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Abstract 

Objective: Accurate implementation of real-time non-invasive Brain-Machine / Computer Interfaces (BMI / BCI) requires 

handling physiological and nonphysiological artifacts associated with the measurement modalities. For example, scalp 

electroencephalographic (EEG) measurements are often considered prone to excessive motion artifacts and other types of 

artifacts that contaminate the EEG recordings. Although the magnitude of such artifacts heavily depends on the task and the 

setup, complete minimization or isolation of such artifacts is generally not possible.   

Approach: We present an adaptive de-noising framework with robustness properties, using a Volterra based non-linear 

mapping to characterize and handle the motion artifact contamination in EEG measurements. We asked healthy able-bodied 

subjects to walk on a treadmill at gait speeds of 1-to-4 mph, while we tracked the motion of select EEG electrodes with an 

infrared video-based motion tracking system. We also placed Inertial Measurement Unit (IMU) sensors on the forehead and 

feet of the subjects for assessing the overall head movement and segmenting the gait.  

Main Results: We discuss in detail the characteristics of the motion artifacts and propose a real-time compatible solution to 

filter them. We report the effective handling of both the fundamental frequency of contamination (synchronized to the walking 

speed) and its harmonics.  Event-Related Spectral Perturbation (ERSP) analysis for walking shows that the gait dependency of 

artifact contamination is also eliminated on all target frequencies.  

Significance: The real-time compatibility and generalizability of our adaptive filtering framework allows for the effective 

use of non-invasive BMI/BCI systems and greatly expands the implementation type and application domains to other types of 

problems where signal denoising is desirable. Combined with our previous efforts of filtering ocular artifacts, the presented 

technique allows for a comprehensive adaptive filtering framework to increase the EEG Signal to Noise Ratio (SNR). We 

believe the implementation will benefit all non-invasive neural measurement modalities, including studies discussing neural 

correlates of movement and other internal states, not necessarily of BMI focus. 

Keywords: EEG, real-time artifact removal, motion artifacts, ocular artifacts 

1. Introduction 

Investigating the neural sources, neural correlates and 

sensor domain connectivity/causality applications of human 

movement is of interest to many research areas including 

rehabilitation, restoration of movement of people with 

paralysis, or purely characterization studies assessing brain 

dynamics. Movement-related artifacts (or motion artifacts) are 

perhaps one of the most challenging non-physiological source 

of noises to handle, which can hinder the true performance of 

neural interfaces and the brain-machine interface (BMI) 

decoders, or skew offline results related to the sensor domain 

analyses. Depending on the context of the data collection 

paradigm and the experimental setup, motion artifacts can 

manifest themselves continuously or partially whenever a 

head movement causes the electrodes to move with respect to 

the scalp. It is impossible to conclude, without further analysis 

of each experimental modality, whether or not the motion 

artifacts are present. The determination of the contaminants’ 

existence and severity is highly dependent on the study in 

question. Researchers find it exceedingly difficult to conclude 

if the captured neural oscillations are simply due to electrode 

movement, or they are neural in origin. Even more challenging 

to answer is if there is a combination of both neural and 
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artifact-induced oscillations (linear or nonlinear), affecting 

also the observed phase and amplitude of the measured data. 

In scalp electroencephalography (EEG) studies, there are 

ways to reduce or perhaps eliminate the movement related 

artifacts, by reducing or eliminating the relative EEG 

electrode movement w.r.t. the EEG cap, or scalp. In mobile 

brain-body imaging (MoBI) recordings, it is a good practice 

to use an external stabilizing layer on top of the EEG cap, such 

as a medical mesh. This would prevent the transmission of the 

overall cable bundle/cap inertia to the individual sensors, up 

to some level. Naturally, slow movements contain less or 

negligible artifactual components [1]. For other more dynamic 

applications (such as a fast walk/jogging or sudden head 

movements), the movement caused by inertia or cable pulls 

would simply be impossible to avoid. Fast head movements 

are also known to cause harmonics of the major contamination 

frequency, making the overall artifactual components 

exceedingly difficult to handle.  

There are research efforts towards characterization of 

motion artifacts. A clear consensus among research groups is 

that the motion artifacts are highly dynamic in nature, and are 

affected by the setup and movement dynamics. It is also highly 

variable among subjects, within the same session and w.r.t. the 

scalp spatial location of EEG sensors [1]–[3] of the same 

subjects. However, there is still no consensus on how to handle 

these artifacts when they manifest themselves, how to 

characterize their conditional variabilities, and perhaps even 

less examined, how to remove/suppress them in real-time. In 

a recent study, researchers used a phantom head and a moving 

platform to induce and later separate the motion artifacts to 

simulated EEG dipoles. They showed that offline ICA 

analysis, even under the influence of motion artifacts gives 

meaningful dipole locations, which is of great importance for 

analyses that investigate neural dynamics in such a manner 

[4]. The use of phantom head equipped with EEG sensors has 

merit in identifying and testing solutions for motion artifact 

problem. Another study from the same group investigated 

motion artifacts as a result of the treadmill walking (at 

different speeds) [3]. They used a multi-layer cap where the 

neural signals were isolated from the electrodes to make sure 

the only remaining oscillatory signals were induced by motion 

artifacts. With the help of a head acceleration sensor (placed 

on the forehead), they check the correlation of the isolated 

motion artifact signals to the head acceleration values. 

However, it should be noted that the acceleration values were 

not compensated for gravity, thus any tilt caused gravity 

components, other than on the vertical axis, would register as 

a variable signal component. This component’s effect on the 

registered motion artifact signal is of course unknown, one 

could argue in favor of more correlation,  or simply a 

component that could distort any linear mapping. The authors 

concluded that the overall linear mapping from acceleration 

values to the electrode motion artifacts paints an incomplete 

picture, at times yielding low correlation values. Nevertheless, 

their findings also support the consensus on the dynamic 

variability of the motion artifacts. They also investigated the 

usability of methods for removing the artifacts based on a 

moving average, wavelet transform and the combination of the 

two, concluding that although some suppressions were 

reported, other methods need to be developed for effective 

handling of motion artifacts. In [5], they also show that the 

dipoles identified using ICA where the input is pure motion 

artifact data (isolated EEG cap) are represented 99% in non-

neural volumetric locations. However, the remaining 1% was 

falsely identified as a neural source, which stresses the 

importance of finding effective motion artifact cleaning 

methods.  

Since the cause of the artifacts is the movement of the head, 

and associated relative electrode movement w.r.t. the cap, one 

could argue that the position (rather than the acceleration) of 

the relative movement would yield very high (linear) 

correlation values to the EEG since any scalp-EEG sensor 

contact change would be a function of the 3D position change. 

