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The geometric entanglement entropy of a quantum field in the vacuum state is known to be divergent
and, when regularized, to scale as the area of the boundary of the region. Here, we introduce an operational
definition of the entropy of the vacuum restricted to a region; we consider a subalgebra of observables that
has support in the region and a finite resolution. We then define the entropy of a state restricted to this
subalgebra. For Gaussian states, such as the vacuum of a free scalar field, we discuss how this entropy can
be computed. In particular, we show that for a spherical region we recover an area law under a suitable
refinement of the subalgebra.
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I. INTRODUCTION

In quantum field theory, the geometric entanglement
entropy is a quantity associated to a pure state of the field—
typically the vacuum—and a region of space [1–3]. This
quantity has proven to be a fundamental tool for inves-
tigating properties of quantum fields in various settings,
ranging from the study of quantum fields in the presence of
black hole horizons [4], characterizing ground states of
many-body systems [5], identifying new phases of quantum
matter [6], proving conjectures on the running of coupling
constants [7], and exploring the quantum nature of space-
time geometry [8–12].
To define the geometric entanglement entropy in quan-

tum field theory, an ultraviolet cutoff is needed. The origin
of this divergence is the short-distance correlations at
spacelike separation present in all regular states of a
quantum field [13]. A standard procedure involves a
discretization [14]: the field is put on a lattice, and the
state is defined to be, for instance, the ground state of the
lattice Hamiltonian. The entanglement entropy is then
computed before the continuum limit is taken. This is
the method that was originally used to show that the
geometric entanglement entropy of the Minkowski vacuum
state satisfies an area law [1–3,14]. The result is reproduced

also by using other regularization methods such as the brick-
wall cutoff [15], Pauli-Villars regulators [16], conical-defect
methods based on the replica trick [17,18], holographic
methods in which the cutoff is encoded in the distance from
the anti-de Sitter boundary [11], and the use of the mutual
information to introduce a “safety corridor” between the
region and its complement [19].
From an operational point of view, entropy is a measure

of the uncertainty of outcomes of measurements [20].
Adopting this perspective for the geometric entanglement
entropy can be fruitful, especially in view of prospects of
direct measurements of the entanglement entropy in con-
densed matter systems [21]. The algebraic approach to
quantum field theory [22–24] provides an efficient lan-
guage to formalize this notion. In this setting, a subsystem
R is identified by a restricted set of measurements, i.e., a
subalgebra AR ⊂ A of the algebra of observables of the
system. The entanglement entropy SRðjψiÞ is the entropy of
the state jψi restricted to the subalgebra of observables AR
[25]. For systems with a finite number of degrees of
freedom (d.o.f.) and a subalgebra that selects some of its
d.o.f., this definition coincides with the standard procedure
which involves the computation of a reduced density matrix
and the computation of its von Neumann entropy [20]. On
the other hand, in a field theoretic setting with infinitely
many d.o.f., the algebraic setting provides a useful
generalization.
In the algebraic setting, the divergent value of the

geometric entanglement entropy is rooted in the properties
of observables localized in a region of space. For a free
scalar field in a canonical setting, for instance, we can
consider the algebra of observables AR generated by the
field φð  xÞ and its conjugate variable πð  xÞ, with  x ∈ R.
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Clearly, observables in the region R and observables
in its complement R̄ commute; i.e., ½AR;AR̄� ¼ f0g.
However, this fact is not sufficient to guarantee statistical
independence of the two subalgebras, i.e., A ≠ AR ×AR̄.
Technically, one says that AR is of type III [22–24].
A consequence of the lack of statistical independence is
that there are no pure states on AR and no absolute notion
of how to set the zero of the geometric entanglement
entropy. The standard procedures used to make sense of
the geometric entanglement entropy either modify the
theory (for instance, via a discretization) or focus on
quantities that do not directly measure the entropy of
observables in a region (such as the mutual information
with a safety corridor).
In this paper, we adopt an operational approach in which

