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Abstract Using two-dimensional magnetohydrodynamic (MHD) simulations, we explore the stability
of magnetotail configurations that include a local enhancement of B, (a "B, hump”). We demonstrate that
hump configurations can become unstable within the constraints of ideal MHD, even when strict boundary
conditions v = 0 are imposed at all boundaries, consistent with the constraints of the ideal MHD energy
principle. Necessary conditions for instability are that the boundaries on the earthward and high-latitude
sides are far enough away, that the background pressure, equivalent to the lobe pressure, is small enough,
and that the B, enhancement or entropy reduction is strong enough. The unstable evolution then bears
strong similarity to the evolution of observed and simulated dipolarized flux bundles and dipolarization
fronts, presumed or simulated to be the consequence of reconnection. The B, humps, which for sufficiently
low background pressure correspond to entropy depletions, move faster for lower background density and
penetrate closer toward Earth when they are initiated closer to Earth or when the background pressure is
lower, similar to 3-D low-entropy flux tubes, which are affected by ballooning-/interchange-type modes.

|
1. Introduction

The enhancement of the normal magnetic field component B, (or B,) in the near and midtail, also called “dipo-
larization,” is a common characteristic of magnetotail activity, including, but not limited to, magnetospheric
substorms. In the tail region between approximately 10 and 25 R, distance such events are typically associated
with a sudden rise of positive B,, commonly denoted as “dipolarization front” (Nakamura et al., 2002; Runov
etal,, 2009), followed by a brief interval of enhanced B,, which is sometimes called “dipolarizing flux bundle”
(DFB) (Liu et al., 2013). These events tend to be associated with fast earthward flow bursts. Their properties
have been the subject of many recent studies, both observationally (e.g., Apatenkov et al., 2007; Fu etal., 2011;
Li et al., 2011; Runov, Angelopoulos, Sitnov et al., 2011; Runov, Angelopoulos, Zhou et al., 2011; Runov et al.,
2009; Runov et al., 2012; Sergeev et al.,, 2009; Zhou et al., 2009, 2014) and through local (e.g., Birn et al., 2004,
2011) and global magnetohydrodynamic (MHD) simulations (e.g., El-Alaoui et al., 2013, 2016; Ge et al., 2011,
2012; Wiltberger et al., 2015).

The observations have demonstrated a finite cross-tail extent of dipolarization fronts and associated flow
bursts, shown also in the 3-D MHD simulations. The MHD simulations have further shown that the DFBs are
typically related to local depletions of field line entropy S, which may be defined as (e.g., Birn et al., 2009)

ds
= 1fr—
S /P R (1

where P is the plasma pressure and the integral is taken along closed filed lines. In equilibrium, S = P'/rV,

where ds
V= [ = 2

is the differential flux tube volume (e.g., Wolf et al., 2009). The reduction of S is thought to be essential
in the earthward propagation of the depleted flux tubes, which are also called “bubbles,” (e.g., Birn et al.,
2004, 2009; Pontius & Wolf, 1990; Wolf et al., 2009), by enabling ballooning/interchange type of modes. In
these simulations, the entropy reduction was found to be the consequence of reconnection in the near tail
that causes the severance of portions of the closed flux tubes and their tailward ejection. Apart from this
generation mechanism, equilibria with local entropy depletions have been shown to be unstable to kinetic
ballooning/interchange (hereafter B/l) modes, which also produce earthward flows and dipolarization fronts
(Pritchett et al., 2014).
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In contrast to the potential role of B/l type modes in 3-D configurations, two-dimensional particle-in-cell
(PIC) simulations of reconnection in stretched current sheets or magnetotail configurations have demon-
strated that sharp DFs can also arise ahead of fast flows ejected from a reconnection site that does not involve
localization in the dawn-dusk direction (e.g., Birn & Hesse, 2014; Sitnov et al., 2009).