This linearity assumption would be closer to the truth if we 

would consider an EEG cap with a single electrode attached 

to it, and that there is no complex dynamic interaction between 

the cable bundles of multi-electrode setups. Even if we could 

avoid this electrode-electrode interaction, the inertia caused 

by the whole cable bundle would translate to the electrodes as 

a relative motion, given the suitable head movement. The 

experiment reported in [6] discusses the effect of the cable 

sway in generating the motion artifacts, which was tested and 

shown to be true using a phantom head and motion platform 

setup. Furthermore, in [7], the authors discuss the capacitive 

arrangement of signal measurements from scalp to the EEG 

electrodes. Although the gel layer has a certain capacitance, 

the electrons flow between the gel and the electrode, and a 

half-cell (DC) potential is formed. The authors refer to the 

settling needed (a few minutes) for the electrochemical 

interaction between the electrode and the gel reaching steady-

state. We can argue that levels of electrode movement can, in 

fact, disturb the steady-state DC characteristics, causing 

superimposed oscillatory signals. This is further discussed in 

chapter-6 of [8]. Change in the resistance and DC potential at 

the skin/electrolyte junction was identified as one of the 

causes of motion artifacts. The repetitive disturbance of the 

skin/electrolyte and electrolyte/metal (EEG sensor tip) 

junction brings the question of the needed settling dynamics, 

and whether or not the cumulative effect’s linear 

representation is adequate. 

Given the analyses conducted in the abovementioned 

literature and the observed behavior in this study, we find that 

neither the linear representation and analysis nor the linear 

removal methods can handle the motion artifacts with the 

needed accuracy.  
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Several methods have been proposed in the literature for 

the removal of motion artifacts. In [9], authors investigate the 

removal of artifacts induced by treadmill walking. They 

segment the data into gait cycles and create an artifact 

template by averaging 20 strides. They then linearly regress 

the template to the data in the least squares sense. The 

regressed data is then subtracted for an artifact-reduced EEG 

data. They also apply the same method to the Independent 

Components (IC) after AMICA decomposition. They report a 

meaningful reduction in motion artifacts, although also 

acknowledging that it is unknown why on some subject’s data 

additional reduction of artifacts were observed when used also 

the IC based method, and why on others this reduction was not 

as expected. A possible reason for this could be the template’s 

accuracy, its linear projection onto the EEG and highly 

dynamic (changing characteristics) of the artifacts not 

allowing a linearly scaled template to represent the 

phenomena fully. Not to mention averaging to generate a 

generalizable template would require a repetitive artifact, 

which in real-life would be hard to ensure as the artifacts can 

be discontinuous or short living, also varying from one gait 

cycle to the next. Another IC based method was reported in 

[2]. The authors use a template correlation method to identify 

and reject EEG channels and ICs. However, similar to the 

previously mentioned study, the assumption is that steady-

pace walking creates cyclic artifacts throughout the recording. 

Another cleaning method based on IC decomposition is 

presented in [10].  The authors decompose the EEG data and 

manually remove the non-motion artifact contaminants using 

the PREP pipeline. They identify the motion artifact 

components by utilizing the head acceleration power spectra 

and calculating the deviation w.r.t. the no-motion baseline 

EEG. In [11], authors use a headband type EEG setup and 

mesure the EEG in sync with the IMU data. They decompose 

both using ICA and check the similar components to be 

removed from the data using cross correlation. No real-time 

implementation has been reported in the abovementioned 

methods.    

In [12], [13], the authors present a different approach. They 

implement their approach to dry contact EEG electrodes. The 

continuous measurement of electrode-tissue impedance was 

used as the information to reduce the motion artifacts. They 

also suggest that the prediction of motion artifacts in one 

electrode site can be improved by the electrode-tissue 

impedance measurements from other electrode sites. A  multi-

channel linear predictor is then used to identify the artifact as 

an additive component to the EEG signals, using the mean 

square error as the cost function. The authors report a 

substantial reduction of the artifacts. Although the 

implementation is for dry electrodes, it gives us clues 

regarding multi-input combined information and its 

applicability to represent individual channel artifacts. Using 

global events on the head (in that case, the global information 

was derived by fusing spatially spread information), could 

enable us to employ proper techniques to map and adapt it to 

individual sensor channels, which we used for our current 

work.  

Similar to the ICA decomposition approach, authors in [14] 

uses the Canonical Correlation Analysis (CCA, for blind 

source separation) of multi-dimensional signals. Their 

multidimensional signal is formed from a single channel EEG. 

They use Ensemble Empirical Mode Decomposition to 

decompose the contents of the signal and run the CCA to 

identify the artifactual components to be removed 

accordingly. As in any other blind source separation 

algorithm, the CCA (although works on second-order 

statistics), has also a generalizing tendency through the data 

statistics. Both ICA and CCA implementations lack on 

identifying changes in IC’s as a function of time, which 

improves the likelihood of maintaining residual artifacts after 

cleaning. It should also be noted that long sections of data are 

needed to generate healthier statistics for an effective removal, 

which works against their applicability to real-time systems.  

In [15] and especially in [16], the authors discuss the 

inclusion of adaptive filters to clean motion artifact signals 

from physiological data (for EEG and functional Near Infrared 

Spectroscopy - fNIRS). The methods discussed in the articles 

are heavily based on the L2 norm and linear in nature. Good 

discussions on the selection of reference signals for the 

adaptive filters are also presented in these sources. Adaptive 

filters provide the means to avoid the abovementioned 

problem of artifact generalization and to adapt to the changing 

characteristics of the artifacts. Our recent work on identifying, 

characterizing and removing the ocular artifacts employ a 

robust variation (H∞ estimator) of linear adaptive filters [17]. 

We show the generalization tendency of the ICA to ocular 

artifact representation, and also compare the envelope of the 

adapted weights through our method, per channel, to the fixed 

ICA weights. The mean of our weight envelope closely 

follows the fixed ICA weights, but with the added capability 

of allowing fluctuations (adaptation) around the ICA level 

weights, in time-domain. This reduces the residual artifactual 

components on the cleaned data set. Not to mention that our 

method is applicable in real-time, which is critical for closed-

loop neural interface applications such as neuroprostheses. 

For the motion artifact problem, however, the linear mapping 

of the reference signals to the motion artifact contaminated 

EEG is found to be insufficient as it lacks the complex 

dynamic representation.  Therefore we employ a non-linear 

mapping of a reference signal to the individual EEG 

electrodes. The method uses global information related to the 

subjects’ movement and finds a non-linear projection to the 

EEG data. Perhaps the most common of such non-linear 

representation of dynamic systems is the Volterra series 

expansion. We use a second order Volterra series and adapt 

the variable weights of the terms at each sample. In [18], 
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authors used a similar approach and employed a Volterra 

series with Recursive Least Square (RLS) adaptation 

algorithm for motion artifacts in Photoplethysmography, for 

heart rate estimation. Estimating the weights of a Volterra 

series is a widely used technique, also for physiological 

signals of many different types. However, researchers often 

choose RLS or Least Mean Square (LMS) methods as an 

adaptation scheme. As mentioned above, the H∞ estimator has 

the advantage of being robust to external disturbances, with 

guaranteed robustness properties within given bounds. There 

are multiple variations of the H∞ filtering method. Most 

celebrated are the fixed and exponentially-weighted 

assumptions. The general usage of combined Volterra series 

and H∞ filtering with exponential weight assumption (V-

H∞/exp) was discussed in [19]. The author investigates the 

performance of the V-H∞/exp and compares it to Volterra RLS 

(V-RLS) and Volterra normalized LMS (V-nLMS). For time-

varying environments with colored inputs, the transient 

performance of the V-H∞ surpasses those of the V-RLS and 

V-nLMS. Similarly, the performance of the V-H∞/exp is high 

for steady-state and also for non-stationary signals. 

