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Abstract—The way people drive vehicles has a great impact on
traffic safety, fuel consumption, and passenger experience. Many
research and commercial efforts today have primarily leveraged
the Inertial Measurement Unit (IMU) to characterize, profile, and
understand how well people drive their vehicles. In this paper,
we observe that such IMU data alone cannot always reveal a
driver’s context and therefore does not provide a comprehensive
understanding of a driver’s actions. We believe that an audio-
visual infrastructure, with cameras and microphones, can be well
leveraged to augment IMU data to reveal driver context and
improve analytics. For instance, such an audio-visual system can
easily discern whether a hard braking incident, as detected by an
accelerometer, is the result of inattentive driving (e.g., a distracted
driver) or evidence of alertness (e.g., a driver avoids a deer).

The focus of this work has been to design a relatively low-
cost audio-visual infrastructure through which it is practical
to gather such context information from various sensors and
to develop a comprehensive understanding of why a particular
driver may have taken different actions. In particular, we build a
system called DrivAid, that collects and analyzes visual and audio
signals in real time with computer vision techniques on a vehicle-
based edge computing platform, to complement the signals from
traditional motion sensors. Driver privacy is preserved since
the audio-visual data is mainly processed locally. We implement
DrivAid on a low-cost embedded computer with GPU and high-
performance deep learning inference support. In total, we have
collected more than 1550 miles of driving data from multiple
vehicles to build and test our system. The evaluation results show
that DrivAid is able to process video streams from 4 cameras at a
rate of 10 frames per second. DrivAid can achieve an average of
90% event detection accuracy and provide reasonable evaluation
feedbacks to users in real time. With the efficient design, for a
single trip, only around 36% of audio-visual data needs to be
analyzed on average.

I. INTRODUCTION

Due to its many implications, monitoring and evaluating
driver’s behavior has always been a topic of great interest.
Many commercial offerings (such as from Cambridge Mobile
Telematics [1]) and research efforts have built systems that
attempt to monitor and evaluate driving behaviors by analyzing
information from On-Board Diagnostic (OBD) ports as well as
motion sensor data (either from smartphones or other custom
devices with Inertial Measurement Units (IMU) sensors). With
the proper analysis, the data from these motion sensors can
provide useful information about various activities within the
drive itself, e.g., hard brakes, sudden lane changes, or fast
acceleration [2]-[4].

While IMU sensors can provide accurate analytics on
what happened during a drive, e.g., hard brakes, sudden lane
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changes, etc., it should be apparent that such data alone does
not answer why the driver acted in that manner. In particular,
data from IMU sensors do not have sufficient contextual
information to indicate whether such an action by the driver
was good or bad. As shown in Figure 1, a hard brake could
be due to driver distraction (a bad driving action), or it could
be to avoid a deer that suddenly jumped to the front of the
vehicle (a good driving action).

Introducing DrivAid: We believe that to better understand
driving behaviors one can effectively leverage audio-visual
cues, using a few vehicle-mounted cameras and microphones,
to complement the existing use of IMU sensors. In particular,
we build a low-cost and portable system called DrivAid that
utilizes audio-visual sensors in the vehicle, processes such data
feed locally and provides useful evaluation feedbacks to the
driver both in real-time and offline.

Analyzing high resolution audio-visual data is often
delegated to high-end GPU-enhanced compute clusters located
in data centers. However, in our scenario, it is likely that
the vehicles equipped with audio-visual sensors can easily
generate a high volume of data rather quickly making the
offload process either slow or expensive, or both. This implies
that the audio-visual analytics should need to be performed
locally and in real-time — if the analytics is any slower,
then the data will continuously get backlogged and ultimately
becoming stale at some point.

To address abovementioned challenges and support efficient
audio-visual analytics, we experimented with in-vehicle GPU-
enhanced computing platforms on which we deployed the
analytics module. Compared to cloud computing, edge
computing provides lower latency, greater responsiveness,
and more efficient use of network bandwidth. 7o avoid
unnecessary resource-intensive image processing tasks and
reduce computing workload of the whole system, we use
smartphone motion sensors to detect different driving events
and only conduct further analysis once an event is detected.
Figure 2 shows the workflow of DrivAid. DrivAid uses data
from IMU and GPS sensors to detect driving events. When
an event is detected, DrivAid fetches video and audio clips
from the buffers to analyze. All the audio and video data
are processed locally in the vehicle to preserve privacy. By
leveraging various sensor data and implementing an analysis
pipeline that leverages deep neural networks, we are able to
offer useful insights of driving events and generate analysis
results in real time. We believe the proposed architecture
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Fig. 1: Possible causes of a hard brake.

of DrivAid can be particularly useful in analyzing driver
behaviors, and could be an essential part of a driver analytics
subsystem.

