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Abstract

Urban areas are projected to expand at a rapid pace. In the context

of supporting sustainable design of cities and buildings, computational fluid

dynamics (CFD) can be used to provide detailed information on the urban

flow field. However, the complexity and natural variability of atmospheric

boundary layer flows can limit the predictive performance of CFD. In this

paper, we present a validation study for a Bayesian inference method that es-

timates the inflow boundary conditions for Reynolds-averaged Navier-Stokes

(RANS) simulations of urban flow by assimilating data from urban sensor

measurements. The method employs the ensemble Kalman filter to itera-

tively estimate the probability density functions of the incoming wind and

improve the subsequent RANS prediction. The measurements used in this

study were obtained during a full-scale experimental campaign on Stanfords

campus. Six sonic anemometers were deployed at roof and pedestrian level; a
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subset of the sensors was used for data assimilation while the remaining ones

were used for validation. The accuracy of the proposed inference method

is compared to the conventional approach that defines the boundary condi-

tions based on weather station data. The hit rates increased by a factor of

two when using the inference method, and the predicted mean values were

∼20% more likely to be within the 95% confidence interval of the experi-

mental data. An analysis of the impact of the number of sensors and their

location indicates that the assimilation approach can consistently improve

the predictions, as long as the inlet flow properties are identifiable from the

sensor measurements.

Keywords: Urban flow physics, Bayesian Inference, Computational

Predictions, Field Experiments, Data assimilation, Ensemble Kalman filter

1. Introduction

Cities accommodate more than 50% of the world population, and urban-

ized areas are projected to expand at a rapid pace [1]. The years to come

present a window of opportunity to design urban environments that are op-

timized for sustainability and resiliency. The analysis and prediction of wind

flow within urban canopies is an important aspect of this process: informa-

tion on local wind characteristics can help to improve air quality [2], ensure

pedestrian wind comfort [3], promote natural ventilation of buildings [4] and

exploit available wind power [5]. In this regard, Computational Fluid Dy-

namics (CFD) offers a powerful tool [6], but the accuracy of these predictions

remains a concern.

Several authors [7, 8, 9, 10] have shown that full scale urban measurements
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present significant variability that cannot be encompassed by deterministic

simulations, even when using higher fidelity CFD tools such as large-eddy

simulations (LES) [11]. Recently, a number of studies have demonstrated

that this variability can be quantified using uncertainty quantification (UQ)

frameworks, both in Reynolds-averaged Navier-Stokes (RANS) simulations

[12, 13, 14], and in LES [15]. These studies consider the inlet flow properties

measured by a single sensor to be random variables. The inflow uncertainty

is then propagated through several realizations of a surrogate model to com-

pute quantities of interest (local wind properties or pollutant concentrations)

with confidence intervals. A limitation of this approach is that these measure-

ments, which are usually obtained from a weather station, are not typically

available at or near the inlet plane of the computational domain; they might

be remote, or on the downwind side of the urban canopy for the predomi-

nant incoming wind directions [8]. As a result, differences between the flow

recorded at the weather station and the actual flow at the inlet boundary of

the computational domain can result in inaccurate definitions of the random

inflow parameters based on sensor data.

The objective of the present study is to validate RANS results, obtained

with a previously proposed Bayesian inference technique to specify the in-

flow boundary conditions [16], with field measurement data. The method

does not require input from a weather station, instead it assimilates data

from urban wind sensors located within the computational domain to infer

probability distributions for the inflow parameters. An ensemble Kalman

filter is used for the inference, while the forward model is a spectral expan-

sion surrogate model derived from 63 RANS simulations. Similar techniques
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have been applied to identify the location of pollutant sources [17, 18, 10],

to improve turbulence modeling [19], parameter estimation [20] and to infer

inflow directions or wind profiles [21, 22]. These studies have shown that

data assimilation approaches offer significant opportunities to improve the

prediction of flow phenomena for a variety of applications.

To validate the proposed approach in a realistic urban environment we

performed a field experiment on Stanford’s campus. Fig. 1 shows some of the

modeled buildings, along with the location of the nearest weather station and

the wind sensors deployed within the urban area during the experiment. The

Bayesian inference relies on input from the sensors in the assimilation network

(AN); the accuracy of the resulting wind flow predictions is assessed with a

set of independent sensors in the validation network (VN). The predictive

capability of the proposed Bayesian inference approach will be compared

to the traditional approach of using the nearest weather station to define

deterministic inflow boundary conditions, and the influence of the number of

sensors will be analyzed.