one identifies what an experiment can measure in principle.
To this effect, we consider a finite-dimensional subalgebra
of observables, defined by smearing the field operator (and
its conjugate momentum) with a finite set of smearing
functions. The resulting finite set of observables is meant to
represent observables one might have experimental access
to, such as the average value of the field (or some
component of it in a mode expansion) in a finite spatial
region. In Sec. II, we provide the general definition of such
a subalgebra. Moreover, we show how, in the case in which
the field is in a Gaussian state, we can explicitly define the
von Neumann entropy of the subalgebra. This entropy
measures the entanglement between the selected observ-
ables and the other modes of the field. Unlike the geometric
entropy, this quantity is well defined and finite by con-
struction. In Sec. III, we provide examples in which the
field is smeared with Gaussian functions in a region of size
R, providing explicit computations of the entanglement
entropy associated to these observables. In Sec. IV, we
introduce and define an observable subalgebra adapted to a
spherical region that simplifies the definition and evalu-
ation of the entanglement entropy in the limit to the full
type III algebra AR. In Sec. V, we explicitly compute the
entropy in this limit, showing that—as expected—it is
divergent and that the leading divergent term reproduces
the familiar area law for the geometric entropy. This
confirms that our definition captures a finite version of
the geometric entropy, which, unlike its standard regula-
rizations, is associated with a concrete set of field observ-
ables and not with an artificially cutoff of the dynamics of
the theory. Section VI contains a summary and discussion
of the main results.

II. GAUSSIAN STATES, SUBALGEBRAS OF
OBSERVABLES, AND ENTANGLEMENT

We consider a free scalar field in Minkowski space. In
the canonical formulation, one starts with a fixed-time slice,
with the field operator ϕð  xÞ and the momentum operator
πð  xÞ satisfying the equal-time canonical commutation
relations:

½ϕð  xÞ;ϕð  yÞ� ¼ 0; ½πð  xÞ; πð  yÞ� ¼ 0;

½ϕð  xÞ; πð  yÞ� ¼ iδð  x −  yÞ: ð2:1Þ

It is useful to pack the canonical couple into a single field
with two components,

χrð  xÞ ¼
�
ϕð  xÞ
πð  xÞ

�
; r ¼ 1; 2: ð2:2Þ

The commutation relations take then the form

½ χrð  xÞ; χsð  yÞ� ¼ iσrsδð  x −  yÞ with σrs ¼
�

0 1

−1 0

�
:

ð2:3Þ

The algebra A of observables of the system consists of
linear combinations of symmetrized products of smeared
fields

χf ¼
Z

frð  xÞ χrð  xÞd  x; ð2:4Þ

where frð  xÞ is a smooth function. The Hilbert space of the
system is the Fock space H built over the Minkowski
vacuum j0i.1 Given a state jψi ∈ H, we can compute the
equal-time n-point correlation functions. In particular, a
Gaussian state has correlation functions

hψ j χrð  xÞjψi ¼ 0 ð2:5Þ

hψ j χrð  xÞ χsð  yÞjψi ¼ Crsð  x;  yÞ þ iσrsδð  x −  yÞ
2

ð2:6Þ

and all higher-n correlation functions determined by their
Wick relations in terms of the two-point correlation
function. The antisymmetric part of the correlation function
is fixed by the commutation relations (2.3). The symmetric
part is given by

Crsð  x;  yÞ

¼ 2

 
hψ jϕð  xÞϕð  yÞjψi hψ j ϕð  xÞπð  yÞþπð  yÞϕð  xÞ

2
jψi

hψ j ϕð  xÞπð  yÞþπð  yÞϕð  xÞ
2

jψi hψ jπð  xÞπð  yÞjψi

!
:

ð2:7Þ

For a Gaussian state, the expectation value of any observ-
able can be expressed in terms of the symmetric correlation
function Crsð  x;  yÞ and the canonical commutator (2.3).