Usefulness of DrivAid: The concept of using audio-visual
cues in improved situational awareness around vehicles is most
famously used in autonomous vehicle industries (along with a
host of other sensors). However, unlike the high resolution
and very high accuracy needs of autonomous vehicles in
making driving decisions, the DrivAid system requires far
lower resolution and accuracy, resulting in a significantly lower
cost. Today’s autonomous vehicles install high-end sensors
which aggregate a price of ~$100,000, while our system
utilizes infrastructure with an aggregate cost of less than $500.
DrivAid delivers significant benefit for driving analytics at a
lower cost which could benefit a wide range of applications.
First, with proper incentives, insurance companies may ask
their customers to install extra hardware (e.g. camera) on
their vehicle, and evaluate their driving skills with a system
like DrivAid. Such a camera-based system could offer more
information when an accident happens. Second, many fleet
operators, e.g., public transit systems, school buses, freight
trucks, are often interested in understanding the behaviors of
their drivers. DrivAid could identify unsafe habits and help
fleet managers educate their drivers to take appropriate actions.
Third, if certain drivers are known to be “experts,” then the
annotated actions of such drivers could also be used to provide
useful inputs to the design of autonomous vehicles. Moreover,
with adjustments, DrivAid could be used to verify whether the
autonomous vehicle can handle unusual or rare traffic events.

Contribution: The contributions of this work can be
summarized as follow: i) We illustrate how a real-time
low-cost sensing and analyzing system could be built that
leverages audio-visual cues to augment driving behavior
analysis based on IMU sensors in a holistic manner. ii)
We build a lightweight, powerful system that can be easily
deployed in regular vehicles by adapting and integrating
existing algorithms to let them run efficiently in vehicular
settings. iii) We evaluate our system with more than 1500
miles’ drive data. A prototype is deployed on a regular vehicle
and evaluated through test drives of around 50 miles in real
world environments. The evaluation results show that DrivAid
can provide useful and reliable insights.
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Fig. 2: A high level overview of DrivAid.

II. SYSTEM OVERVIEW
A. Design Consideration

In order to get a comprehensive understanding of a driver’s
performance, a major challenge is to acquire enough context
information, e.g. driver’s actions, and the surrounding traffic
information. Current solutions, like XSense [5], V-Sense [2],
can accurately detect various normal and abnormal events
using data collected from motion sensors or OBD port, but
fail to provide surrounding context information. To find the
missing information, DrivAid buffers the most recent 10
seconds audio and video data from microphones and cameras
for analysis. When an event of interest happens, DrivAid
analyzes the data with computer vision techniques to get
driving actions that cannot be detected by IMU and GPS
sensors, including turn signal usage, mirror checking, blind
spot checking, and so on. By combining information from
various sources, DrivAid can provide more informative driver
analytics and offer deeper insights into each detected events.

B. Our Solution

Figure 2 shows a high-level overview of the DrivAid design.
DrivAid uses three types of sensors to collect data: i) IMU
sensors and GPS of a phone, which can be used to detect
driving events; ii) the rear camera of a phone to capture
traffic ahead; iii) two cameras facing the blind spots on both
sides, and one camera facing the driver. Timestamped sensor
data, audio, and video are analyzed on an embedded computer
deployed in the vehicle. We use an Android phone to record
data from the accelerometer, gyroscope, magnetometer and
stream them to the embedded computer for context analysis.
Extracted context information is sent to an activity evaluation
module, through which the detected event will be evaluated
and categorized into different ratings.

IMU-based solutions can accurately detect various types
of driving events with low power consumption. On the other
hand, audio and video data analysis with deep neural networks
are usually computationally expensive. Given the fact that a
driver should have minimal operations when driving straight
or there is not too much surrounding traffic. Hence, it is less
important to monitor the driver during the whole trip, we only
need to focus on how well the driver performs when a driving
activity is detected. Following this principle, DrivAid uses
motion sensors to continuously monitor various driving events,
and analyze corresponding audio and video clips once an event
is detected. Doing this can significantly reduce computing
workload and power consumption of the whole system.
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(a) Turn and lane change detection.

(b) Brake detection.