Enhanced with the Volterra series expansion, we use the 

time-varying weight assumption for the H∞ filter (as opposed 

to the exponential assumption as formulated in [19]). To 

enhance our method’s accuracy for the harmonics of the 

fundamental movement frequency, we employ a framework 

that can identify all major contamination frequencies by 

creating the narrow-band filter-banked version of our 

reference signal and handle all target contamination 

frequencies of the EEG in a cascade filtering method (Figure 

3).  

In section 2, we discuss our data collection modality for 

characterizing and removing motion artifacts. We revisit our 

ocular artifact cleaning method and expand it for the motion 

artifact cleaning problem. Our combined ocular and motion 

artifact cleaning framework forms a real-time capable method 

for neural signal denoising. In section 3, we discuss the 

characteristics of the motion artifacts using select EEG 

channels, as well as scalp distribution statistics for all 

electrodes. We also discuss comparative results for time and 

frequency domain analysis, before and after artifact cleaning.  

To the best of our acknowledge, this paper presents the most 

comprehensive characterization of motion artifacts during 

treadmill walking. 

2. Materials and methods 

2.1 Subjects, tasks, and measurements 

Eleven (11) healthy able-bodied adults with no known gait 

deficiencies participated in this study after giving informed 

consent. All procedures were approved by the Institutional 

Review Board of the University of Houston. 

Subjects were asked to walk on a treadmill (Figure 1) at 1-

to-4 mph gait speeds for 6 minutes continuously. Each task 

was started and ended with a 1-minute quiet standing as 

baseline periods. The walking area was surrounded with 12 

OptiTrack motion capture cameras. The workspace of all the 

cameras was limited to the head of the subjects for increased 

resolution, resulting in a mean tracking error of 0.07mm. 

All subjects were equipped with a 64 channel gel based 

EEG system (actiCAP, Brain Products GmbH) with active 

electrodes and 10-20 distribution. We have used the Brain 

Products MOVE system to wirelessly transmit the EEG data 

to the recording computer. In this setup, the cap electrodes are 

connected to a wireless transmitter, which sits on the 

participant’s shoulder. Note that other wireless EEG systems 

attach the transmitter to the EEG electrode cap, most likely at 

the back of the head. However, wires still need to be routed 

from each electrode to the transmitter, thus causing potential 

motion artifacts. 4 scalp electrodes were relocated around the 

eyes of the subject to measure the ocular artifacts in bipolar 

configuration (TP10-TP9 for Vertical-EOG and PO10-PO9 

for Horizontal-EOG, [17]). Peripheral electrodes FT9 and 

FT10 were moved to FPz (normally ground) and FCz 

(normally reference) locations accordingly for a denser scalp 

coverage. Reference and Ground electrodes were moved to the 

right and left ears, accordingly. 

No external layer on EEG electrodes was used (i.e., a 

medical mesh), conforming also with the most standard 

implementation of this system. An external mesh, covering the 

electrodes is a standard setup item in our laboratory as it was 

found to dramatically reduce the motion of the electrodes and 

cable sway. For the scope of this work, however, a clear 

presence of motion artifacts was needed for us to be able to 

Figure 1: Setup for the movement data collection. The treadmill 
was  surrounded  by  a  motion  tracking  system,  for  which  the 
approximate  capture  area  was  limited  to  the  head  of  each 
subject. Cameras were calibrated before each session. 
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characterize and assess the validity of our cleaning method 

(Figure 2).  

All subjects were also equipped with 9-axis wireless IMU 

sensors (APDM, Opal), one at the forehead of the subjects, 

one on the right foot and one on the left foot. The forehead 

sensor was used to assess the usability of the IMU information 

to characterize and/or remove the motion artifacts. The 

sensors on the feet were used to segment the gait phases.  

Five (5) of the select electrodes (Fz, Cz, Pz, C5, C6) were 

equipped with different reflective marker configurations for a 

precise measurement of the electrode cartesian positions, each 

containing 4 markers. Per sensor, markers were placed on a 

transparent plastic medium with ൏ 1 gram weight and 

attached to the same sensor using the same orientation for all 

subjects (overall weight of the marker setup is ~0.8 [grams], 

per site). The surface of the forehead IMU sensor was also 

equipped with a reflective marker configuration (Figure 2). 

This information is used to derive velocity and acceleration 

data from the optically tracked position of the electrodes. We 

have used this information as a metric for a 2nd order standard 

Kalman filter implementation. The acceleration, derived from 

the Kalman filter (when the position is the only input) were 

compared with the IMU measured forehead acceleration and 

the error was used as a metric to optimize the error covariance 

matrix multiplier and the noise covariance values by forming 

a constrained optimization problem (Matlab fmincon 

function).   

The EEG (fs=1000Hz), IMU (fs=128Hz), and OptiTrack 

(fs=120Hz) data were synchronized with a manually triggered 

logic signal at the run-time. All data were down-sampled to 100	Hz for analysis.  

2.2 Combined ocular and motion artifact removal 
framework 

As discussed in detail in [17], and summarized in section 

2.2.1,  our ocular artifact cleaning methodology is based on 

the robust H∞ framework with time-varying weight 

formulation (H∞/TV). Both ocular artifact and the motion 

artifact cleaning methods use the same H∞ adaptation rule, 

together forming a combined framework for real-time artifact 

handling. For the analysis in this paper, the EEG data were 

cleaned of ocular artifacts using the method summarized in 

section 2.2.1 prior to the motion artifact cleaning.  

For the ocular artifacts, to accomplish a fast and effective 

cleaning, we have used a single weight value per reference 

input and estimated the weights with the H∞ formulation, as: 

 ݀ሺ݅ሻ ൌ ሻ ൌ࢏ሺ࢝ሺ݅ሻ்࢘ ଵሺ݅ሻݓ ∗ ௩ሺ݅ሻ݃݋݁ ൅ ଶሺ݅ሻݓ ∗ ௛ሺ݅ሻ݃݋݁ ൅ ଷሺ݅ሻݓ ∗ 1   (eq. 1) 

 

where ݀ሺ݅ሻ represents the unknown projection from the ocular 

artifact sources to the EEG channels for sample ݅, ݁݃݋௩,  ௛݃݋݁

are the vertical and horizontal EOG data and the constant 1 is 

used for the drift removal. Using this linear equation, we have 

shown the effectiveness of the robust-adaptive filter 

framework for the ocular artifacts, signal drift, and biases 

simultaneously in real-time. In the development stage of this 

work, we have found such a linear implementation only 

partially effective for the motion artifact problem, mainly 

Figure  2: All  subjects were  equipped with  a  64  channel  EEG 
system, where 4 channels were assigned as bipolar horizontal 
and vertical EOG channels. A 9 axis IMU sensor was placed at 
the subject’s forehead. Four infrared markers were placed on 5 
selected electrodes. 

 

Figure 3:  Joint Block Diagram  for ocular and motion artifact 
removal  from  the  raw EEG signal. The H∞ adaptaƟon  rule  is 
common for both tasks. A 2nd order Volterra series expansion 
was introduced per sub‐band head movement reference for the 
motion artifact problem. 
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limited to the major frequency of contamination which is 

locked to the primary head movement frequency (Figure 8). 