In these studies the entropy depletion and B, enhancement arise as a dynamic consequence of magnetic
reconnection in the tail or some other mechanism. Recently, however, B, hump configurations have also
gained interest because they can apparently alter the stability properties of the magnetotail, which under
average or quiet conditions ought to be stable to ideal MHD (Schindler & Birn, 2004) and collisionless tearing
modes (e.g., Lembege & Pellat, 1982; Pellat et al., 1991; Pritchett et al., 1991). Sitnov and Schindler (2010), using
a 2-D Vlasov energy principle, showed that the tailward B, gradient, associated with a hump configuration,
could make the tail unstable to collisionless tearing. This was confirmed by PIC simulations, first with open
boundary conditions (Bessho & Bhattacharjee, 2014; Sitnov et al., 2013) and later for more stringent closed
boundaries (Pritchett, 2015). Merkin et al. (2015) investigated the same kind of configurations with 2-D ideal
and resistive MHD simulations and confirmed the PIC results. Their simulations also indicated the possibility of
an ideal MHD instability, which might arise prior to the onset of reconnection. The apparently unstable cases,
however, did not include strictly closed boundaries as imposed in the ideal MHD energy principle (Bernstein
et al., 1958). Finally, Merkin and Sitnov (2016) considered analytical properties of magnetotail configurations
with a tailward B, gradient and the relative importance of the "hump” instability and ballooning/interchange
that may be stabilized by finite background pressure.

In this paper we therefore reinvestigate the ideal MHD stability of these hump configurations on the basis of
our 2-D tail code (Birn et al., 1996) with strictly closed boundary conditions, paying specific attention to the
effect of finite background pressure and density. In section 2 we describe the chosen initial states, which are
based on an asymptotic tail equilibrium theory (Birn et al., 1975; Schindler, 1972) and include the configura-
tions investigated by Merkin et al. (2015). Section 3 provides some analytical stability properties, which were
used to guide the choice of parameters for the simulation studies. In sections 4 and 5 we describe the evolu-
tion of unstable cases. This is followed by a description of properties of the unstable modes in section 6, the
investigation of background density and pressure in section 7, and an investigation of the effects of varying
the initial hump location in section 8.

2. Initial States and Numerical Approach

In the following we use normalized quantities, based on a characteristic magnetic field strength B, (typically
equal to the lobe field strength), a current sheet half-width L, and a density p_, which is taken as the difference
between lobe and central plasma sheet density, all taken at the near-Earth boundary. Our pressure unit is
defined by P = B2/ 4y, the velocity v, = B.//igp,, and the electric field £, = v B..

The two-dimensional initial states are of the same class investigated previously by Bessho and Bhattacharjee
(2014), Merkin et al. (2015), Merkin and Sitnov (2016), Pritchett (2015), and Sitnov and Schindler (2010). They
are based on an asymptotic tail equilibrium model, representing a generalization of the well-known Harris
equilibrium (Schindler, 1972), defined by a flux function A (y component of the vector potential)

A= In[f(x) cosh {] with ¢ =z/p(x), (3)
such that
dA 1
BXZ—E :—mtﬂﬂhg (4)
and
B,=A_F®,_rwanhy)  with  F00=dBeo/dx. (5)
ox  p(x)

We note that we use modified magnetospheric coordinates with x pointing tailward, y dawnward, and z north-
ward. The asymptotic theory assumes that B, values and variations with x are small, of order ¢, compared to
the main field and the variations with z, neglecting terms of order e? compared to unity.

The function f(x) describes the current sheet half-width, which, within the validity of the asymptotic theory,
is a slowly varying function of x. Our first choice is identical to the one investigated by Merkin et al. (2015)

B =exple;gx)],  (Case A) (6)
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where
g(x) = x + (a/e;)(1 + tanh &) with & = ey(x —xp), (7)
such that
Bo(x) = B,(x,z=0) = f (x)/B = &,(1 + acosh™2&). ()

Here x, denotes the location of the B, hump, « its strength, and 1/e, its width. The hump is superposed on a
background B, proportional to €;, which is constant along the x axis.

Our second choice differs by the background field. It is motivated by earlier investigations (e.g., Birn et al.,
1975; Hesse & Schindler, 2001; Liu et al., 2014) and appears, without the hump, more realistic for the typical
magnetotail

B =(14+ex)" exp[(e;a/e;)(1 + tanh £)], (Case B) 9)

with & defined as before, such that
€gm €

1+ex  cosh? §'

Byy(x) = (10)

We note that B, for « = 0 now is a monotonically decreasing function of x, while the current sheet half-width
p monotonically increases. We have kept separate parameters a and ¢, for consistency with model A, although
they now appear only as product.