(c) Turn signal detection.

Fig. 3: The detection of driving activities.

ITI. EVENT DETECTION AND CONTEXT ANALYSIS

The DrivAid system detects three types of driving activities
(turn, hard brake, and lane change) with the sensors on the
smartphone. Once a driving activity is detected, DrivAid starts
extracting context information from the video and audio clips
collected by the IP cameras. Data from different sensors are
not synchronized due to buffering (video and audio) and
different system clocks on those devices. We leverage the
recorded turn signal sounds to synchronize the data from
multiple devices. A pattern matching algorithms is used to
find the time difference between multiple signal traces.

A. Driving Event Detection

1) Coordinate Alignment: Smartphone-based mechanisms
have been developed to detect various driving behaviors [2],
[4], [6]. For instance, the vehicle’s lateral dynamics can be
obtained from the gyroscope sensor in the smartphone when
a phone is aligned with the vehicle. DrivAid uses similar
techniques as mentioned in [2], [5] for coordinate alignment.

2) Turn and Lane Change Detection: We detect turning
and lane change events by using the gyroscope sensor and the
GPS. Since the smartphone’s coordinates are aligned with that
of the car, the z-axis readings of the gyroscope sensor reflect
lateral movements of the vehicle. Figure 3(a) illustrates the
detection of left and right turns as well as a left lane change
using the gyroscope sensor. Turning angles can be estimated
by integrating the angular speed over time. A positive turning
angle refers to a left turn while a negative turning angle
represents a right turn. In addition to the gyroscope data, we
monitor the vehicle heading changes with GPS coordinates.
The vehicle turning events can be extracted by monitoring the
changes in the traveling direction. This method could be a
complementary method for turning detection. In Figure 3(a),
the blue dots represent the traveling directions calculated
from the GPS coordinates. Different angles stand for different
directions. For instance, 0° corresponds to East, 90° indicates
North, 180° denotes West, -90° represents South. From the
figure, we can distinguish the turning events from the changes
of direction angle. Using similar techniques, we can detect
lane change events using both device orientation changes
and direction angle changes. To differentiate between lane
changes and driving on curvy roads, we implemented the same
technique proposed in V-Sense [2].

3) Brake & Stop Detection: We use accelerometer readings
as well as vehicle speed information to detect brakes and stops.
Figure 3(b) illustrates the detection of normal and hard brakes.
Brake events can be extracted from bumps in accelerometer

readings and decreasing in vehicle speed. A hard brake is
defined as any condition when the vehicle decelerates faster
than 7 mph (Miles per hour) per second. Stop events can be
inferred from the vehicle speed.

B. Driver Behavior and Context Analysis

DrivAid analyzes the audio and video signal with signal
processing and computer vision techniques to get driver’s
behaviors and also the context information.

1) Driver Behavior Analysis: The turn signal is a vital
safety feature used to notify other drivers when making turns
or switching lanes. DrivAid detects turn signal usages by
analyzing turn signal sounds. We apply bandpass filters to filter
out human speech as well as other background noises. Then
a pattern matching technique is used to identify turn signals.
Figure 3(c) shows examples of extracted turn signals from a
camera’s built-in microphone.

Drivers use mirrors to get a picture of their surrounding
traffic, and check the blind spots when they need to make
a turn or change the lane. DrivAid detects a driver’s head
pose to infer the driver’s mirror and blind spot checking
behaviors. We classify head poses into six categories, they
are left and right wing mirror check, left and right blind spot
check, rearview mirror check, and front view check. Figure 4d
shows six different head poses of a driver. In Figure 4d (1),
the driver is focusing on the front view. Figure 4d (2) and
(5) show the driver is checking left and right wing mirrors
correspondingly. The driver is checking the rearview mirror
in Figure 4d (4). The driver is making left and right shoulder
checks in Figure 4d (3) and (6). These six scenarios can be
distinguished by checking head movements with respects to
the yaw axis. The estimated rotation angles around the yaw
axis of Figure 4d (1), (2), (4), (5) are —3.34°, —40.20°, 18.21°,
49.70°. As shown in Figure 4d (3) and (6), due to lack of facial
features, it is hard to estimate head pose when the driver is
checking right and left blind spots. To solve this issue, we track
the rotation angle in a duration. If the angle keeps increasing
and then disappears, then the driver is doing a right blind spot
check, and vice versa. To calculate the head pose in 3D space,
we need to know several locations of the face (eyes, nose,
mouth, etc.) in 2D space, and also the 3D coordinates of those
facial features in world coordinates. We assume the camera is
calibrated so we are aware of the intrinsic parameters of the
camera. DrivAid uses DIlib’s facial landmark detector [7] to
extract key points on a face from the captured image. And
the solvePnP function of OpenCV [8] is used to get the head
pose.
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Fig. 4: Extracting context information using vision-based techniques.