The remainder of the paper is organized in three parts. In section 2 we

outline the experimental campaign. Subsequently, we describe the Bayesian

inference methodology, along with the CFD solver and the surrogate model

in section 3. Finally, we compare the accuracy of the two different approaches

to define the boundary conditions and quantify the improvements associated

with the proposed Bayesian methodology in section 4. The conclusions of

the study are summarized in section 5.
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Figure 1: The area of interest on Stanford’s campus, along with the sensors in the assim-

ilation and validation networks

2. Field campaign on Stanford’s campus

The experimental campaign was centered on the Science and Engineering

Quad (SEQ, Lat/Long: 37.438/-122.175) of Stanford University, depicted in

Fig. 2 a. The SEQ is a pedestrian zone surrounded on the south, west, and

north side by the Huang, Y2E2, Shiram, and Spilker buildings, each about

20m tall. On the east side, the buildings are about 10m tall.

Six sonic anemometers, manufactured by Gill Instruments and distributed

by Campbell Scientific, were deployed to measure the wind speed and direc-

tion with a stated accuracy of ±2% and ±3o respectively [23]. We evaluated

the accuracy of the sensors in a wind tunnel instrumented with hot-wires and

pitot tubes, measuring, on average, discrepancies below 0.2m/s for a range

of velocities between 1 and 6m/s. Fig. 2 b. depicts one of the sensors de-
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ployed at pedestrian level. Each station is composed of a sonic anemometer,

a tripod, and a battery. Three of the sensors had a 7Ah battery and were

connected to an electric outlet; the remaining three were powered by a 20W

solar panel and a 12Ah battery for deployment flexibility. Finally, wireless

data loggers (model CR300 from Campbell Scientific [24]) were connected

to the campus wireless network for continuous data acquisition and status

monitoring.

The sensor locations are indicated in Fig. 2 and summarized in Table 1.

Their positioning was based on a previous design of experiments study [16],

where we concluded that roof top sensors were optimal for data assimilation.

Following these conclusions, we deployed the sensors in both ideal and non-

ideal locations: three sonic anemometers (3, 5 and 6) were placed at roof level;

one sonic anemometer (1) was placed on a second-floor terrace previously

determined as non-ideal [16]; the last two sensors (2 and 4) were deployed at

pedestrian level. In addition to these six sensors, we have access to hourly-

averaged wind speeds and directions recorded at a weather station located

at 10m above ground level, about 800m east of the center of the SEQ [25].

Figure 2: a) Locations of the sonic anemometers within the SEQ b) Example of an

anemometer deployed during the experimental campaign.
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Station Level GPS location
Sensor

height [m]

Tripod

height [m]

1 Terrace 37.428069/-122.174804 7.1 2.1

2 Pedestrian 37.428219/-122.173429 3.6 3.6

3 Roof 37.428223/-122.174186 18.2 3.2

4 Pedestrian 37.428473/-122.174415 2.7 2.7

5 Roof 37.428194/-122.176417 16 2.0

6 Roof 37.427175/-122.173329 20.2 2.2

Table 1: Summary of the locations and tripods heights of each of the 6 sonic anemometers.

In the present study we consider data recorded during three consecutive

days, from the 10th to the 12th of October 2017. Fig. 3 presents the wind

roses measured during the 72 hours of the measurement campaign at (a) the

weather station, and (b) the different sonic anemometers. The size of each

angular section in the wind roses represents the probability of occurrence

of that direction, while radial sectors represent the probability of a certain

velocity. One can observe the importance of natural wind variability in both

the wind velocity and direction during the experiment. From the weather sta-

tion and the roof-top sensors two predominant wind directions and velocities

can be identified: North-West during the day, typically with higher velocities

and variability, and South-West during the night, with lower velocities and

lower wind direction variability.
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Figure 3: a) Wind rose measured by the weather station, during the 72 hours of the

measurement campaign (October 10-12, 2017). b) Wind roses from each of the sonic

anemometers deployed in the SEQ during the same time period.

3. Data Assimilation methodology

Fig. 4 depicts a flow chart of the Bayesian methodology. Initially, in

step 1), we have no knowledge of the inflow parameters (inlet flow angle

and inlet flow velocity) and assume a uniform distribution for both. In step

2) we propagate these distributions through the forward model, which is

introduced in detail in section 3.1. Subsequently in step 3, we assimilate the

experimental data measured by the sensors in the assimilation network. With

the statistical properties of both the predicted and measured flow conditions

in the assimilation network, we use the inverse ensemble Kalman filter [26, 27]

to update the posterior distribution of the inlet parameters in step 4). The

details of the inverse method are presented in section 3.2. Once convergence is

achieved, we evaluate the accuracy of the predictions in step 5) by comparing

the numerical and experimental data at the sensors in the validation network.
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Figure 4: Flow chart of the iterative Bayesian inference method using the sensors from

the assimilation network, and the subsequent validation process using the sensors from

the validation network

3.1. Forward Model

The ensemble Kalman filter used for the Bayesian update requires a large

number of forward model evaluations. Hence, to limit the computational

cost, we used a surrogate model constructed from an initial set of RANS

simulations. In the following section we first list the details of the RANS

simulations and subsequently discuss the construction of the surrogate model.