To accomplish a better estimation of the head movement 

projection to each individual EEG channel, we introduced a 

2nd order Volterra-series expansion of the reference inputs, 

having also 3 samples time taps. We also introduce a cascade 

filtering framework by implementing narrow filter banks for 

all target frequencies, including harmonics. The center 

frequencies of the filter bank were identified by the 

acceleration data frequency peaks. Figure 3 shows the 

combined structure of the adaptive filter implementation in 

this paper. It should be noted that the frequency bank includes 

all acceleration frequency peaks, regardless of their 

transmission to the measured EEG data. For the purposes of 

formulating a generalizable framework, it is left to our 

adaptive filter to identify the presence, level, and duration of 

the contamination per EEG channel. 

The H∞/TV formulation is revisited in the next sub-section 

as it applies to both the ocular artifacts and the motion artifact 

problem. The detailed discussion on the adaptation rule can be 

found in [17] and in [20].  

2.2.1 The H∞/TV adaptation rule   
    The performance of the sample adative filters depends on 

the type of the estimator used. Least-squares based estimators 

such as the Recursive Least Squares (RLS) or Kalman filter 

are maximum-likelihood and minimize the expected 

prediction error energy with the assumption of independent 

zero-mean Gaussian random variables and noise. This type of 

estimators are proposed in the literature for EEG signal 

processing [21], [22]. However, gaussian assumptions on 

random variables and noise processes remains a challenge for 

EEG signal processing. While estimating the weigths (eq. 2), 

the H∞ estimator provides guaranteed robustness properties for 

exogenous inputs within given bounds, where the gaussian 

noise process assumptions are also lifted.     

The H∞ adaptation rule with time-varying weight assumption 

is given as follows: ࢝ෝሺ݅ ൅ 1ሻ ൌ ෝሺ݅ሻ࢝ ൅ ௉ሺ௜ሻ௥ሺ௜ሻଵାܶݎሺ݅ሻ௉ሺ௜ሻ௥ሺ௜ሻݕሺ݅ሻ                          (eq. 2) ݀ሺ݅ሻ ൌ   ,ෝሺ݅ሻ࢝ሺ݅ሻܶ࢘
for which, ݕሺ݅ሻ ൌ ሺ݅ሻݏ െ ݀ሺ݅ሻ,  
and ܲିଵሺ݅ሻ ൌ ෨ܲିଵሺ݅ሻ െ  ሺ݅ሻܶݎሺ݅ሻݎଶିߛ
where ෨ܲሺ݅ ൅ 1ሻ ൌ ൣ ෨ܲିଵሺ݅ሻ ൅ ሺ1 െ ሺ݅ሻ൧ିଵܶݎሺ݅ሻݎଶሻିߛ ൅   ܫݍ
Here ݓෝሺ݅ሻ is the estimated weight vector of reference values, ݎሺ݅ሻ is the reference vector at sample ݅  ሺ݅ሻ represents the rawݏ ,

EEG data, and ݕሺ݅ሻ is the clean EEG data. The parameters ߛ 

and ݍ play an important role on the behavior of the adaptive 

filter. ߛ determine the bound on the energy-to-energy gain 

from the disturbance to the estimation error, roughly 

determinining the amount of disturbance that can be tolerated. 

For the time varying weight formulation, it should be selected 

as ߛ ൐ 1. This defines a sub-optimal filter as a trade-off for 

allowing the weights to vary (although it’s left to the user to 

tune the filter. The parameter ݍ reflects the a priori 

information of how rapidly the weight will vary in time. 

Larger values covers for faster variations. For slow signals, ݍ ≅ 10ି଼ is usually a good start point. It should be noted that 

these parameters can vary depending on the application in 

question.  

2.2.2 Adaptive filter implementation for the motion 
artifact problem 

Different from the ocular artifact cleaning method, for the 

motion artifacts, the non-linear variation of the reference 

projection is identified using eq. 2.  

Volterra series modeling of the non-linear systems is a 

widely used approach in many disciplines. For the purpose of 

adaptive filtering, the series expansion allows us to use the 

linear adaptive filter formulations to adapt the weights 

assigned to each variable. A generic second-order Volterra 

series expansion is given in (eq. 3) [23]. The first term in (eq. 

2) represents the weighted sum of the input with time lags and 

corresponds to the linear representation. The second term adds 

the weighted multiplication input instances at different lags 

and thus corresponds to the non-linear relationship. The 

adaptive filter identifies all weights of the representation of 

(eq. 2), yielding a more comprehensive coverage of 

underlying dynamics compared to identifying only the linear 

equation weights.  

 ݀ሺ݅ሻ ൌ ሺ݅ሻൌݓሺ݅ሻ்ݎ ෍ ௟భேݓ
௟భୀ଴ ሺ݅ሻݎሺ݅ െ ݈ଵሻ

൅ ෍ ෍ ሺ݅ݎ௟భ௟మሺ݅ሻݓ െ ݈ଵሻݎሺ݅ െ ݈ଶሻே
௟మୀ௟భ

ே
௟భୀ଴  

  (eq. 3) 

 

Here ݎሺ݅ሻ is the reference value used to identify the motion 

artifact projection. The terms w୪భሺ݅ሻand	w୪భ௟మሺ݅ሻ represents 

the Volterra kernel to be identified via the H∞/TV adaptation 

rule and are identified using eq.2. For this implementation, the 

filter order is chosen as ܰ ൌ 3. 

One very important aspect, apparently, is the selection of 

the reference signal that is used to identify the motion artifacts 

in EEG signals. We have used the 3-axis acceleration values, 

after gravity compensation using the quaternion of the IMU. 

For the gravity compensation, the acceleration vector values 

were converted to the earth coordinate frame using the 

quaternions, and then the gravitational vector values were 
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subtracted from the acceleration data.  Our experimental setup 

allows us to use the individual electrode position, velocity and 

acceleration values as reference signals. The head IMU 

measurement is found to be adequate for removing the motion 

artifacts, as discussed and justified further in the subsequent 

sections. 

After clenaning the ocular artifacts,  we have used a zero-

phase FIR filter in ሾ0.3 െ 15ሿHz range to bandpass filter the 

EEG data. Observed from their power spectrum (Figure 5), 

this range of EEG data is found to include all visible motion 

artifact harmonics. The discussion regarding the higher 

frequency level contamination is left for the discussion 

session. The data are then common average referenced, to be 

in parallel to previous literature work for comparison [3], [24]. 

Note that no other cleaning on the EEG data were performed 

prior to the motion artifact cleaning in order to assess the 

performance and selective nature (to motion artifacts) of our 

method.  

3. Results 

3.1 Non‐linear properties of motion artifacts 

The application of linear correlation analysis alone to gauge 

the transmission of motion artifacts to EEG signals can hinder 

the true level of the artifact contamination. In a gel-based EEG 

setup, the disturbance caused by the movement between the 

skin-electrolyte and electrolyte-gel interfaces can be a 

repetitive action, manifesting the artifacts having repetitive 

transient dynamics [8]. Coupled with the electrode cable 

bundle and associated sway dynamics [6], we expect the 

projection of the artifact from the actual head kinematics to 

the EEG recordings to be inherently highly non-linear. We 

would also expect extensive differences on the projection 

levels of the motion artifacts for different electrode sites. The 

non-linearity and dynamic characteristics could be reduced to 

more manageable levels by the use of a head-mesh and 

limiting the cable sway, essentially coupling the electrodes 

mechanically. As such, considering the variability in EEG 

electrode systems and setups, a specific combination might 

yield a type of contamination that is more linearly dependent 

to the signal in question (i.e., the position, velocity, 

acceleration of the head). For the purpose of this study, we 

have retained from any application that could reduce the 

artifact contamination, and have used an EEG setup that is a 

standard implementation in conformity with the most generic 

EEG setups. 