TABLE I: Object Detection
[ Vehicle & Person |

Traffic Sign | Speed Limit |

Car Stop Sign 25 mph
Truck Red Traffic Light 30 mph
Pedestrian Yellow Traffic Light 40 mph
Biker Green Traffic Light 60 mph

2) Context Analysis: We analyze the audio and video signal
to get the context of driving events. Object detection is the
backbone of DrivAid and the choice of a right detection
model should balance the run-time efficiency and accuracy.
We choose DetectNet [9] as the object detection model since it
can deal with input image of varying sizes and provide reliable
accuracies. And it can be easily accelerated by the optimized
inference engine—Nvidia TensorRT [10].

Most intersections are controlled by traffic signs, and it is
important to follow the traffic rules at an intersection. DrivAid
can detect a list of objects appeared in video frames captured
in the front view camera, with a special focus on common
objects at intersections. The front view object detection model
could recognize vehicles, pedestrians, traffic lights, stop signs
and speed limits. We train a DetectNet model using two public
traffic image datasets [11], [12]. Figure 4a and 4b show the
detected objects at intersections with traffic lights and stop
signs. We define a collision zone (yellow shaded region shown
in figures) in each front view frame, objects in the collision
zone will be considered as “threats” to the driver. In general,
the area of the collision zone is fixed when the vehicle travels
under a speed threshold. The size will increase if the vehicle
travels faster than the speed threshold, the higher vehicle
speed, the larger the collision zone. The speed threshold and
the size of the collision zone are defined based on empirical
experiments. If there is an object exists in the collision zone,
the driver might not have enough time to avoid hitting that
object. Note that traffic signs, such as stop signs, speed limits,
will always be considered by the evaluation module.

Any time before changing or merging lanes, a driver needs
to check if there is any object in blind spots. DrivAid monitors
three most common types of objects that could appear in blind
spot areas, they are vehicles (e.g. cars, trucks, etc.), pedestrians
and bikers. As shown in Figure 4c, a pedestrian, a truck and
two vehicles are detected in this frame. Similarly, we labeled
a collision region to check whether there is anything in the
blind spot area. The driver can make a safe lane change when
the collision region is empty.

As mentioned in the previous section, DrivAid can detect
four types of speed limits from the front view camera. DrivAid
queries vehicle speeds from GPS every second. Once a speed

limit sign is detected from the video frame, it will be compared
with the speed from GPS. When risky events are detected, we
check whether those events are caused by speeding. Besides,
we can also infer if the driver has the speeding habit.

IV. DRIVING ACTIVITY EVALUATION

By combining the context information with the activity
detection results with IMU and GPS, we can infer whether
the driver is doing right when events occur.

A. Data Fusion

It is always hard to reveal the whole picture on the road
using information acquired from a single sensor. Hence,
DrivAid combines information acquired from multiple sensors
to develop a deeper understanding. For instance, once a turning
or lane change event is detected, the system will check if
the driver follows correct rules before making the turn or
lane change, e.g., using turn signals, checking wing mirror
and blind spot, etc. If the detected turn or lane change is
accompanied by a turn signal and a blind spot check, then
the driver behaved properly. Otherwise, further analysis may
be required to judge the rationality of the driver’s behavior.

B. Comprehensive Driving Activity Evaluation

We implement a decision tree for driving behavior analysis.
In this work, we mainly focus on evaluating three types of
driving activities: turn, lane change, and hard brake. DrivAid
caches the most recent 10 seconds of video and audio
data. Once an activity is detected, DrivAid extracts context
information from the 10-second data clips and use them to
evaluate the driving activity. For each detected activity, we
take different factors into consideration. Figure 5 shows the
workflow of the analysis process. We use a decision tree to
rate the driver’s performance during an activity. Items in the
red dashed boxes are the factors we take into consideration
for each event. These factors serve as the inputs of the
decision tree. The outputs of the decision tree are the classified
categories of each event. For example, an aggressive turn is
confirmed if the driver is speeding when making the turn.
A conservative lane change is determined only when the
maneuver duration is too long while the other operations are
well done. If a hard brake is caused by the sudden appearance
of a pedestrian, it will be classified as a reasonable one. To
build the classification decision tree, we start with listing out
all the possible conditions and cases for each event. Then, find
out all the possible nodes, and choose the most important node
as the starting point. The classification decision tree eventually
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Fig. 5: The structure of decision tree evaluation model.

grows upon the start node. Lastly, we make sure every possible
condition can be covered by the tree.