3.1.1. Reynolds-averaged Navier-Stokes simulations

The computational set up of the RANS simulations is similar to the one

presented in [16]. The RANS equations are solved with the OpenFoam li-

braries [28], and turbulence closure is obtained with the standard k−ϵ model

[29]. Following the guideline that all buildings within a distance of 10 times

the height of the buildings in the region of interest should be included [30],

the computational domain comprises all the buildings within an 800m radius
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from the Science and Engineering quad (SEQ). The domain is 2.6 by 2.6 km

in the horizontal directions, and the top boundary is placed at 10Hmax where

Hmax=75m corresponds to the highest building in the domain. The lateral

boundaries are placed at least 12Hmax away from the closest building to avoid

interactions with the wakes and improve numerical convergence. This also

ensured a blockage ratio below 3% as recommended by Franke et al. [30] and

Tominaga et al. [31].

The computational grid is generated with snappyHexMesh [28], and con-

sists of 22.5 million cells with a progressive grid refinement towards the SEQ

to ensure a 1m meter resolution in the horizontal direction and a 0.5 m resolu-

tion in the vertical direction. A grid-sensitivity analysis performed with two

additional grids, a coarser mesh with 15 million cells and a refined one with

48 million cells, demonstrated small differences between the three cases [16].

The inlet boundary condition prescribes neutral ABL profiles [32]:

U =
u∗
κ
log

(z + z0
z0

)
, k =

u2∗√
Cµ

, ϵ =
u3∗

κ(z + z0)
, (1)

where U , k and ϵ represent the velocity, turbulence kinetic energy and dissi-

pation rate. The height is defined by z, z0 represents the roughness length,

and u∗ is the friction velocity. A spatially uniform roughness length equal to

0.3m is specified, since the campus is located in suburban terrain [33]. The

von Karman constant κ is set to 0.41, and the turbulence model constant

Cµ is 0.09. To ensure horizontal homogeneity of the inlet profiles [34, 35], a

wall function based on the ABL roughness length [32] is applied along the

ground. On the building walls, a standard smooth wall function is used.

The main difference between the simulations described in [16] and the

current study is that the effect of vegetation is included in the model. To
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account for the presence of trees, a drag term, Stree, was added to the mo-

mentum equations [36, 37, 38]:

Stree,i = −1

2
ρ|U | (cdLAD)Ui, (2)

where cd is the drag coefficient of a single leaf, and LAD (m2/m3) is the leaf

area density representing the fraction of leaf area surface within the volume

of the tree. A cd value of 0.25 was selected [39, 37], and the LAD value of

0.8 was determined by computing an integral average of the empirical profile

along the crown height obtained by Lalic and Mihailovic [40] for oak trees,

which is the predominant tree type on campus.

Since the source term should only be active in locations where trees are

present, the center of each tree and its geometrical properties (diameter D,

trunk height htrunk, and crown height hcrown) have to be identified in the

model. The impact of the trunk is considered negligible, and each crown is

assumed to have a cylindrical shape above the trunk height htrunk = 0.4hcrown

[40]. The diameter and crown height of the trees inside the SEQ were mea-

sured individually and manually imposed in the computational domain. To

avoid time-consuming individual measurements of the large number of trees

on the remaining parts of the campus, an in-house algorithm that estimates

the geometry of each tree and maps it into the numerical domain was devel-

oped. As shown in Fig. 5, the algorithm first loads the aerial image in Matlab

and the user identifies the center of each tree graphically. Afterwards, for

each tree center, the algorithm considers only the image data within a 35m

radius. This radius is reduced iteratively and we compute the ratio of the

standard deviation of the grey scale within the circle and its mean value.
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The tree radius is identified as the radius for which the minimum ratio is

achieved. Subsequently, assuming a relation between crown diameter and

tree height [41], the crown height is estimated using a linear fit of data from

30 trees on campus as shown in the center plot of Fig. 5. This geometrical

information (D, htrunk, hcrown), is used to identify the computational cells

that overlap with a tree and will have the source term activated. As shown

in the right plot of Fig. 5, this procedure was used to identify and map 550

trees on campus.