1The annihilation operator að  kÞ which defines the Minkowski
vacuum, að  kÞj0i ¼ 0 for all  k, is a linear combination of the form

(2.4), i.e., að  kÞ ¼ ωð  kÞϕð  kÞ þ iπð  kÞ, where ωð  kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 k2 þm2

p
,

m is the mass of the field, and ϕð  kÞ and πð  kÞ are the Fourier
transforms of the field and momentum operators.
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In concrete situations, an experiment has access only to a
subset of all the possible measurements that can be
performed on the state jψi. This subset of measurements
is described by a subalgebra of observables and defines a
subsystem. We consider the subsystem A identified by the
subalgebra AA ⊂ A generated by 2NA linear observables

ξa ¼
Z

farð  xÞ χrð  xÞd3  x; a ¼ 1;…; 2NA; ð2:8Þ

where far ð  xÞ are a set of smearing functions satisfying the
following constraint: we require that

½ξa; ξb� ¼ iΩab with Ωab a symplectic structure on R2NA:

ð2:9Þ

This requirement results in the condition that the smearing
functions far ð  xÞ define a real 2NA × 2NA antisymmetric
matrix,

Ωab ¼
Z

farð  xÞfbs ð  xÞσrsd  x; ð2:10Þ

which is invertible. When this condition is satisfied, the
couple ðR2NA;ΩabÞ is a symplectic vector space and
the algebra generated by the 2NA linear observables ξa is
the Weyl algebra AA ¼ Weylð2NA;CÞ. As a result, the
subsystemA is an ordinary quantummechanical systemwith
the Hilbert spaceHA of a finite number NA of bosonic d.o.f.
The n-point correlation functions for the subsystem can

be computed directly from Eqs. (2.5) and (2.6). In par-
ticular, the expectation value of the linear observable ξa

vanishes, hψ jξajψi ¼ 0, and the correlations functions of
the subsystem are

hψ jξaξbjψi ¼ Gab þ iΩab

2
; ð2:11Þ

where

Gab ¼
Z

far ð  xÞfbsð  yÞCrsð  x;  yÞd  xd  y ð2:12Þ

is a real 2NA × 2NA symmetric matrix. From the definition
(2.11), it is immediate to prove that the matrices Gab and
Ωab have the properties

Gt ¼ G; Ωt ¼ −Ω; ð2:13Þ

G > 0; ∃Ω−1; ð2:14Þ

Gþ iΩ ≥ 0; ð2:15Þ

where we have adopted a matrix index-free notation for
Gab and Ωab and defined Gt as the matrix transpose of G.

The existence of the inverseΩ−1 follows from the condition
(2.9). To prove that G > 0, we can consider the expectation
value of the positive Hermitian operator O ¼ vavbξaξb

with va ∈ R2NA . We have 0 ≤ hψ jOjψi ¼ 1
2
Gabvavb for all

va, which implies that Gab is positive definite. Similarly,
for the condition (2.15), we can consider the positive
Hermitian operator O ¼ z�azbξaξb with za ∈ R2NA . We
have 0 ≤ hψ jOjψi ¼ 1

2
ðGab þ iΩabÞz�azb for all za, which

implies that the Hermitian matrix Gþ iΩ has non-negative
eigenvalues. It is also useful to define the 2NA × 2NA real
matrix

JA ¼ GΩ−1: ð2:16Þ

As a consequence of Eq. (2.15), the matrix iJA has real
eigenvalues, which appear in pairs of opposite sign and
magnitude equal to or larger than 1,

EigðiJAÞ ¼�νi; with νi ≥ 1 and i¼ 1;…;NA: ð2:17Þ

The matrix JA is a restricted complex structure; it is the
complex structure of the Gaussian state jψi restricted to the
subalgebraAA. Here, we use the linear symplectic methods
developed for Gaussian states in Refs. [26–30].
For a Gaussian state jψi of the quantum field, the

matricesGab andΩab describe completely all the properties
of the subsystem identified by the observables in the
subalgebra AA generated by the linear operators ξa. We
can in fact introduce a mixed density matrix ρ defined on
the Hilbert space HA of a bosonic system with NA d.o.f.,