Here are the details of key nodes for each event. For the
turning event, F, represents the difference between vehicle
speed and speed limit. F; checks the smoothness when making
the turn. F5 and F3 measure the level of the turn. F; and Fj
are binary values showing whether the driver does mirror and
blind spot check, as well as the turn signal usage. For the
hard brake event, F|; describes the smoothness of the brake.
Fy to Fy are all binary values. Fy, F3, and Fy represent the
appearances of traffic signals, the vehicle in front collision
region and pedestrians correspondingly. F5 describes whether
the driver’s attention is distracted or not. For lane change
events, Fjy and F represent the front and rear vehicle distances
in the next lane. F3 describes how long does it take to finish
the lane change. We divide the distance into three categories,
far, moderate, and close. F> and F are binary values which
describe the usage of the turn signal and whether the driver
checks wing mirrors and blind spots.

V. SYSTEM IMPLEMENTATION

Supporting real-time data processing is a big challenge
for DrivAid. To achieve this goal, we carefully choose the
embedded computing platform and use the device-specific
inference engine to execute the trained neural networks. The
core component of DrivAid is the analysis module which
runs in the Nvidia Jetson TX2 embedded computer. Jetson
TX2 is an embedded system-on-module (SoM) with a hex-
core ARMvS8 64-bit CPU complex and a 256-core Pascal
GPU [13]. We install JetPack 3.2 with L4T R28.2 on Jetson
TX2. JetPack 3.2 bundles all the Jetson platform software,
including TensorRT 3.0, CUDA 9.0, GStreamer, OpenCV and
SO on.

We implement DrivAid using GStreamer framework [14]
in C and C++. GStreamer pipelines are used to manage
each individual task, e.g., we create a pipeline for head
pose estimation, and use another pipeline to monitor turn
signal usage. A GStreamer element is a procedure through
which the audio-video stream is processed. A GStreamer
pipeline consists of a chain of elements. Audio-video
streams flow through the pipelines and are processed in

a synchronized manner. To implement the context analysis
module, we develop a GStreamer plugin including two
GStreamer elements for head pose estimation and object
detection. The head pose estimation element is implemented
with Dlib. The object detection element loads a specific pre-
trained DetectNet model and uses the model to recognize
objects in input images. The object detection models are
trained using the Nvidia Deep Learning GPU Training System
(DIGITS) [15]. DIGITS is a wrapper for multiple deep
learning frameworks including Caffe, Torch, and TensorFlow.
We use Caffe to train our detection model, and copy the trained
model snapshot to Jetson for inference applications. Our object
detection models are trained on a Desktop with a Nvidia
GeForce GTX 1060 GPU. Before using the trained model
on Jetson TX2 for inference applications, we need to parse
it and perform device-specific profiling and optimizations for
the target deployment GPU. We use the TensorRT to perform
such kind of optimization tasks.

In total, we have five pipelines to extract useful context
information from audio and visual sensors. Here is a list of
the pipelines we used:

Pipeline 1: Detecting vehicles, people, traffic signs and speed
limits from the front view camera.

Pipeline 2 & 3: Detecting vehicles and people from left and
right blind spot cameras.

Pipeline 4: Estimating head poses from the face camera.
Pipeline 5: Monitoring turn signal usage from audio streams.
Pipeline 1 has two branches running for object detection in
front view. These two branches load the Vehicle & Person
and the Traffic Sign inference models correspondingly.

VI. EVALUATION

We deploy our hardware in vehicles and evaluate DrivAid
under real-world conditions. In this section, we provide the
details of our experiment settings, detection accuracies, and
system resource consumption during the real-time process.