3. Analytical Evaluation of Stability Parameters for Cases A and B Simulations

It is useful to evaluate the formal analytical stability properties of the equilibria considered in Cases A and B.
The key parameter for the hump instability (also dubbed Magnetic Flux Release Instability by Merkin & Sitnov,
2016) was introduced by Sitnov and Schindler (2010)

am

_ 2 [ Blxz=0) dy
Cd(Xf,X) - ; A Bz(x’(y),z — 0) yz 7 1 i

Here x is the point where the stability parameter is evaluated and x; is the limit of flux tube integration toward
the Earth, represented, for example, by the location of the Earth-side boundary in Cases A and B simulations.
The variables x’, x, and y are related via

s ]’
2] B

yx',x) = [ (12

¥r = y(x¢,x), and functions f(x) are given by equations (6) and (7) for Case A and equation (9) for Case B.
Correspondingly, the function B,(x,z = 0) under the integral in (11) is given by (8) for Case A and by (10) for
Case B.

The parameter C,; governs where the energy integral (e.g., equation (10.72) of Schindler, 2007) might assume
negative values, and thus permit unstable solutions, based on a Wentzel-Kramers-Brillouin (WKB) approach.
This is possible in the MHD limit if C; exceeds y = 5/3 where y is the polytropic index, (correcting a typo in
Merkin & Sitnov, 2016, that stated that C; = y is the instability threshold). Reversely, Cj < y = 5/3 everywhere
implies stability. Although the C; parameter yields only a necessary instability criterion for modes satisfying
the short wavelength WKB limit, it is useful to indicate a potentially unstable regime for our numerical studies.

Figure 1 shows the dependence of the C; parameter on position x for Case A, based on the parameter set

Xo=28, €=003 1/e,=75 a=3, 13)

and integrated to the Earth-side boundary x,;, = —30 of the simulation. The dashed horizontal line corre-
sponds to Cg = y, and marks the necessary condition for instability (Merkin & Sitnov, 2016, with the typo
corrected). Note that Cj < 1 on the earthward side of the hump, whereas the exact analytical value for the
Lembege-Pellat equilibrium is Cj = 1 (Hurricane et al., 1996; Sitnov & Schindler, 2010). This is because the
integration in (11) was terminated at the Earth-side boundary of the simulation box rather than extended
to infinity.
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Figure 1. C; as a function of position x for Case A, assuming integration in (11) is terminated at the Earth-side boundary
of the simulation box. The dashed horizontal line marks Cg = y, which is the MHD threshold indicating the necessary
condition for instability. The dotted vertical line marks x = 28, that is, the location of the B, peak.

Figure 1 indicates that the Case A setup may be unstable, as C; exceeds the instability threshold in a region
around the B, peak.

Note that the instability criterion Cg > y neglects the contribution of the background pressure. Further analysis
of the energy principle reveals that including a background plasma population yields an updated instability
criterion C; >y ('I +pp/ pG), where p,, is the background pressure, while p is the pressure in the center of
the current sheet that is in equilibrium with the lobe magnetic field. This expression makes it clear that the
background should play a stabilizing role, as confirmed by the simulations presented below.

Figure 2 (heavy black line) shows the same dependence of the C; parameter for Case B, choosing the
parameter set

€ =005 ¢ =003, 1/e,=75 a=3, ”
Xnin=0, x,=136, m=0.6. 03
Additionally, the lighter black lines in Figure 2 also show the variations of C; for other choices of x,, indicated
by vertical dashed lines, with the blue dashed line indicating the variation of the maximum values of C; as
function of hump location. (Note that the maximum values are not attained at the hump location itself but
slightly to the left.) The dashed orange trace indicates the analytical value of C; for the Case B equilibrium
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Figure 2. Same as Figure 1 but for Case B with various choices of xp, indicated by the dashed vertical lines. The initial

choice xp = 136 is shown by heavy line. The blue line indicates the maximum values of C4 as function of hump location.