Figure 5: Algorithm to (1) identify trees from aerial images, (2) estimate the height of

each tree based on its crown diameter, and (3) map the trees into the numerical domain

3.1.2. Polynomial chaos expansion (PCE) surrogate model

To limit the required computational cost, each realization of the forward

model in the Bayesian inference algorithm uses a surrogate model Ĝ(α) for

the RANS model G(α), where α is the vector of random inflow parameters.

A polynomial chaos expansion (PCE) [42] is constructed for each quantity of

interest using a non-intrusive spectral method available in DAKOTA [43]:

Ĝ(α) =
P∑
k=0

βkΨk(α), (3)
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where βk represents the polynomial coefficients and Ψk the basis functions of

multivariate orthogonal polynomials. We use the Gauss-Patterson quadra-

ture rule [44] to compute the coefficients from 63 simulations. This results in

a Polynomial expansion truncated at P=47 [43]. Once the coefficients are

determined, the PCE can be constructed and used as a surrogate model that

can be sampled for all wind directions.

In the present study, the quantities of interest are the local flow angle,

θlocal, and the local flow velocity, Ulocal, at the locations of the sensors in the

validation network. For the high Reynolds numbers under consideration, the

local flow angle and the reduced velocity Ur = Ulocal(z)/Uinlet(z) are only a

function of the inlet flow angle. Hence, the flow properties of interest can be

computed using surrogate models that are only a function of the inlet flow

angle:

Ulocal = ĜUr(θinlet)Uinlet (4)

θlocal = Ĝθ(θinlet) (5)

Hence, we only ran the RANS model for different inlet flow angles, performing

63 simulations in total. Each RANS simulation was run on 36 cores (2.3-GHz

Intel Xeon E5-2697V4), achieving full convergence after about 8 hours. All 63

simulations were run simultaneously on NCAR’s Cheyenne supercomputer.

We quantified the difference between the RANS and the surrogate model

to estimate the associated error. Fig. 6 depicts the probability distributions

of the errors for the local flow angles and velocities at all sensor locations.

The plots also show the Gaussian distributions fitted to estimate the error

variance that will be used in the ensemble Kalman filter.
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Figure 6: Estimates of the model error associated with the surrogate model based on the

differences between the polynomial expansions and the RANS simulations

3.2. Bayesian Inference

The objective is to estimate the probability distributions of the two un-

known inflow parameters, the inlet flow direction and velocity (α = [αθ,αU ]),

by assimilating discrete observations of the physical state (ψ) on the SEQ.

In general, this corresponds to an optimization problem where we want to

find the α that minimizes the difference between the predicted and observed

states. In Bayesian inference, this is equivalent to a maximum likelihood

estimate [45] based on Bayes’s theorem:

p(α|ψ) = p(ψ|α)p(α)
p(ψ)

, (6)
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where the posterior probability p(α|ψ) is proportional to the prior p(α) and

the likelihood p(ψ|α). The prior represents all prior knowledge of α; the like-200

lihood represents the probability of the predicted state given the parameters

α. Several approaches can be used to solve Eq. 6; in this work we use the en-

semble Kalman filter, which is an approximate Bayesian inference technique.

The method’s advantages lie in its straightforward implementation, possible

parallelization, and its gradient-free approach. A potential drawback is that

the predictive performance of the formulated inverse problem may deterio-

rate if the assumption that the input parameters have a Gaussian distribu-

tion does not hold. For the present case, an analysis considering artificially

generated non-Gaussian inputs (similar to the analysis presented in [16]),

indicated that non-Guassian distributions can be recovered by the iterative

process. Further analysis of the performance of the ensemble Kalman filter,

including a comparison of the efficiency and accuracy of different approaches

for solving the inverse problem, would be of interest for future research.

The ensemble Kalman Filter infers the statistical properties of unknown

parameters α that are inputs to a forward model Ĝ(α), based on available

observations at discrete locations within the domain of interest [27]. Con-

sider an ensemble of size J of the parameters, αj=1,...,J , characterized by

mean values ᾱ and additive stochastic terms α′
j with zero mean and known

covariances Cαα:

αj = ᾱ+α′
j (7)

We can then construct the field vector ψj(x) by running J realizations
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of the physical model Ĝ(α):

ψj = Ĝ(αj) + qj (8)

where Ĝ(α) is our non-linear model, and q(x) is an additive stochastic term

that is assumed to have a Gaussian distribution with zero mean and co-

variance Cqq. q(x) represents modeling errors, which are estimated from

the error between the PCE and the RANS model as shown in Fig. 6. The

additional error associated with the RANS model is not considered in the

current study; estimating and including this error, e.g using methods for

RANS turbulence model-form uncertainty quantification [46, 47], is a sub-

ject of ongoing work.