A. Experiment Setup

We deploy the hardware in two vehicles (Honda CRV and
Nissan Rogue) and test DrivAid in real-world environments.
We develop a custom Android application that runs on a
Google Nexus 5X for IMU and GPS sensor data collection
as well as video capturing in our prototype system. The data
sampling rate is set to 10Hz for motion sensors and 1Hz for
GPS. The phone captures video from the rear camera with
a resolution of 640x480 @ 10 frames per second (FPS) 1
Mbps bitrate. The sensor and video data are streamed to the
Jetson TX2 using TCP protocol through USB tethering service.
We have three Logitech C920 video cameras capturing videos
from the left and right blind spots and the driver. The video
stream settings are the same as what we used for capturing
video from the phone camera. Figure 6 shows the hardware
components of DrivAid. Two cameras are mounted near wing
mirrors facing the right and left blind spots. One camera facing
the driver is placed on the dashboard behind the steering
wheel. The phone is mounted on the center dashboard. Since



Fig. 6: The hardware components of DrivAid.

there is only one USB 3.0 port on Jetson TX2, we use a
USB hub to connect cameras and phone. The Jetson TX2
(maximum power consumption is about 7.5 Watt) is powered
by the cigarette lighter. In total, we have collected around
1500 miles of data from multiple drivers'. Part of the data is
collected by our partner [16]. We use the data to train and
validate our models.

To evaluate DrivAid, we randomly select 10% of the
original data. We mainly focus on analyzing the driving
events and driver performance in urban areas since drivers
tend to face more complex scenarios in urban environments
than those on highways. To get the ground truth, we recruit
three volunteers to find out all the events from the recorded
data. For each detected event, we ask volunteers to identify
driver’s actions and surrounding traffic information from the
corresponding video clips. Three volunteers should reach
a consistent decision for each event, driver actions, and
traffic information. For example, if volunteers recognize a
lane change event from sensor data. Then, they will watch
the corresponding video clip (captured from the front view
camera) to double check this event. Further, they figure out
driver’s actions (e.g. mirror check, turn signal usage, etc.)
and surrounding traffic information (e.g. any vehicle in blind
spot area, the distance of the vehicle in front, etc.) from the
video clips taken by all cameras. We created a separate thread
to record the performance data of the hardware, including
CPU/GPU usage and frequencies, as well as memory usage.

B. Driving Event Detection

In order to avoid unnecessary computation tasks, our system
is designed to detect various driving events mainly using
smartphone motion sensors. DrivAid buffers audio and video
streams in the most recent 10 seconds, and only conducts
evaluation tasks once an event is detected.

First, we evaluate the detection accuracy of sensor-based
algorithms. We use smartphone motion sensors to detect four
different driving actions, namely turn, lane change, brake, and
stop. Table II includes the detection accuracies of these four
driving events. Brake and stop are relatively easy to detect
and the precision and recall of these two events are 1 and
around 0.99 correspondingly. The errors are mainly caused by
vibrations of the vehicle (e.g. uneven road surface) and GPS
signal lost (e.g. an underground parking lot). The precision and
recall are more than 0.9 for turn detection, the misjudgments

'We have received IRB approval for this research project.

TABLE II: The accuracy of driving event detection.

[ Event [ #of TPs[ # of FPs'[ # of GTs'[ PR> | RC? |
Turn 113 7 125 0.94 ] 0.90
Lane Change 67 27 82 0.71 | 0.80
Brake 306 0 311 [ 098
Stop 89 0 90 I 09

! The number of ground truth (GT), true and false positives (TP, FP).
2 precision (PR) and Recall (RC).

are mainly caused by unexpected vibrations of the vehicle.
We have a slightly lower precision and recall for lane change
detection. Some drivers tend to make gradual lane changes
and it is relatively hard to capture all of them using sensor
data fusion techniques. Due to these factors, we achieve a
precision of 0.71 for lane change events. We implement pattern
recognition techniques for detecting these events. In order to
make sure every event can be detected successfully, we loosen
the constraints of matching algorithm when conducting the
real-time evaluation. In other words, our system can detect
almost every event, but there exist more false positives. To be
more specific, the total number of detected events is 489, and
around 3825 in seconds (a single event lasts for 8 seconds
on average). The total driving time is around 13650 seconds,
which means DrivAid only needs to analyze around 36% of
the collected data (we extract and evaluate 10-second video-
audio clips for each event).