The dashed orange trace shows the analytical solution for Case B equilibrium without a hump (@ = 0 in equation (9). The
dashed horizontal line shows the MHD stability threshold.
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Figure 3. Temporal variations of (a) the maximum electric field along the x axis and (b) the maximum tailward and
earthward velocities, for Case A with two different locations of the left (earthward) boundary.

without a hump (a = 0). In this case, the integral in (11) can be evaluated exactly, and assuming integration
to x; = Oyields
1 1

3 2
=1+ —12:= = 15
2’ 2m 2 Y0 ) (13

y0O) = /(1 +gex)2m -1, (16)

and ;F; is the hypergeometric function. The orange trace in Figure 2 corresponds to the right-hand side
in (15) and independently verifies the values obtained by numerical integration. As shown in Figure 2, the
maximum C, values remain above the critical threshold for a wide range of hump locations x;, indicating a
potentially wide range of instability. Initially, we choose a hump location in the more distant tail. However, we
will investigate other choices as well in section 8.

C,(0,x) = %y(x)zﬂ (

where

4, Evolution of Case A

As a first case we chose parameters consistent with the choices of Merkin et al. (2015) and Merkin and Sitnov
(2016), given by (13), with a box slightly extended tailward and outward

Xnax =60, Zpa, =10 (17)

choosing an inner boundary at x,;;, = 0 and a background density p, = 0.2 (with p, = 0.1). This case turned
out to be stable. We then extended the left boundary to x,;, = —30 but kept the normalization to the values
at x = 0. Since this case was still stable, we lowered the background density and pressure to p, = 0.05
and p, = 0.025, which now yielded instability. This is demonstrated in Figure 3, which shows the temporal
variations of the maximum electric field and the maximum tailward and earthward speeds along the x axis as
function of time for the two cases with background density p, = 0.05 but different x.;,.

The initial variations of the maximum electric field and the maximum velocities for approximately t < 40 are
caused by the deviation from exact equilibrium. The presence of the B, hump causes small magnetic pressure
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Figure 4. Evolution of Case A with x,;, = —30 and pp, = 0.05. (a—d) Color-coded B,(x. z) and magnetic field lines at
different times, (e) profile of B,(x) at z = 0, and (f) the profile of the entropy function 5(x), defined by (1), for
various times.

forces dB2 /ox of the order of €3, which are neglected in the asymptotic equilibrium theory. The fact that the
oscillations caused by this initial nonequilibrium are similar for both cases, while only one of them developed
instability, is an indication that the later evolution is not related to this initial nonequilibrium. The maximum
electric field in the case with x_,;, = —30 (solid red curves) shows a clear, albeit slow compared to a typical
Alfvén wave period, exponential growth between about t = 50 and t = 100, which continues somewhat
reduced until t & 150. This is also shown by the increase in earthward flow speed (negative v,). This appears
to be an indication of linear instability that grows out of an initial perturbation.

This result is a numerical confirmation of the analytical expectation of instability demonstrated in Figure 1,
which was obtained without accounting for the background pressure but including the earthward boundary
at x = —30. The transition to instability is apparently caused both by the earthward extension of the simula-
tion box and by the reduction of the background pressure or density (section 7). It is worth noting that the
background density used by Merkin et al. (2015) in their runs was 0.3 in the units used here for the Case A
simulations, while, as Figure 8 indicates, instability requires at least p;, = 0.1. Thus, the magnetotail configu-
rations presented here are significantly more unstable than those performed by Merkin et al. (2015), and the
difference is likely due to the newly revealed effect of the background pressure and/or density.

BIRN ET AL.

STABILITY OF MAGNETOTAIL EQUILIBRIA 3482



Journal of Geophysical Research: Space Physics 10.1029/2018JA025290

Ill!||||||||[l|lll|IIII|IIII|1III|IIII

0.01
8

|E‘f’|max 4

T Znax < 20

peler vl e T T T T [ O T T T T AT A U (A BTG A
0 100 200 300 400
t

Figure 5. Temporal variations of (a) the maximum electric field along the x axis and (b) the maximum tailward and
earthward velocities, for Case B with parameter set (14) and pp, = 0.05 for two different locations of the outer (z)
boundary.