The linear correlation between measured quantities 

(position, velocity, and acceleration) and the EEG signals are 

summarized in Figure 4. We have grouped all subjects and all 

marked electrodes, and used the entire duration of the 

experiment to calculate the values. Signals are also shifted 

where applicable to yield the largest correlation values [3]. 

The correlation between the EEG data and the measured 

position of the individual electrode increases as the walking 

speed increases. In general, the faster speeds yield larger 

correlations, as well as larger correlation span in vertical 

movements. However, there are instances of larger median 

values in anterior-posterior and medio-lateral directions for 

various speeds and quantities. This shows the dynamic 

characteristics of the contamination and justifies the need for 

multi-axis reference signals for cleaning the EEG data. The 

velocity and acceleration derived from the measured position 

via a parameter optimized Kalman filter yield similar 

correlation values, but slightly less compared to the position 

Figure 4: Group correlations for all subjects and marked electrodes for different walking speeds. Linear correlation is calculated between 
the EEG data and the individual sensors position, velocity and acceleration as measured and calculated by the motion capture system. 

 

Figure  5:  PSD  grand  average  of  all  marked  electrodes  and 
subjects for different walking speeds. The major contamination 
peak and its harmonics become more dominant as the walking 
speed increases. 
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of the same electrode. All EEG data are found to be both 

positively and inversely correlated with the sensor position, 

velocity and acceleration. The maximum median correlation 

value for the given quantities is around 0.1, whereas the 

overall maximum is ~0.4. Having some level of correlation 

values should be investigated carefully. It should be 

remembered that the values reported are linear correlation 

between the EEG an the measured kinematic quantities. For 

complex problems such as motion artifact contamination and 

also considering the transient dynamics of the electrode-

electrolyde and electrolyde-scalp layer disturbances, these 

values should not be regarded as the only representation of the 

interaction between the electrode and the measured quantities. 

Linear correlation, as the name suggests, assesses only the 

linear part of a complex interaction. The linear part, in this 

context, can only model/characterize the local linear 

behaviour, or the linear components of a overall non-linear 

equation. As such, although the values increase with the 

increasing walking speed, these values should not be taken as 

the final and full assessment of the contamination level and 

type. From the linear correlation perspective, these correlation 

values suggest minimal-to-medium motion artifact 

contamination. However, the frequency domain analysis 

paints a different picture. Figure 5 shows the grand average 

PSD of EEG data from all marked electrodes, for all subjects 

and 2 minutes of continuous walking. Although the spectral 

motion contamination is inconclusive at the grand average 

level for the slow walking speed of 1 mph, at higher speeds, 

the contamination is apparent, exhibiting also strong 

harmonics. Checking the frequency coherence of the EEG to 

the EEG electrode kinematics (position, velocity, and 

acceleration of the individual EEG sensor) supports the idea 

of strong contamination in higher speeds. Figure 6 

summarizes the grand average coherence values for all marked 

electrodes and all subjects. The solid lines represent the mean 

coherence per axis of motion, and the shaded regions represent 

the variance around it. As expected, higher walking speeds 

result in higher coherence values. The differences between 

position, velocity, and acceleration based synchrony are 

harder to see in a coherence plot and all quantities exhibit 

similar frequency peaks and harmonics. 

One interesting finding is the characteristics of coherence 

peaks at different harmonics. In general, all 3 axes (anterior-

posterior, vertical and medio-lateral) of electrode movements 

yield strong harmonics, the vertical axis usually being the 

strongest. However, some harmonics appear to be majorly 

generated by only one or two of the axes. The inset in Figure 

6 details the subsequent harmonics’ contributions per axis, 

showing that the 2nd peak is strongly correlated with the 

medio-lateral and vertical axes, whereas the contribution of 

the anterior-posterior movement is less compared to the two. 

The 3rd peak, however, is mostly affected by the vertical and 

anterior-posterior axes and the medio-lateral axis contributes 

less. We assume this to be caused by the different filtering 

effects generated by the electrode setup/cable dynamics, since 

some frequencies in the same axes are damped, whereas 

subsequent higher frequency dynamics are not. This is not 

always the case for different walking speeds, electrode 

locations and subjects, hence, there is no generalizable way of 

representing the higher order nonlinearities of such a complex 

problem. Furthermore, the existence of high amplitude 

frequency locked components in EEG data (spanning almost 

25 dB range in high walking speeds, Figure 5), and loosely 

correlated time domain data to the position, velocity, and 

acceleration of the specific EEG sensor suggests a complex 

non-linear relation between the electrode kinematics and the 

 

Figure 6: Group coherence for all subjects and marked electrodes for different walking speeds. The median values per axis are plotted 
as bold lines, and the variation around them for all subjects and electrodes were plotted as shaded regions. Note the high variance 
around the median frequency coherence. 
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projected contamination. Therefore, for a conclusive test of 

whether or not the EEG is under the influence of motion 

artifacts, and if there is contamination, the level and time 

domain characteristics and even the discrete vs continuous 

existence should be investigated by methods that allow for a 

sample-by-sample non-linear mapping. This essentially 

suggests identification of the artifactual components in the 

time domain. We investigate the applicability of identifying 

the nonlinear representation (Volterra Kernel coefficients) 

through a sample adaptive filter to characterize the motion 

artifacts. This sample-by-sample adaptation, contrary to the 

statistical methods, can not only tell us of the existence of 

motion artifacts at different instances within a session, but it 

can also help us define the abovementioned characteristics.   

3.2 Removal of motion artifacts 

To test the effectiveness of our method, we have used all 

marked electrodes’ (Fz, Cz, Pz, C5, C6) positions, captured by 

the OptiTrack motion capture system for 4 [mph] walking 

speed. The fastest walking speed is chosen to ensure the 

presence and in fact dominance of motion artifacts. For our 

offline analysis, the availability of this detailed information is 

valuable in understanding the motion artifact components of 

the measured signals. However, for a wide-scale application, 

this information is unlikely to be available, thus we seek to 

understand the characteristics of the artifacts and determine if 

another measurement modality can be used instead of the 

precise electrode position. The position measurements provide 

us with the oscillatory (regardless of the artifact being 

continuous or intermittent) electrode dynamics, which is 

technically the main cause of the artifacts (electrode position 

shift causing the disturbance in the skin/electrolyte and 

electrolyte/metal interfaces). To identify the fundamental and 

harmonic frequencies of the contaminating movement with 

peak spectral power, the movement signal is spectrally 

whitened and the peaks were identified. This whitening is 

done to automate the detection of the spectral peaks with 

 