C. Head Pose Estimation

In this experiment, we recruited 5 volunteers to evaluate
the head pose estimation accuracy. As mentioned in
Section III-B1, we define six states of head poses. Figure 7a (a)
to (e) shows how estimated head poses (measured in degrees)
change over time when the driver does right and left wing
mirror check, right and left blind spot check and rearview
mirror check. When the driver focuses on the front view, the
estimated head pose is between +10°. When the driver turns
his head to the right, the estimated head pose is a positive
number and vice versa. We ask each volunteer to sit in the
vehicle, pretending he or she is driving it. Volunteers are asked
to check mirrors and blind spots based on our instruction every
10 seconds. Each round lasts for five minutes. Table III shows
the estimation accuracy. Our estimation module can achieve a
precision of 0.83 and a recall of 0.77. Most misjudgments
happen on rear mirror check since some people turn their
heads very slightly when checking the rearview mirror. We
use mean average precision (mAP) to measure the accuracy of
object detectors. It is the average of the maximum precisions
at different recall values. Figure 7b reports the mAPs of
Pipeline 4 running at different frame rates. The higher the
frame rate, the better the performance. With a higher frame
rate, the pipeline can capture more head pose changes, thus,
the classification result would be more accurate.

D. Front View & Blind Spot Monitoring

We prepared more than 1500 video frames from recorded
videos in the real-world environment and labeled every object
appears in each frame. First, we test our front view inference
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Fig. 7: Extracting context information using vision-based techniques.

TABLE III: The accuracy of object detection.

[ Event [ #0f TPs [ # of FPs | #0f GTs [ PR | RC |

Vehicle 5075 1904 7555 0.72 | 0.67
Pedestrian 1207 473 1942 0.71 | 0.62
Traffic Light 440 168 748 0.72 | 0.59
Speed Limit 427 138 721 0.75 | 0.59
Stop Sign 370 126 644 0.74 | 0.57
Turn Signal 162 17 173 091 | 0.93
Head Pose 116 23 150 0.83 | 0.77

model by comparing the inference results with ground truth.
Table III reports the precision and recall of each object.
We find the precision values for the vehicle, pedestrian,
traffic light and speed limit are more than 0.7. Based on
our observation, the light condition affects detection accuracy
most. Although we have used a relatively large data set for
training, improvements can be made by expanding image data
set as well as changing the design of CNN. We leave this for
future work. Next, we replay the recorded videos on a desktop,
the video is displayed on a screen monitor. We start the front
view pipeline and let the camera facing the screen. All the
detected objects are plotted on the corresponding image frame
and saved as a PNG file to a local disk. The total video length
is around 20 minutes and we test the pipeline with frame rates
of 10 and 15. The mAPs for front view pipeline (Pipeline 1)
are shown in Figure 7b. We can see that the higher the frame
rate, the higher the mAP value.

We use the same DNN model as front view pipeline for
blind spot monitoring (Pipeline 2). Different from Pipeline
1, Pipeline 2 only uses the Vehicle & Person inference model
since traffic signs and speed limit signs are less likely to appear
in blind spot area. Therefore, we achieve a similar detection
accuracy to Pipeline 1.

E. Audio Monitoring

In this experiment, we extract the audios from recorded
video streams to test the turning signal detection pipeline.
Table III summaries the detection accuracy. Both the precision
and recall are greater than 0.9. Most false positives and
negatives happen on uneven roads since real turn signal pulses
may be buried under vehicle vibration noises. Our detection
algorithm works well in most cases and further improvements
can be done to remove unexpected noises. Figure 7c (left) and
Table IV report the system usage details of the turning signal
detection pipeline (Pipeline 5). Pipeline 5 consumes the least
system resources compared to other pipelines.

F. System Resource Usage

In this experiment, we evaluate the overall performance of
DrivAid. As mentioned in previous sections, data from various

TABLE IV: The memory usages of pipelines.

[ [ Pipe. 1 [ Pipe.2 [ Pipe. 4 | Pipe. 5 |

Usage (Mb) 972 964 138 9
DIOHS | DIOH10 | DI5HS | DISHI10
Usage (Mb) 1102 1103 1105 1108

sources, including phone, three webcams, a microphone, are
pushed to five pipelines. We test DrivAid under different frame
rate settings.

System Usage of a Single Pipeline: System usage of each
pipeline is summarized in Figure 7c (left) and Table IV. We
measure the CPU, GPU, and memory usage when running
each individual pipeline at 10 FPS. The main task of front
view pipeline (Pipe. 1) is to detect various objects, it has a
very low CPU usage (less than 5%) and a relatively high GPU
usage (more than 30%). Table IV shows the memory usage is
around 970 Mb for Pipe. 1. The blind spot monitoring pipeline
(Pipe. 2) consumes less resource than front view monitoring
pipeline since it only has one branch. Our head pose estimation
pipeline mainly uses CPU for computing and GStreamer uses a
little GPU for video preparation. The memory usage is around
100 Mb, which is much lower than object detection pipelines.
Based on our experiment result, a single pipeline can be run
with the highest FPS of 30.