The evolution of the unstable case is further demonstrated in Figure 4, showing (a—d) the color-coded magni-
tude of B, in the x, z plane for various times, and (e) B,(x) at z = 0 and (f) the entropy function 5(x), defined by
(1), at different times. Figure 4 shows the earthward propagation of the B, hump, documented also in earlier
simulations (e.g., Merkin et al., 2015). Figure 4f also shows that the B, hump is associated with a local reduction
of the field line entropy S. It is noteworthy that, except for the initial state, the maximum of B, does not exactly
correspond to the minimum of S but appears to be closer to the steepest earthward gradient. After an initial
reduction, the peak in B, increases as the hump moves earthward. This is obviously an effect of compression,
which is absent when the Earth-side boundary is open (Merkin et al., 2015).

5. Evolution of Case B

The background field in Case A already exhibits, for low enough background pressure and sufficiently long
tail, a negative gradient of S, which would make it suitable for ballooning instability (Schindler & Birn, 2004).
To avoid that we chose the field of Case B, given by (9). Figures 5 and 6 show the evolution for the param-
eter set (14) with x,, = 180 and two locations of the outer boundaries z = +z_,,. Figure 5 shows
that not only the earthward boundary but also the outer boundary in z can play a stabilizing role. If this
boundary is too close the system remains stable. When it is far enough out, the evolution of the maxi-
mum electric field along x again shows, after some initial oscillations, a period of approximately exponential
growth.

Figure 6 shows the corresponding evolution of the B, hump and the related entropy function S for the unstable
case. It is similar to that of Case A. We note that at later times the field behind the hump becomes very small,
as discussed earlier (Merkin et al., 2015). Due to numerical oscillations B, may become negative in that region,
corresponding to small-scale magnetic islands, which do not permit the evaluation of the entropy integral (1).
However, no significant numerical reconnection ensues.
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Figure 6. Evolution of Case B with parameter set (14). (a—d) Color-coded B,(x, z) and magnetic field lines at different
times, (e) profile of B,(x) at z= 0, and (f) the profile of the entropy function 5(x), defined by (1), for various times.
6. Mode Characteristics
Figure 7 illustrates, for Case A with a background density p, = 0.02 (p, = 0.01), characteristic properties of
the fields during the unstable evolution, showing (a) the color-coded magnetic field component B,; (b) the
flow speed v,; (c) the electric field E, and (d) the forces (J x B), (blue line), dp/dx (green line), and the net
force F, = (J x B), — dp/dx, enlarged by a factor of 10 (red dashed line), along the x axis. The time t = 75
was chosen to be late during the exponential growth, so that the mode can be considered to be close to the
fastest growing unstable mode. The electric field E, in Figure 7c then is proportional to the perturbation A, of
the vector potential, illustrating the solitary character, which has a spatial scale comparable to the B, hump.
The velocity v, in Figure 7b illustrates the significant earthward extension of the parallel flow speed. Figure 7d
demonstrates that the mode is characterized by instantaneous near equilibrium with a net force, which is
needed to drive the hump earthward, of the order of €. (Note that F, in Figure 7d is enlarged by a factor of
10.) This earthward force affects not only the hump but also the region earthward of it, which must collapse
as the hump moves earthward.
BIRN ET AL. STABILITY OF MAGNETOTAIL EQUILIBRIA 3484
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Figure 7. Characteristics of an unstable hump mode for model A with pp, = 0.02: (a) B;, (b) vy, and (c) E), in the x, z plane,
(d) forces along the x axis; the dashed red line shows the net force enlarged by a factor of 10.

7. Influence of Background Density and Pressure

Figure 8 shows the evolution of the location of the B, hump along the x axis for Cases A and B with various
background densities, with the background pressure given as p, = p,/2. The top (black) curve in Figure 8a
demonstrates that the case p, = 0.2 is stable, as mentioned earlier. In general, the evolution for the unstable
Cases A and B shows that it is faster and the penetration of the hump is closer toward Earth, when the back-
ground density or pressure is lower. We note that this also corresponds to a lower entropy minimum. This
finding is similar to that documented for localized entropy-depleted flux tubes (Birn et al., 2009). However, in
the present case this result cannot be attributed to a ballooning or interchange mode, which are excluded by
the 2-D assumption.