Figure 7: Identified artifacts and their properties. Scalp values show the linear correlation values between the identified artifact and 
the vertical forehead acceleration for sensors equipped with the motion tracking markers (full session data – 6 minutes). The values in 
brackets show the values for the raw EEG and same vertical acceleration for comparison. Each panel of plots show the before/after 
filtering of the motion artifacts for continuous 4 seconds of data for visibility (upper left), the identified artifact of the specific channel 
and the vertical forehead acceleration (bottom‐left), and the power spectrum of the raw EEG and the motion artifact filtered EEG for 
the whole duration of the experiment (6 minutes) (right). 
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improved accuracy. The reference signal is then bandpass 

filtered to each of the identified frequencies ௝݂ (݆ ൌ 1,…݊), 

where ݊ is the number of frequency peaks. The passband 

boundaries are selected as ൣ ௝݂ െ 0.6				 ௝݂ ൅ 0.6൧ݖܪ. The 

reference signals were then passed to the Volterra series 

representation to create a non-linear representation. The 

weights were then identified using the H∞/TV formulation in 

a cascade manner where the input of the adaptive filtering 

process ݆ ൅ 1 is the output of process ݆. 
The overall artifactial component in the EEG signal is then 

calculated as the difference between the raw and the final 

clean EEG data as:  ܽሺ݅ሻ ൌ ሺ݅ሻݏ െ  ሺ݅ሻ. The artifactualݕ

component ܽ ሺ݅ሻ is then used to assess the characteristics of the 

motion artifacts.  

Figure 7 summarizes the findings for the sensors of interest 

when the cartesian positions of the electrodes were used to 

identify the artifactual components. The identified 

components were also compared to the vertical axis of the 

head acceleration measured by the head IMU sensor for 4 mph 

walking speed (on average, the vertical axis correlates most 

for this walking speed as shown in Figure 4). The reported 

linear correlation values between the vertical head 

acceleration and the identified artifacts were calculated by 

shifting the signals, when needed, to yield the maximum 

correlation. The data point shifts are within 50 െ ݋ݐ െ

90ሾ݉ݏሿ (5-to-9 samples). Figure 7 top left scalp plot reports 

these correlation values for the select electrodes. Each panel 

of plots show a short segment of signal (for visibility) of raw 

and clean EEG (top-left), identified artifact and the vertical 

head acceleration (bottom-left), and the power spectrums of 

raw and cleaned EEG signals (right, for the full data set, 6 

minutes of recording). Note that the identified artifact vs. head 

acceleration plot changes the sign of the identified artifact for 

providing better visibility in the level of correlation. First to 

notice is the sharp peaks in the power spectra plots, where the 

frequency is locked to the head movement/walking speed, and 

its harmonics. The overlayed clean EEG power spectrum 

show a clear suppression on the major contamination 

frequency and all of its harmonics. This not only shows the 

effectiveness of the method, but also clearly indicates the 

selective nature of the cleaning paradigm. The spectral details 

where the artifact peaks are not visible are an exact match 

between the raw and cleaned EEG signals. Also, time domain 

EEG amplitude modulation based features are preserved, 

while only the artifactual components of the signal are 

cleaned. As an example, note that the C5 electrode raw signal 

time domain amplitude dip (~129th second) is perfectly 

preserved, while other amplitude changes, identfied as 

artifactual components in the more steady-state section of the 

data are removed. Of course, the keyword -time domain 

feature- used here does not necessarily limit to the task 

Figure 8: Comparison of the PSDs using a linear and non‐linear filter to clean motion artifacts for a subject with 4mph walking 
speed. Linear adaptive filter implementation has the same parameters as the non‐linear adaptive filter, only lacking the non‐linear 
Volterra Kernel representation. Notable shortcomings were circled where the artifact suppression is inadequate when using the 
linear filter. 
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dependent cortical oscillations and associated amplitude 

modulations. It rather points to the fine details of an EEG 

signal’s characteristics, and their preservation by our method 

during motion artifact cleaning of a heavily contaminated 

EEG signal. One striking observation is that the time domain 

modulation of the identified artifact signals closely resemble 

vertical head acceleration values measured simultaneously 

with the EEG. To summarize the significance: the precise 

measurement of the position of each electrode was mapped via 

a nonlinear transformation to the measured EEG signals. 

These final position projections were then linearly corraleted 

to the IMU measured head acceleration signals. It’s found that 

the identified nonlinear transformation yield high linear 

correlation values compared with the acceleration sensor data. 

The linear correlation between the raw EEG and the head 

acceleration, without any processing, was found to be small 

(indicated as bracketed values on the scalp plot), compared to 

what has been transformed from the position data. An 

acceleration sensor is a very low-cost device which is already 

an integral part of many commercial EEG systems. Thus, 

accessing the synchronized acceleration data from any of 

those systems poses no difficulties. Even systems without the 

acceleration sensors can be used by placing an external sensor 

to the forehead of the subject and synchronizing the data with 

the EEG signals, as has been done in this study. The high 

linear correlation between these quantities is a promising 

prospect to use the acceleration values for a sample-by-

sample, real-time cleaning of EEG signal from motion 

artifacts. One very important property of using the forehead 

acceleration (IMU) sensor measurements as a reference signal 

is that it allows for filtering the entire scalp EEG locations. 

since the values reported are linear correlations, we can 

conclude with high level of confidence that the usage of 

acceleration sensor values as a reference input to the adaptive 

noise canceller is feasible. The projection of the forehead 

acceleration values, via our non-linear method, to identify a 

projection that is already highly linearly correlated with the 

acceleration values should yield similar or better results. 

Another observation, confirming the literature on 

movement artifact removal methods as discussed in the 

introduction section, is the variability of the identified artifacts 

by channel locations. The contamination levels (as judged by 

the spectral peaks and harmonics) are also variable by sensor 

location as expected. The time domain characteristics of a 

 

Figure 9: Identified artifacts when the reference signal is the 3‐axis gravity compensated acceleration values. The scalp values show 
the linear correlation between the identified artifactual signal and the vertical head acceleration. Note the possibility of visualizing 
values for the entire scalp contamination. Each panel of plots, for select electrodes, show the raw and clean EEG signal segment 
(upper‐left), identified artifact and the vertical head acceleration segment (lower‐left) and the power spectra of the raw and clean EEG 
for the entire data‐set (right). 



Journal XX (XXXX) XXXXXX  Author et al  

  12   
 

single channel artifact within the same recording session also 

show variability. Sample adaptive formulations in this sense 

allow us to identify informed projections with varying levels 

of contamination in time domain.  

Our next step is to justify the usage of the acceleration data 

as a reference input. We have used all 3-axis head acceleration 

values (measured by the forehead IMU and gravity 

compensated) as reference signals to our algorithm and 

compare the cleaning performance and linear correlation 

values. Figure 9 scalp topographical plot shows the 

distribution of how well the identified artifact signal, per 

electrode, is related to the head acceleration values via linear 

correlation. Compared to the position reference signal for 

cleaning, the linear correlation yields higher values for the 

marked electrodes. This supports the idea of using 

acceleration as a reference signal, not necessarily because it’s 

by default correlated to the raw EEG, but because its time 

domain properties and information-rich structure are highly 

relevant to the motion artifact contamination, should a proper 

non-linear mapping technique is used for identification.  