ρ ¼ e−qabξ
aξb

Z
with qab ¼ ðiΩ−1arcothðiJAÞÞab; ð2:18Þ

where Z is such that TrðρÞ ¼ 1. The real symmetric
2NA × 2NA matrix qab is positive definite as a consequence
of Eq. (2.17). For all observables OA ∈ AA ⊂ A, we have

hψ jOAjψi ¼ TrðOAρÞ: ð2:19Þ

In particular, TrðξaρÞ ¼ 0 and TrðξaξbρÞ ¼ 1
2
ðGab þ iΩabÞ,

therefore reproducing the correlation function (2.11).
Defining the orthonormal basis jn1;…; nNA

i of HA, which
diagonalizes the quadratic operator qabξaξb appearing in the
exponent of Eq. (2.18), we find that the densitymatrix can be
expressed as

ρ¼
X∞
ni¼0

�YNA

i¼1

2

νiþ1

�
νi−1

νiþ1

�
ni
�
jn1;…;nNA

ihn1;…;nNA
j;

ð2:20Þ

where νi are the positive eigenvalues of iJA defined
in Eq. (2.17).
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The density matrix ρ provides a representation of the
restriction of the Gaussian state jψi to the subalgebra of
observables AA. While the state jψi is pure and therefore
has zero entropy, its restriction to the subalgebraAA results
in a von Neumann entropy

SAðjψiÞ ¼ −Trðρ log ρÞ ¼
XNA

i¼1

sðνiÞ; ð2:21Þ

where sðνÞ is the function

sðνÞ ¼ νþ 1

2
log

νþ 1

2
−
ν − 1

2
log

ν − 1

2
: ð2:22Þ

The origin of the entropy SAðjψiÞ is the entanglement
between the restriction of the state jψi to the subalgebraAA
and its complement.
The algebra of observables describing the rest of the

system is given by the set of all operators that commute
with all operators inAA, also known as the commutantA0

A,

A0
A ≡ fO ∈ Aj½OA;O� ¼ 0 for all OA ∈ AAg: ð2:23Þ

In our case, the subalgebra AA has a trivial center, i.e.,
AA ∩ A0

A ¼ 1. As a result, AA is a factor, the complement
of the subsystem A is the subsystem B defined by the
subalgebra AB ¼ A0

A, and we have the decomposition
A ¼ AA ⊗ AB. Moreover, as the subalgebra AA ¼
Weylð2NA;CÞ is finitely generated, it is of type I, and
the Hilbert space of the system decomposes in the tensor
product H ¼ HA ⊗ HB [22]. Therefore, the entropy of the
subalgebra AA is the entanglement entropy between the
subsystems with Hilbert space HA and HB.

III. VACUUM ENTROPY OF OBSERVABLES
WITH GAUSSIAN SMEARING

Let us consider the vacuum state j0i of a free scalar field
in four-dimensional (4D) Minkowski space. The symmetric
part of the equal-time correlation function is given by

Crsð  x;  yÞ ¼ 2

� h0jϕð  xÞϕð  yÞj0i 0

0 h0jπð  xÞπð  yÞj0i

�

¼
Z

d3  k
ð2πÞ3

�
ωð  kÞ−1 0

0 ωð  kÞ

�
e−i  k·ð  x−  yÞ; ð3:1Þ

where ωð  kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 k2 þm2

p
and m is the mass of the field.

We consider a subalgebra of observables generated by a
Gaussian smearing of the field ϕð  xÞ and the momentum
πð  xÞ over a region of size R,

ΦR ¼ 1

ð2πÞ3=2R3

Z
d3xe−r

2=2R2

ϕð  xÞ; ð3:2Þ

ΠR ¼ 1

ð2πÞ3=2R3

Z
d3xe−r

2=2R2

πð  xÞ: ð3:3Þ

In the limit R → 0, the observables ΦR and ΠR reproduce
the distributional operators ϕð  xÞ and πð  xÞ evaluated at the
 x ¼  0. For finite R, they can be interpreted as what a
detector with a finite resolution R measures. The commu-
tator of ΦR and ΠR is