So far, we have changed the background density and pressure together, so it is not clear which plays the more
important role in governing the evolution and penetration of the hump. To discern this we have now changed
the background parameters separately. Figure 9 shows the evolution of characteristic quantities as function
of time for model A with different background densities and pressures. The red solid curves correspond to
the case shown in Figures 3 and 4, and the blue solid curve corresponds to a case for which the background
density was enhanced by a factor of 4. The dashed red and blue curves correspond to cases with enhanced
background pressure, p, = 0.1. It is obvious that both cases with enhanced pressure (dashed curves) are
stable, whereas the lower pressure cases (solid curves) show unstable evolution in a similar way. The density
difference affects the speed of the evolution but neither stability nor the depth of penetration of the hump.
The difference in the depth of penetration shown in Figures 8a and 8b thus can be attributed to the difference
in background pressure rather than density.

The two cases with the same background pressure have the same initial entropy function, whereas the entropy
minimum is higher for the case with higher background pressure. Thus, as demonstrated by Figure 10, the
depth of penetration may also be considered as governed by the minimum of the entropy function. The
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Figure 9. Evolution of characteristic quantities as function of time for model A with different background densities and
pressures, (a) the maximum electric field and (b) the location of the B, peak along the x axis.
BIRN ET AL. STABILITY OF MAGNETOTAIL EQUILIBRIA 3486



g . .

100 Journal of Geophysical Research: Space Physics 10.1029/2018JA025290

160 Trrrrrrr fé‘DgT L | T‘OIOIEYST T IT_:’SI ['t Trr [ rrrr ]'I"I- LI I

— ppy=0.05 p,=0. = 3

Lip 2 oy SR p:=0.10, p:=0.025,t=225 E

120 —— p,=0.05, p,=0.050, t =175 —

100E i L= ’ =

S 80F 3

60 e =

40 F —

20 3

s i IR T W o] Uit VOt it W OF et B M i e L M G S

-20 0 . 20 40 60

Figure 10. Evolution of the entropy function 5(x), as defined by (1), for model A with different background densities and
background pressures, shown close to the times of deepest penetration. The dashed lines show the initial distributions.

entropy functions for the two cases with p,, = 0.025 at the times of deepest penetration are almost identical.
(The local peaks of S just tailward of the minimum are artificial, due to the fact that B, becomes very small in
this region and shows numerical oscillations.)

8. Influence of the Initial Hump Location

The initial locations of the B, hump were chosen based on the evaluation of the C; parameter (section 3)
and earlier findings (Merkin & Sitnov, 2016) that distant locations should be more likely to become unstable.
However, as Figure 2 has indicated for Case B, the maximum value of C; exceeds the critical threshold for a
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Figure 11. Evolution of the location of the B, maximum as function of initial hump location, keeping all other
parameters the same, (a) for Case A and (b) for Case B.
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Figure 12. Initial variation of (a) B, and (b) entropy 5 with x and (c) evolution of the location of the B, maximum as
function of time for three cases of model A.
wide range of hump locations. We have therefore done a number of runs varying the initial hump location x;
but keeping all other parameters fixed, as given by (13) and (17) for model A and (14) for model B, choosing
pp = 0.05 and p, = 0.025.
Figure 11 shows the evolution of the hump location for models A and B, demonstrating a wide range of unsta-
ble cases. The innermost location, x, = 26, in Case B shows an apparently stable evolution of oscillation. This
is consistent with the conclusion from the C; parameter in Figure 2.
Figure 11 further indicates that the earthward penetration of the B, hump (or the entropy minimum) depends
on the initial location (although the displacement decreases with decreasing initial distance). This could be
due to the fact that the entropy minimum becomes lower for initial humps closer to Earth despite the same
B, hump shape. We have therefore reduced the height of the B, hump in Case A for the initial location x, =
15 to obtain the same minimum value of S as for x, = 28. A comparison of the initial states and the hump
propagation is shown in Figure 12. Figures 12a and 12b show the initial variation of B, and S along x, and
Figure 12c shows the evolution of the hump location. The hump for x; = 15 with reduced a = 2 (red dashed
line) still propagates closer to Earth than the hump for x; = 28, « = 3 (blue line), although not quite as close
as for x; = 15 with a = 3 (solid red line). This demonstrates that earthward penetration, at least in the present
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2-D case, is not simply determined by a single parameter, such as the field line entropy S. The hump location,
or the shape of the B, or S profiles on the earthward side, apparently plays a role as well.