Another important property to notice is the irregular 

distribution of correlations among scalp locations. 

Apparently, as stated in the introduction, due to the high 

dynamic interaction between the cable bundle and the 

electrode, bundle sway and other factors that cause non-linear 

mapping, the contamination level, and correlation sign varies 

greatly for all scalp locations, and does not follow a clear 

distribution. The power spectral comparison of raw and clean 

EEG signals show a very effective cleaning process, which is 

selective of individual signal contamination level. We would 

like to stress that the same reference signal and frequency bins 

were used for all scalp areas as a reference signal. Comparing 

the harmonic peaks appearances and the prominences, it is 

clear that each electrode experiences different non-linear 

contamination dynamics. As an example, the Cz raw signal 

peaks show a sparse distribution compared to say the C5 and 

C6 electrodes and the ~5	ݖܪ harmonic peak is not visible in 

Cz, Fz or in Pz. Yet the robust adaptive nature of our algorithm 

is capable of identifying when there is a relevant peak and 

when there is not, keeping the frequency information in the 

signal intact, when needed (see the inset plots for C6 and Pz 

in Figure 9). 

The above cleaning using the acceleration values as 

reference signals is repeated using the linear equivalent of our 

non-linear framework to further justify the needed rich non-

linear filter representation. We have used the same H∞ 

adaptation rule with the same parameters as in the non-linear 

case, but instead of using the Volterra kernel, we have used a 

linear combination of 3-axis acceleration values as reference 

signals:    

 ݀ሺ݅ሻ ൌ ଵሺ݅ሻݓ ∗ ܽܿܿ௫ሺ݅ሻ ൅ ଶሺ݅ሻݓ ∗ ܽܿܿ௬ሺ݅ሻ ൅ ଷሺ݅ሻݓ ∗ ܽܿܿ௭       

                                                                                       (eq. 4) 

 

Figure 8 shows the before and after cleaning power spectra for 

5 marked electrodes for both linear and non-linear cases. 

Although most of the major contamination frequencies are 

 

Figure 10: Power spectra of the raw and clean EEG signals for select electrodes and all experimental conditions. Some prominent 
harmonics were marked to show the variability of the artifacts and the selective nature of our time‐domain cleaning method per 
condition and channel. 
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cleaned, some residuals remain in both major frequencies and 

their harmonics. Some notable residual artifacts were marked 

with black circles in the linear-case.   

Finaly, using the non-linear filter, we have also extended the 

results to all walking speeds for select electrodes (Figure 10) 

and compared the before/after cleaning power spectra. The 

variability of the artifact harmonics is also prominent in all 

walking conditions. Plots were generated for continuous 4 

minutes of treadmill walking data. Note that the slower 

walking speeds (especially 1-mph) have far less artifact 

contamination. The clean EEG spectra do not show any clear 

sign of remaining artifacts. It should be noted that the presence 

of an artifact peak or harmonics does not necessarily mean the 

contamination for the entire experimental duration. Rather, 

what we have observed is that the artifacts, especially for 

slower speeds, manifest themselves in a discontinuous 

manner, showing stronger appearance at some sections and no 

apparent contamination on others. This is due to the 

discontinuous nature of the artifacts. It should be noted that, 

although very slow walking speeds suggest less likelihood of 

electrode movements, we are concerned with any fast head 

movements, strong enough to generate artifacts. This also 

justifies the need for a cleaning method that can take into 

account artifacts with short duration, which may be 

statistically insignificant considering the full duration of the 

experiment. Figure 11 shows two sets of time-frequency plots 

that summarize the discontinuous appearances of the artifacts. 

Since the artifact dynamics are highly variable among subjects 

and electrode locations, a sample short segment of data was 

used to highlight the discontinuous nature of the artifacts. For 

the segment in Figure 11-B (2mph walking), the 0.8 Hz 

contamination is visible before cleaning the artifacts (upper 

plot). Within one minute of recording, 4 shorter segments of 

contaminations were observed. The cleaned time-frequency 

plot has no visible contamination at the same time instances.  

This plot also shows the selective nature of our cleaning 

method as the contaminated segments were cleaned (marked 

with boxes) and the rest of the time-frequency representation 

 

Figure 11: Time‐frequency plot of delta band EEG data  (C5 electrode):  (A) 4mph walking speed and  the entire duration of  the 
experiment. Upper and lower plots show the data before and after motion artifact cleaning, respectively. Note the fundamental 
and harmonic frequencies before and after cleaning. (B) 2mph walking speed and 1‐minute segment of data for visibility. 0.8 Hz 
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remain intact where no apparent contamination harmonics 

were expected (some minor features preserved after cleaning 

were marked with circles). Figure 11-A shows the data from 

the entire duration of the experiment and for faster (4mph) 

walking speed. All fundamental and harmonic peaks of 

contamination were handled by our method (note also the 

wide spectrum non-motion artifact events at 2.1 and 5.5 

minutes).  

The variability of artifact appearance instances and 

dynamics prevents us from generating group statistics for a 

continuous, long segment time/frequency analysis, and gauge 

the performance of our algorithm. One way of 

accomplishingthis is investigating the event dependent nature 

of the artifacts to rule out the cancellation of artifactual 

features on a grand average level. For a walking task, the 

Event-Related Spectral Perturbations (ERSP) analysis is a 

good way of determining the extent of our algorithm. Per 

subject and walking speed, we have calculated the time-

frequency spectrum of EEG data from all scalp locations and 

segmented them with respect to the gait events. We have then 

time warped the segments to the mean gait duration and 

excluded the gait durations that are of above or below 3 

standard deviation of the mean gait duration.    

Figure 12 shows the ERSP of all marked electrodes for the 

same subject to be able to compare the results with 

abovementioned outcomes for all 4 walking speeds. For each 

condition, the raw (upper) and cleaned (lower) data ERSPs 

were presented. We have marked the above 0.5 [db] contour 

lines found on the raw data ERSPs (black). Same contour lines 

for each condition were also plotted on ERSPs of the cleaned 

data for comparison. The red contour plots on the bottom 

ERSPs are specific to the cleaned data.  As can be seen from 

the 1-mph walking condition, the raw data has gait locked 

events around 14 Hz range. However, checking the entire 

power spectrum of the same channel (Figure 10), 1mph 

walking has strong contamination for around 0.55 Hz, which 

is in parallel with the actual walking speed.  

There is no evidence that these gait-locked power spectral 

changes for the 1-mph condition are representative of motion 

artifacts. Our algorithm keeps this information intact as can be 

seen from the cleaned data ERSPs and red >0.5 [db] contours. 

 

Figure 12: ERSP for the same subject and for all walking speeds and marked electrodes. Each panel, raw (upper) and cleaned 
(lower) data ERSPs are shown. LTO, LHC, RTO, and RHC are gait phases and refer to left toe off, left heel contact, right toe off and 
right heel contact, respectively. 
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The 2-mph condition, however, shows strong gait locked 

activity and the values are in the expected range for motion 

artifacts. Our algorithm marks this event as motion artifact and 

removes it effectively. Similarly, the 3-mph condition shows 

activity around the expected frequencies for motion artifacts. 