The objective of the inverse ensemble Kalman filter is to find the statis-

tical value of α that minimizes the difference between the M experimental

observations yj and the field vector values at these locations d̂j:

yj = ȳ + ϵj, (9)

d̂j = M[ψj(x)]. (10)

Here, ϵ represents the variability of the measurements with a known covari-

ance Cϵϵ, and M represents the measurement matrix used to extract the

simulated field vector ψj at the locations of the observations. The measure-

ment matrix has null values in the locations where measurements are not

available.

The algorithm used for this parameter estimation is summarized in Al-

gorithm 1. After providing an initial guess, an iterative process first predicts
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d̂j, and subsequently updates the parameter estimate using Eq. 13. This

update equation computes the posterior parameter and field vector (n + 1)

based on a weighted combination between the prior (n) and the error be-

tween the simulated d̂
n
and observed states y, where the weight is given by

the Kalman gain. When the initial guess is far from the true solution, the

covariance matrices are poorly approximated by the ensemble. The iterative

approach was proposed by Iglesias et al. [26] to address this issue. The it-

erative process always performs the specified maximum number of iterations

nmax=10; typically the solution converges after 4 iterations. Subsequently,

the validation process is initiated, comparing the solution to the measure-

ments from the sensors in the validation network. When using the surrogate

model this process takes approximately 100s, a single forward propagation

takes about 16s in an Intel Xenon CPU E5-2609 v3 @ 1.90GHz (using 12

cores in parallel). Further details on the algorithm can be found in [27, 26]

and an application to turbulence modeling has been presented in [19].

4. Results and discussion

In this section we compare the experimental data with (1) the flow pre-

dictions based on the boundary conditions from the weather station and (2)

with the flow predictions based on the proposed Bayesian inference approach.

The two methods can be summarized as follows:

1. Boundary conditions from the weather station: Considering a single

hour of the measurement campaign, the hourly-averaged data provided

by the weather station is used to run the surrogate model, computing
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Algorithm 1 Ensemble Kalman filter for parameter estimation

ASSIMILATION DATA: Select the period and length of interest and

draw J random samples from each sensor in the assimilation network:

y1,...,J

INITIAL GUESS: Specify the prior distribution of the unknown param-

eter p(α), where α = (α0
1, ..., α

0
J)

ITERATIVE PROCEDURE:

for n = 0 to nmax do

1. Prediction step

1.1 Draw J realizations from the forward model and add the model

error for each location x:

ψj(x) = Ĝ(αj) + qj(x) (11)

1.2 Extract ψj(x) at the observation location:

d̂j = M[ψj(x)] (12)

1.3 Compute the covariance matrices Cαd, Cψd, Cdd:

Cαd =
1
J

∑J
j=1αj(dj)

T − ᾱd̄T , where, ᾱ = 1
J

∑J
j=1αj, d̄ = 1

J

∑J
j=1 dj

Cψd =
1
J

∑J
j=1ψj(dj)

T − ψ̄d̄T , where, ψ̄ = 1
J

∑J
j=1ψj

Cdd =
1
J

∑J
j=1 dj(dj)

T − d̄d̄T

2. Update step

Update the parameter and flow field vectors:⎛⎜⎜⎜⎝
αn+1
j

ψn+1
j

d̂
n+1

j

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
αnj

ψn
j

d̂
n

j

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
Cαd

Cψd

Cdd

⎞⎟⎟⎟⎠ (Cdd +Cϵϵ)
−1(yj − d̂

n

j ) (13)

end for

VALIDATION STEP: Compare the flow field ψ with the observations

from the validation network.
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the deterministic flow field over the SEQ and providing the wind ve-

locity at the sensor locations. This process is repeated for each of the

72 hours of the campaign.

2. Boundary conditions from Bayesian inference: Considering a single

hour of the measurement campaign, we generate an initial ensemble

of the inflow parameters with a uniform distribution and use the surro-

gate model to compute the corresponding wind velocities at the sensors

in the assimilation network. The iterative ensemble Kalman filter is

then used to infer the probability distributions for the inlet parameters

(flow angle and velocity) and provide the stochastic flow field predic-

tion. This process is also repeated for each of the 72 hours of the

experimental campaign.

We will start by comparing the flow field predictions at two distinct time

instances, considering one hour during the day, and one hour during the

night. Subsequently, we consider the full 72 hour period and quantitatively

compare statistics and compute validation metrics. Finally, we discuss the

influence of the location and number of sensors used for data assimilation.