9. Summary and Discussion

Using two-dimensional ideal MHD simulations, we have demonstrated that magnetotail configurations with
a local enhancement of B,, which for small enough background pressure is accompanied by a reduction
in field line entropy, can become unstable within the constraints of ideal MHD, even when strict boundary
conditions v = 0 are imposed at all boundaries, consistent with the constraints of the ideal MHD energy prin-
ciple (Bernstein et al., 1958). Necessary conditions for instability include the following: (1) The boundary on
the earthward side has to be far enough away and the B, enhancement has to be sufficiently strong. This
result has been derived by Merkin and Sitnov (2016) and confirmed here. (2) The high-latitude boundaries
also have to be sufficiently far away, while (3) the background pressure, equivalent to the lobe pressure, has
to be small enough. The effect of the background pressure is particularly interesting as it additionally con-
trols the strength of the entropy reduction in the B, enhancement region and thus the relationship of the
hump instability with interchange. When the above necessary conditions are met, the unstable evolution
then bears strong similarity to the evolution of observed and simulated dipolarized flux bundles and dipolar-
ization fronts, presumed or simulated to be the consequence of reconnection and thus generated in a more
dynamic fashion.

We should add here a clarifying remark on the role of background pressure. First of all, when mentioning
“background” pressure or density we mean a uniform value added everywhere. This is most noticeable in the
open field regions or lobes of the magnetotail. However, the stabilizing or destabilizing effect of background
pressure stems particularly from the closed field line region, where a pressure change alters compressibility
and thereby possibly stability (e.g., Merkin et al., 2015; Schindler & Birn, 2004). This stabilizing effect was not
included in our original evaluation of the C; parameter in section 3. Preliminary results suggest that a refined
stability theory indeed indicates a stabilizing influence of increased pressure.

In order to separate the roles of background pressure p, and density p,, we have compared cases with identical
initial B, humps but different values of p, and p,. We found that the stability appeared to be controlled by
the pressure alone, similar to B/l modes. Also, lower pj, equivalent to a lower minimum of S, enables closer
penetration to Earth, similar to the case of 3-D localized entropy-depleted flux tubes (Birn et al., 2009). In
contrast, the background density had an effect primarily on the speed of the evolution, which is plausible, as
it affects the inertia of the plasma to be moved.

Instability was found over a wide range of initial hump locations in x. The B, hump or entropy-depleted flux
bundle was also found to penetrate closer to Earth when the initial location was closer, even when the min-
imum of the field line entropy S was the same. This shows that, at least in the present 2-D case, the value of
the entropy minimum is not the only parameter that determines the hump penetration. The hump location
or the shape of the B, or S profiles on the earthward side apparently plays a role as well.

The simulations start from a configuration that is not in exact equilibrium. This might suggest the possibil-
ity that the subsequent evolution is caused by the deviation from equilibrium rather than representing a
small-perturbation, linear instability. Two features of the evolution cast doubt on this interpretation. First,
a comparison between the stable and unstable cases shows that the early evolution, which is caused by
this initial deviation from equilibrium, is very similar, whereas the later evolution becomes different, when
apparently an unstable eigenmode grows in the unstable cases. Second, the evolution during the expo-
nential growth can be described as quasi-static, characterized by closeness to instantaneous force balance,
such that the net force, which causes an increase in velocities during this phase, is small compared to
the VP and J x B forces, which approximately balance. If the evolution were caused by the initial force
imbalance, one would expect the forces to increase with the deviation from the initial state. However,
these arguments are not conclusive, and further investigations are needed to clearly identify the nature of
the instability.

