBINOVICH, A near-tight lower
bound on the time complexity of distributed minimum-
weight spanning tree construction, SIAM J. Comput.,
30 (2000), pp. 1427-1442.

A Locality-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/14/19 to 99.7.80.138. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

[38]

[41]

P. RAGHAVENDRA AND D. STEURER, Graph expansion
and the unique games conjecture, in Proceedings 42nd
ACM Symposium on Theory of Computing (STOC),
2010, pp. 755-764.

A. D. SArMA, S. HoLzER, L. KOr, A. KORMAN,
D. NANONGKAI, G. PANDURANGAN, D. PELEG, AND
R. WATTENHOFER, Distributed verification and hard-
ness of distributed approximation, STAM J. Comput.,
41 (2012), pp. 1235-1265.

A. D. SARMA, A. R. MoOLLA, AND G. PANDURANGAN,
Distributed computation of sparse cuts via random
walks, in Proceedings 16th International Conference
on Distributed Computing and Networking (ICDCN),
2015, pp. 6:1-6:10.

D. A. SPIELMAN AND S.-H. TENG, Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems, in Proceedings 36th Annual
ACM Symposium on Theory of Computing (STOC),
2004, pp. 81-90.

D. A. SPIELMAN AND S.-H. TENG, A local cluster-
ing algorithm for massive graphs and its application
to mearly linear time graph partitioning, SIAM J. Com-
put., 42 (2013), pp. 1-26.

L. TREVISAN, Approzimation algorithms for unique
games, Theory of Computing, 4 (2008), pp. 111-128.

840

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