4.1. Comparison of flow field predictions at two time instances

In this section we quantitatively compare the flow field predictions ob-

tained with the two different approaches for October 11th between 3 and

4pm, and for October 12th between 3 and 4 am. The data assimilation is

performed using two sensors: sensor 2 at pedestrian level and sensor 6 at

roof level. An analysis similar to that presented in Section 4.3 indicated

that this combination of sensors provides optimal results. The initial guess
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for the distributions of the flow angle and velocity magnitude is a uniform

distribution between [0 − 360]o and [0 − 10]m/s, respectively. We used an

ensemble size J = 100, following the analysis presented in [16], where we

demonstrated that this value provides a sufficiently accurate estimate of the

mean and standard deviation of the inlet conditions. We did not observe any

deterioration in the final inferred distribution from using a uniform distri-

bution as the initial guess; however, when a better initial guess is used, the

iterative algorithm tends to converge in fewer iterations.

Fig. 7a. presents the probability density functions inferred by the Bayesian

approach for the wind speed and direction, together with the corresponding

hourly-averaged value measured by the weather station during the day (be-

tween 3-4pm) and the night (between 3-4am). During the day (top figure) the

mean values of the inferred distributions are similar to the hourly-averaged

measurement, but the Bayesian inference reveals significant variability in the

inlet wind conditions. During the night (bottom figure), the mean values

measured by the weather station are outside the inferred distributions, and

the Bayesian inference results show a much smaller variability in the inferred

conditions. The contour plots in Fig. 7 b. and c. depict the velocity ratio,

i.e. the local horizontal velocity normalized by the horizontal velocity mea-

sured at the weather station at 5m height. Fig 7 b. presents the determinis-

tic result based on the boundary conditions defined by the hourly-averaged

weather station while 7 c. presents the mean result based on the inferred

pdfs for the inlet conditions. Fig. 7 d. shows the difference between both

cases. During the day time there are some locations, such as shear layers

and narrow street canyons, where the velocity ratios differ by about 30%. In
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the night time case, the overall difference in the flow field is more significant,

primarily due to the difference in the incoming flow angle.

Figure 7: a) Probability density functions of the inlet velocity and flow angle measured

by the weather station and estimated using Bayesian inference; contour plots of the ve-

locity ratio based on b) weather station inflow conditions and c) Bayesian inference inflow

conditions; d) the difference between contour plots b) and c).

These preliminary observations indicate that in certain wind conditions

the mean values measured by the weather station are very similar to the

inferred ones, while in other conditions significant discrepancies can occur.

4.2. Comparison and validation of the flow prediction over 3 days

To compare the performance of each methodology for a variety of wind

conditions we first compare the statistics of the predictions over all 72 hours of

the measurement campaign. Subsequently we evaluate each hour individually

to identify time periods during which the uncertainties are magnified.
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4.2.1. Comparison of statistics

Figure 8 depicts three wind roses, representing a) the boundary conditions

measured by the weather station, and b) the inferred inlet conditions. To

perform the inference analysis, the ensemble Kalman filter was ran 72 times

for each hour of the experimental campaign. The ensembles from each hour

were then combined in a single wind-rose. We present wind roses for the

ensemble averaged hourly results to facilitate comparison to the weather

station data, and for all 100 samples in the ensemble used for each hour. From

this analysis we can identify a higher mismatch in the flow angle for south-

west wind directions: in these conditions the weather station consistently

recorded a higher wind velocity.

Figure 8: a) Wind rose measured by the weather station during the experimental campaign;

b) Inferred wind rose: left - represents the hourly average data; right - shows the data

from the 100 samples per hour used in for Bayesian inference. [10 Oct: 00:00 - 12 Oct:

24:00]

To investigate the accuracy of both approaches, we compare the predicted

results to the experimental data. Typically in wind engineering, one is in-
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terested in predicting the probability density functions (PDF) of the wind

velocity to evaluate for example, pedestrian comfort or wind power avail-

ability. Hence, Fig. 9 compares the experimental distributions to the ones

predicted by the Bayesian inference (with 100 samples per hour, over 72

hours) and with the ones based on the weather station boundary conditions

(hourly-averaged data over 72 hours). Overall visual comparison of these

distributions indicates that the predictions with the Bayesian approach re-

produce the statistical characteristics of the experimental data with a higher

accuracy than the conventional approach. Some differences occur, for exam-

ple at sensor 1 there is a consistent underestimation of the velocity magnitude

and a larger variability in the flow angle. At sensor 5 there is a slight over-

estimation of the magnitude, but the PDF of the flow angle is accurately

reproduced, showing two distinct predominant wind directions.