½ΦR;ΠR� ¼ i
1

8π3=2R3
: ð3:4Þ

Defining the dimensionless variable μ ¼ mR, the vacuum
variance of the smeared observables is

h0jΦRΦRj0i ¼
μ2eμ

2=2

2
ðK1ðμ2=2Þ − K0ðμ2=2ÞÞ

1

ð2πÞ2R2

⟶
μ→0 1

ð2πÞ2R2
ð3:5Þ

h0jΠRΠRj0i ¼
μ2eμ

2=2

2
K1ðμ2=2Þ

1

ð2πÞ2R4
⟶
μ→0 1

ð2πÞ2R4

ð3:6Þ

h0jΦRΠR þ ΠRΦRj0i ¼ 0: ð3:7Þ

In the language of the previous section, far ð  xÞ ¼
1

ð2πÞ3=2R3 e−r
2=2R2

δar . The components of the correlation

matrix Gab are given by Eqs. (3.5)–(3.7), while the non-
trivial components of the symplectic form matrix Ωab are
given by � 1

i ½ΦR;ΠR� as given in (3.4). The restricted
complex structure JR associated to our subalgebra is then
computed by (2.16) to be

JR ¼ GΩ−1

¼ 1

4π3=2R3

�
0 −h0jΠRΠRj0i

h0jΦRΦRj0 0i

�
: ð3:8Þ

The positive eigenvalue of iJR is νðμÞ ¼
2ðh0jΦRΦRj0ih0jΠRΠRj0iÞ1=2. The entropy SðμÞ associ-
ated to this subalgebra is then given by (2.22).
This entropy provides a measure of the entanglement

between a single Gaussian-smeared d.o.f. (for the field and
its momentum) on a region of size R, as defined by (3.2)
and (3.3), and the d.o.f. complementary to it. The entropy
as a function of μ is plotted in Fig. 1. The large μ limit
corresponds to the smeared measurements taking place
over a region much larger than the Compton wavelength
m−1; hence, no information about fluctuations is registered,
and the entropy vanishes. Accordingly, νðμÞ → 1 at large μ,
indicating that the uncertainty relation is saturated.
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In the massless limit of the correlators, exhibited in (3.5)
and (3.6), the positive eigenvalue of the restricted complex
structure iJR takes the value ν0 ¼ 2π−1=2. The entropy for
the Gaussian-smeared observables of the massless scalar
field takes the value S0 ≈ 0.24, seen as the μ → 0 limit in
Fig. 1. This entropy is independent of the size R of the
region, reflecting the conformal invariance of the massless
theory.

A. Entropy of a larger subalgebra

We consider now an extension of the previous subalge-
bra to include more information about the field’s d.o.f. in a
region of size R. Focusing on the massless field for

simplicity, we consider the subalgebra generated by n
pairs of smeared field and momentum observables
ðΦk1

R ;Π
k1
R ;Φ

k2
R ;Π

k2
R ; � � �Φkn

R ;Π
kn
R Þ. The new set of observ-

ables is defined by

Φk
R ¼ ek

2R2=2

ð2πÞ3=2R3

Z
d3xe−r

2=2R2 sinðkrÞ
kr

ϕð  xÞ: ð3:9Þ

Πk
R ¼ ek

2R2=2

ð2πÞ3=2R3

Z
d3xe−r

2=2R2 sinðkrÞ
kr

πð  xÞ: ð3:10Þ

The observable Φk
R corresponds to the Gaussian smear-

ing of the field over a region of size R that registers
spherically symmetric fluctuations at scale k, the factor
sinðkrÞ=kr being the zeroth-order component j0ðkrÞ
appearing in the field expansion of the spherical basis
Ylmðθ;φÞjlðkrÞ. The prefactors are adjusted to ensure the
smearings are normalized. The nontrivial components of
the symplectic form for this subalgebra read