Overall System Usage: System usage details are
summarized in Figure 7c (right) and Table IV. "D10H5” means
the FPSs of object detection pipelines are set to 10 and 5
for head pose pipeline. From the results, we can see that the
memory usages improve a little bit compared to running a
single object detection pipeline. GPU is fully occupied by
DrivAid at 15 FPS and CPU usage is around 20% at 10 FPS.
Based on evaluation results, DrivAid can support a max of 10
FPS for the head pose pipeline and 15 FPS for object detection
pipelines simultaneously. Currently, the head pose pipeline is
running on a single core of the hex-core CPU, which is why
the CPU is not fully occupied. Future improvements can be
done to fully leverage the hex-core CPU.

G. Overall Performance in Real World Environments

We deploy DrivAid on a real vehicle and drive the vehicle
on roads for around 50 miles. We perform normal actions
during test drives, including turns, lane changes, brakes, and
stops. There are two volunteers sitting in the vehicle and
rate every event happens during the drive. The volunteers
should come up with a consistent decision for each event.
Their judgments serve as the ground truth. In general,
DrivAid can achieve an accuracy higher than 90% for context
extraction, and the outputs of decision tree analysis module
are consistent with the ground truth. Table V summarizes
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TABLE V: The accuracy of lane change event.

[ Event [ TPs [ FPs [ GTs [ PR | RC |
Front Vehicle Dist. 25 9 31 0.74 | 0.71
Rear Vehicle Dist. 24 6 27 0.8 0.75

Turning Signal 31 2 34 0.94 | 091
Maneuver Duration 39 2 41 0.95 | 0.92
Head Pose 37 5 39 0.88 | 0.90

the details of lane change event analysis results. Due to
the space limit, we omit the analysis details of turn and
hard brake. Figure 8(a) illustrates how DrivAid develops a
comprehensive understanding of a hard brake. To evaluate this
hard brake, DrivAid extracts useful context information from
video clips collected from front view, face view and blind spot
cameras. For instance, there is enough space between the two
vehicles when the vehicle starts to decelerate (Figure 8(b)),
driver’s attention is distracted before the hard brake happens
(Figure 8(c)), and so on. Using these factors as inputs, the
decision tree classifies the hard brake into “Error” category,
which is consistent with the ground truth.

VII. RELATED WORK

Transportation-related analytics has been an active research
area, such as transfer feasibility at train station [17], human
mobility analytics [18], driving behavior analysis [19]-[21],
and so on. Existing solutions have been proposed to detect and
evaluate various kinds of driving behaviors using embedded
IMU sensors and cameras in common mobile devices, such
as lane-changes, turns, and so on [2], [4]-[6], [22]. Insurance
companies use similar techniques to evaluate driver’s behavior
and offer discounts for drivers’ with good driving habits [23],
[24]. DrivAid aims to be a more holistic platform that provides
real-time situational awareness of a driver and his actions
in the context of the vehicle’s surrounding environment.
Other than evaluating driving behaviors, existing work also
focuses on discovering useful context information in vehicular
settings. PreDrivelD [25] tries to identify drivers using the
minimal dataset from in-vehicle sensors. AVR [26] broadens
the vehicle’s visual horizons by enabling it to share visual
information with other nearby vehicles. Our work could serve
as a light-weight platform that can provide useful context
information, including driver actions and surrounding traffic,
and bring benefits to other research work.

VIII. CONCLUSION

This paper introduces DrivAid, a multi-modal and light-
weight real-time sensing system that leverages audio-visual
cues to augment driving behavior analysis. Our system
overcomes the limitations of existing IMU-based solutions and
can provide fruitful contextual information for driver behavior
profiling. DrivAid leverages mobile sensing and computer
vision techniques to extract various context information
of the driver and the surrounding environments. Further
driving behavior evaluation is conducted using the extracted
information. We build a prototype of DrivAid on a low-cost
embedded computer with deep learning inference accelerator.
The prototype is deployed to a regular vehicle and tested in
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Fig. 8: Detailed analysis of a hard brake.

real-world environments. The evaluation results show that our
system can process data in real time and provide a good
understanding of each driving behavior. We believe such a
real-time sensing and analysis system can enable a wide range
of applications.
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