4.2.2. Comparison of time-series and quantitative metrics

In order to compare the performance of each methodology under different

wind conditions, we consider each of the 72 hours individually. Fig. 10 plots,

for each sensor, the hourly-averaged values of the velocity components (Ux

and Uy) and the corresponding 95% Confidence Interval (CI) of the exper-

imental data and the predictions obtained from Bayesian inference. Since

the weather station only provides mean values, 95% CI can not be computed

for this approach. The Bayesian based predictions accurately reproduce the

mean and the 95% CI of the experimental data: 84% and 77% of the mean

predicted values are within the 95% CI of the experimental data for Ux and

Uy, respectively. When using the weather station, these values drop to 69%

and 49%. The bottom plots depict the cumulative errors in the mean values
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Figure 9: Experimental, weather station, and Bayesian-based predictions of the probability

density functions of wind magnitude and direction at each sensor, combining all 72 hours

of data. Sensors 2 and 6 where used in the assimilation network.

of the 6 sensors. During all periods of the experimental campaign, Bayesian

inference outperforms the conventional approach, and the error is relatively

constant over the three days. In contrast, when using the weather station

data, the predicted errors are higher during the night when the flow direction

is predominantly from the South-West. This corresponds to the direction for

which the weather station is not on the upwind side of the urban canopy.

To perform further quantitative comparisons we combined the data from

the 6 sensors over the 72 hours to compute correlation coefficients (ρe,p), hit

rates (HR), and the percentage of hours that the predicted mean values are
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Figure 10: Time evolution of the hourly-averaged wind velocity components and their 95%

confidence intervals (shaded regions) for the experimental data and the Bayesian inference

based predictions, compared to the deterministic weather station predictions.

within the 95%CI of the experimental data (p̄∈CI) as follows:

ρe,p =
cov(e, p)

σeσp
(14)

HR =
1

72

72∑
1

⎧⎪⎨⎪⎩1, if |e−p|
e

< D or |e− p| < W

0, otherwise

(15)

p̄∈CI =
1

72

72∑
1

⎧⎪⎨⎪⎩1, if e5%CI < p̄ < e95%CI

0, otherwise

(16)
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In these equations, e is the experimental data and p the predicted results.

The metrics are computed for the two horizontal velocity components. The

hit rate is calculated using the thresholds D = 0.2 for the relative error and

W = 0.2m/s for the absolute error. The latter corresponds to the sensor

measurement uncertainty observed during the wind tunnel calibration. The

results for both cases are summarized in Table 2, showing that for all met-

rics the Bayesian inference approach outperforms the weather station based

approach. On average the hit rates are improved by about 0.28, while the

mean values of the Bayesian based predictions are about 22% more likely to

be within the 95%CI interval of the experimental data.

Station HRUx HRUy ρUx ρUy p∈CIUx
p∈CIUy

Weather station 0.23 0.37 0.83 0.73 0.69 0.49

Bayesian approach 0.54 0.64 0.89 0.89 0.84 0.77

Table 2: Comparison of hit rates, correlation coefficients, and the percentage of time the

hourly-averaged prediction is within the experimental confidence interval when using the

weather station or the Bayesian inference method.

To conclude this comparison, Fig. 11 presents a scatter plot of the predic-

tions versus the experiments, where each point represents one-hour averaged

data from any of the six sensors. A point on the x = y line implies a perfect

prediction. Fig. 11a compares the experimental results with the predictions

when using the weather station, while Fig. 11b shows the result obtained

with the Bayesian inference approach. In these two plots the ∗ symbol repre-

sents the results from the two sensors in the assimilation network, while the

× symbol embodies the data from the 4 sensors in the validation network.

When using boundary conditions based on the weather station, a consider-
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able spread can be observed in the data. This corroborates the low hit rate

values. In contrast, when using the Bayesian inference approach, the results

lay considerable closer to the experimental data, resulting in improved hit

rates. As expected, the assimilation sensors show an almost perfect match

between the experimental and predicted data.

Figure 11: Scatter plots for the x- and y-velocity components and the velocity magnitude

when using boundary conditions based on: a) weather station data; b) Bayesian inference.