Although the simulations demonstrate the possibility of ideal MHD instability of particular magnetotail con-
figurations, they should not be seen as a likely model of the initial onset of tail activity in the near tail. As
pointed out by Merkin and Sitnov (2016), and confirmed here, the modes become stabilized if the hump is too
close to the Earth, such that it might be a more likely candidate for initiating instability in the more distant tail.

BIRN ET AL.

STABILITY OF MAGNETOTAIL EQUILIBRIA 3489



Journal of Geophysical Research: Space Physics

10.1029/2018JA025290

Acknowledgments

The simulation work was performed at
Los Alamos under the auspices of the
U.5. Department of Energy, supported
by NASA grants NNX13AD10G,
NNX13AD21G, and NSF grant 1203711.
V. G.M.and M. . S. would like to
acknowledge support from NASA
grants NNX13AF82G and
NNX15AN73G. We are grateful for the
hospitality and support by the
International Space Science Institute
Bern, Switzerland, and acknowledge
the fruitful discussions with Karl
Schindler, Michael Hesse, and the
members of the 1551 working group.
Simulation results are available via

http://doi.org/10.5281/zenodo.1212623.

An open question is also how a hump configuration can be set up from an initially stable configuration.
Quasi-static equilibrium theory indicates that a local B, minimum, associated with the formation of a thin
embedded current sheet, can be generated by magnetic flux addition and adiabatic (i.e, entropy conserving)
compression of the magnetotail (Birn & Schindler, 2002), consistent with some observations of changes dur-
ing the substorm growth phase (e.g., Sergeev et al.,, 2018). The adiabatic theory assumption, however, also
implies that the entropy function S(x) would remain monotonically increasing with distance, if it did so prior
to the deformation. For the presently considered class of stretched tail equilibria, this would imply stability to
B/l modes and by implication any 2-D MHD modes as well (Schindler, 2007; Schindler & Birn, 2004).

At present, the most likely, and well documented, mechanism of setup of such B, humps is magnetic recon-
nection. An evolution that would redistribute the entropy from an initially stable configuration would likely
require a violation of entropy conservation and thus most likely also enable reconnection. In fact, the unstable
hump configurations are also unstable to collisionless tearing (Sitnov & Schindler, 2010). This was demon-
strated also by PIC simulations, first with open boundary conditions (Bessho & Bhattacharjee, 2014; Sitnov
et al., 2013) and later with more rigorous closed boundaries (Pritchett, 2015). In this scenario, the generation
of a B, hump is part of a dynamic evolution, rather than an equilibrium state.

Furthermore, the relevance of the 2-D simulations as models of the actually observed dynamic evolution is
reduced by the fact that the local entropy reduction makes the initial states also unstable to 3-D ballooning
modes (e.g., Schindler & Birn, 2004). Note that 3-D PIC simulations paint here an intriguingly mixed picture.
While some of them (e.g., Pritchett, 2013) clearly show signatures of B/l instability, others (Sitnov et al., 2014)
show that the hump instability dominates B/l and other dawn-dusk perturbations (flapping motions) for suf-
ficiently thin current sheets. Thus, further studies, including 3-D MHD simulations, are necessary to clarify the
role of the hump instability, its similarity, and difference from the B/I.

The relevance of the present investigation is more of a fundamental nature. It shows that the propagation of
DFBs is not necessarily tied to an interchange mode, although a good argument can be made that the 3-D
ballooning/interchange makes the evolution faster. Also, in the 2-D case one can no longer argue that the
final resting place of the entropy-depleted flux bundle is determined by where its entropy equals that of the
surrounding flux tubes in the adjacent cross-tail region. Although we found that the penetration of a DFB is
influenced by the entropy depletion, the initial location played a role as well. The earthward motion of the DFB
is stopped by a buildup of pressure, which must also be true in the 3-D case. Thus, the pressure (or entropy)
content in the closed field region earthward of a hump may be a relevant factor in the stopping as well as in
the stabilization. The configuration then oscillates around a final stable state that is apparently governed by
the predetermined entropy function S(A), analogous to the evolution in the “Newton challenge” simulations
(Birn et al., 2005, 2009).
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Erratum

In the originally published version of this article, Figure 8 was mistakenly replaced by a copy of Figure 9. The
correct Figure 8 has since been substituted, and the present version may be considered the authoritative

version of record.
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