The activity for this walking speed becomes visible, especially 

for the LHC and RTO stages. In fact, ~5Hz activity is also 

visible as a harmonic peak in Figure 10. Both the ~1 Hz and 

~5 Hz activities were identified as motion artifacts and 

cleaned automatically by our algorithm. As expected, the gait 

locked activity increases with the walking speed. The 4-mph 

condition shows very strong activity in varying walking stages 

per electrode. Our algorithm was able to identify all 

occurrences as artifacts and effectively clean them. For better 

visibility of lower frequency cleaning performance, please 

refer to Supplementary Material-A. In Supplement-A Figure-

 

Figure 13: Coherence between all EEG electrodes and the forehead acceleration. Before and after motion artifact cleaning analyses 
were done for all subjects and all walking conditions. 
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1, the same ERSPs were plotted with logarithmic y-axis. All 

expected frequencies for all conditions were cleaned 

effectively. Note that in the Fz electrode -3mph 

walking condition,  between LTO and LHC, the plot shows a 

'blob' in the lower delta band frequencies that remained after 

denoising by our proposed algorithm. This implies that this 

neural activity is highly likely of a neural origin. Moreover, 

the algorithm cleaned all other target frequencies. 

Nevertheless, we caution the reader that there is a low 

likelihood that this unique delta activation in the Fz-3mph 

condition may be a leaked motion artifact.  These examples 

can be extended to all scalp electrode locations, subjects and 

speeds as we do not bound our algorithm, or the input data to 

any electrode, subject, or condition-specific variable which 

are hard to measure. Instead, as justified before, the IMU data 

is found to be applicable for all conditions and scalp spatial 

locations. Although the time domain correlations are found to 

be inadequate to assess the true level of contamination, the 

frequency coherence values are found to be more informative 

when calculated w.r.t. the head acceleration values. To 

summarize the before/after coherences for all subjects and 

assess the effectiveness of the algorithm for all walking speeds 

and all scalp electrodes, we have calculated the coherence 

values of the major contamination frequencies per electrode. 

The area under the coherence curve for the major 

contamination frequencis were calculated for before and after 

cleaning conditions and divided by the number of frequency 

values for normalization. Figure 13 scalp topographical plots 

show the percentage coherence metric as an indicator of the 

motion artifact contamination for all subjects and walking 

speeds. The 4-mph speed, as expected, yields the highest 

average coherences across all scalp locations before cleaning. 

Although the slowest speed introduces the lowest values, the 

variability among subjects is apparent. As an example, the 

subject S9 experiences more artifacts compared to others for 

1mph walking speed. This shows the variability of the artifacts 

even when the experimental conditions are the same among 

subjects. 

4. Discussion 

We have provided a comprehensive filtering framework for 

handling one of the most significant, and yet to be solved 

problem associated with all EEG recording paradigms, 

especially ones that require mobile tasks. Of course, the term 

mobile is used to represent any EEG recording session that 

results in head motion which causes motion artifacts. Our 

algorithms can be used as an offline post-processing tool for 

any recordings that provides a synchronized set of  IMU 

sensor data with the EEG data. We have employed the 

acceleration data of the forehead IMU unit and compensated 

the gravitational acceleration using the quaternions derived 

from the gyroscope and magnetometer data. Although we 

could calculate the quaternions via many known and very well 

established methods, most IMU systems provide this 

information as an already calculated output signal, as in the 

APDM OPAL system used in this study.  

One significant advantage of our method is its real-time 

applicability. Our method utilizes the IMU data and updates 

the parameters of the non-linear projection from the 

acceleration to each EEG channel separately, on a 

mathematically robust and sample adaptive basis. This means 

that for each sample of data recorded, a modified (cleaned) 

signal is outputted from our algorithm. We leveraged the 

advantages of sample-adaptive non-liner projections to 

identify and remove the motion artifacts simultaneously.  

The need for a tool that can handle complex non-linear 

characteristics of the motion artifacts is further justified by 

Figure 14. We have calculated the Spearman correlation 

coefficient between the vertical head acceleration and the raw 

EEG, complementing Figure 9. Note that the Spearman 

correaltion gives meaningful results only when the 

relationship between two signals are monotonic. Nevertheless, 

notable similarities between the FC3, C2, F6 and F7 electrodes 

between the vertical-acceleration/EEG and vertical-

 

Figure 14: (a) Spearman correlation coefficient between vertical head acceleration and raw EEG. (b) Linear correlation coefficient 
between vertical head acceleration and identified artifacts (complementary to figure‐9). Entire duration of the experiment was used 
while the subject walks on a treadmill at 4 mph speed.    
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acceleretation/identified-artifacts suggest that our method is 

capable of handling the monotonic non-linear relationship 

between the two signals, as well as handling the non-

monotonic non-linearities as seen in Figure 9 power spectral 

plots.   

The Volterra series expansion is not the most 

computationally efficient way of representing the non-

linearities. However, we believe that there is a good tradeoff 

between the performance and computational load, as we have 

used a 2nd order representation, with 3 input signals. Our 

implementation (in Matlab C-MEX) on a Windows PC with 

dual 2,39 GHz processors is able to handle the cleaning of 

EEG data, from all 60 electrodes locations in real-time, with a 

safety margin of 6 times the real-time recording rate. For users 

looking for even faster processing can use the embedded 

coding version of our algorithm, or utilize a multi-threading 

approach, at least electrode-wise. Another alternative is to use 

the bilinear filter representation instead of the Volterra 

representation with somewhat reduced performance as 

discussed in [23]. Another option can be the use of reduced 

number of spectral target peaks. We have used all the 

identified spectral peaks as calculated from the IMU sensor, 

however one can also use every second (or nth ) spectral peak, 

by choosing the bandwidth of the filter bank member to 

capture the overlapping frequencies.   

For the dual purpose of this paper, that is, characterizing in 

detail the motion artifacts and introducing our method as a 

solution to the motion artifact problem, we have focused on 

targeted applications and frequency ranges that most suffer 

from the motion artifacts. We have not done any prior 

processing (except for in the loop cleaning of ocular artifacts 

and signal biases and drifts) to clean the muscle artifacts, 

electrode pops, and other physiological or non-physiological 

artifacts. Rather our implementation is intended to assess the 

level and characteristics of the motion artifacts alone, and 

clean them accordingly. Paired with our ocular artifact 

cleaning method, we have formed a unified framework for 

real-time filtering of two of the major EEG contaminants. We 

have limited our efforts to the 0.3-15 Hz range as the visible 

motion artifact harmonics were below 15	ݖܪ for all walking 

speeds (Figure 5). Also muscle artifacts exists starting from ~20	ݖܪ range, contaminating higher frequencies [25]. To 

represent our method’s performance, we had to limit our 

efforts to a frequency range that ensures a specific 

contamination type, and targeted implementation for the 

motion artifact problem. For implementations that require 

higher ferquency ranges, one could include the frequencies of 

the expected motion artifact harmonic spectral peaks into the 

cascade cleaning loop. We believe that there is no limitation 

for an effective cleaning of motion artifacts for the higher 

frequency ranges.  

Moreover, our proposed method can be generalized to other 

types of artifacts, including fMRI gradiend, fMRI 

Ballistocardiographic, EEG artifacts due to Transcranial 

Alternative Current Stimulation (tACS), to be presented 

elsewhere. 
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