[10 Oct, 00:00 - 13 Oct, 00:00]

4.3. Influence of location and number of sensors used for assimilation

To quantify the impact of the sensor locations we present the results

when using only one sensor in the assimilation network, with the remaining

five sensors in the validation network. Table 3 summarizes the hit rates and

correlation coefficients for each velocity component. Each row represents a

different assimilation setup, with the first column indicating the assimilated
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HRUx HRUy ρUx ρUy p∈CIUx
p∈CIUy

Weather station 0.23 0.37 0.83 0.73 0.69 0.49

Assimilation sensor

1 0.42 0.25 0.54 -0.27 0.46 0.66

2 0.39 0.46 0.80 0.84 0.68 0.67

3 0.52 0.55 0.87 0.87 0.79 0.74

4 0.38 0.49 0.59 0.83 0.78 0.63

5 0.55 0.48 0.88 0.82 0.72 0.78

6 0.53 0.61 0.89 0.86 0.86 0.77

Table 3: Comparison of correlation coefficients and hit rates, using single sensor for data

assimilation compared to the results when using the weather station to define the boundary

conditions.

sensor. For comparison, the top row represents the coefficients when relying

on the weather station to define the inlet conditions. The results clearly show

that the Bayesian inference outperforms the conventional method in all cases,

except when assimilating data from sensor 1. The scatter plot for this case

is shown in Fig. 12a. As discussed in [16], this sensor is located close to a

narrow street canyon where the flow is guided by the buildings and inference

problem becomes ill-posed. The scatter plot also identifies over-fitting, where

the data from the assimilation network perfectly fits the experimental data400

but predictions for the validation network are inaccurate.

The assimilation test case that performs best is the one using sensor 6,

with an overall improvement of about 25% relative to the traditional ap-

proach. Fig. 12b shows the corresponding scatter plots. Even if more than

57% of the data is within 20% of the experimental data, the plot shows a con-
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sistent over estimation of the wind velocity. This indicates a possible bias in

the numerical or experimental fields at the location of sensor 6, highlighting

that ideally a multi-sensor assimilation is preferred to minimize the impact

of localized sources of uncertainty.

Figure 12: Scatter plots for hourly-averaged data for the value of the two velocity compo-

nents and the velocity magnitude; a) the solution when performing data assimilation from

sensor 1; b) the solution when performing data assimilation from sensor 6. [10 Oct,00:00

- 13 Oct, 00:00]

Finally, comparison of Fig. 12 to Fig 11 demonstrates that multi-sensor

assimilation helps to improve the predictions and avoids over-fitting of the

experimental data. In general, it can be concluded that optimal locations to

deploy the sensors are on roof tops as well as open spaces (far from buildings

and narrow street canyons) at pedestrian level. In these locations the inlet

parameters are identifiable from the local flow properties, which ensures that
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the inverse problem is well-posed. It also appears to be advantageous to rely

on sensors at different heights; this can minimize uncertainties associated

with the vertical profile of the atmospheric boundary layer. Given the set-

up of the inference problem, which relies on the sensors only to define the

incoming wind direction and magnitude at a reference height, it is plausible

that these recommendations are generally applicable to a variety of urban

morphologies; this will be further investigated in future work.

5. Conclusions

In the present work we validate a novel, computationally efficient ap-

proach to perform data-driven wind flow predictions in a full-scale urban

environment. The method uses Bayesian inference to assimilate data from

sensors deployed within the urban canopy and infer the probability distri-

butions for the inflow boundary conditions. To minimize the computational

time we employ an ensemble Kalman filter, using a surrogate forward model

constructed from a prior set of RANS simulations.

To assess the performance of the proposed approach, we conducted a

field measurement campaign on Stanford’s campus during the summer of

2017. Six sonic anemometers were deployed during three consecutive days.

A subset of the deployed sonic anemometers were used for data assimilation,

while the remaining sensors were used for validation. This strategy allowed us

to test the sensitivity to the number and location of the sensors used for data

assimilation. We compared the accuracy of the predictions obtained using

Bayesian inference to predictions that relied on a nearby weather station

to define the boundary conditions. We show that the Bayesian inference
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approach consistently outperforms the conventional method for all evaluated

metrics, and that the method is reliable over a variety of wind conditions.

In contrast, when using the weather station, the error is amplified for one

particular wind direction. Nonetheless, the results demonstrate that the

success of the Bayesian inference approach is dependent on the location of

the sensors. Based on the current analysis, we recommend that sensors used

for assimilation are placed at roof level or at pedestrian level in open spaces.

To further improve accuracy, the assimilation should be based on multiple

sensors at different heights.

In summary, the proposed Bayesian inference approach was shown to

significantly improve urban wind flow predictions for the test case considered.

The results indicate that data assimilation provides a promising route for

improving the predictive capabilities of RANS simulations of urban flow. To

generalize the conclusions of this study and investigate further opportunities

for improvements in the predictions, we should consider validation in other

urban morphologies, compare the performance of different inference methods,

and investigate approaches to represent the error of the RANS model.
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