Ωkk ¼ −i½Φk
R;Πk

R� ¼
ek

2R2=2 sinhðk2R2=2Þ
4π3=2k2R5

; ð3:11Þ

Ωkk0 ¼ −i½Φk
R;Πk0

R �

¼ ek
2R2=2ek

02R2=2ðe−1
4
ðk−k0Þ2R2 − e−

1
4
ðkþk0Þ2R2Þ

8π3=2k2R5
: ð3:12Þ

The correlators in the vacuum state read

hΦk
RΦk

Ri ¼
2k3R3

2F2ð1; 1; 2; 52 ; k2R2Þ þ 3
ffiffiffi
π

p
ek

2R2

erfðkRÞ − 6kR

48π2k3R5
ð3:13Þ

hΠk
RΠk

Ri ¼
ek

2R2

erfðkRÞ
16π3=2kR5

ð3:14Þ

hΦk
RΦk0

Ri ¼ −
1

96π2kk0R5

�
R3

�
ðk − k0Þ22F2

�
1; 1; 2;

5

2
;
1

4
ðk − k0Þ2R2

�
− ðkþ k0Þ22F2

�
1; 1; 2;

5

2
;
1

4
ðkþ k0Þ2R2

��

þ 12
ffiffiffi
π

p
e
1
4
R2ðk−k0Þ2

ðk − k0Þðkþ k0Þ
�
ðkþ k0Þerf

�
1

2
Rðk − k0Þ

�
− ðk − k0Þekk0R2

erf

�
1

2
Rðkþ k0Þ

���
ð3:15Þ

hΠk
RΠk0

Ri ¼
ðkþ k0Þe1

4
R2ðkþk0Þ2erfð1

2
Rðkþ k0ÞÞ − ðk − k0Þe1

4
R2ðk−k0Þ2erfð1

2
Rðk − k0ÞÞ

32π3=2kk0R5
: ð3:16Þ

Using these formulas, we can compute the entropy
associated to this subalgebra for any truncation n and any
choice of the frequencies kj. For an example, we compute the
entropy for then ¼ 2 case inwhich k1 ¼ 0, k2 ¼ k. This case
corresponds to enlarging the subalgebra of the previous
subsection, the one generated by (3.2) and (3.3) (for a

massless field), and adding to the generators the observables
)3.9(,)3.10 ). This entropy S0k can be compared to the already

computed entropyS0 of the subalgebra generatedby (3.2) and
(3.3) alone and to the entropy Sk of the subalgebra generated
by (3.9) and (3.10) alone. The three results are plotted inFig. 2
as a function of the dimensionless parameter κ ¼ kR.

0.5 1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

0.20

0.25

FIG. 1. Entropy of the ðΦR;ΠRÞ subalgebra for a massive field
in the Minkowski vacuum, as a function of μ ¼ mR.
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Figure 2 shows that the entropy of the combined
subsystem is smaller than the sum of the individual
entropies. In addition, we see that the entropy Sk vanishes
for large κ. In this limit, the high-frequency modes captured
by the subalgebra cannot distinguish between the vacuum
state for the field in the whole space-time (in which
different modes are unentangled) and the vacuum restricted
to the region of size R ≫ k−1.
We can enlarge the subalgebra more and more, including

as well smearing functions with nontrivial angular depend-
ence, to capture all the d.o.f. in a region of size R. In such a
limit, one can expect that the entropy of the subalgebra
approaches the geometric entropy and scales with the area
of the region. However, there are two issues involved in
taking such a limit:

(i) The first is the practical necessity of finding a suitable
set of observables in which the off-diagonal commu-
tators and correlators (e.g., quantities like ½Φk

R;Πk0
R � or

hΦk
RΦk0

Ri above) vanish. This is because the computa-
tional complexity of diagonalizing a 2n × 2n matrix
in the n → ∞ limit becomes prohibitive.

(ii) The second issue is that we would like to find
observables defined by smearing functions that are
strictly zero outside of our R-sized region, rather
than a smearing function with Gaussian tails outside
the region; moreover, the smearing has to be smooth
enough so that all correlation functions are well
defined.

In the next section, we introduce a basis of observables
satisfying these desiderata and use it to rederive within our
framework the area law for the entropy of a spherical region
in Minkowski space.

IV. SMEARING FUNCTIONS AND OBSERVABLES
WITH COMPACT SUPPORT IN A SPHERE

In this section, we introduce a set of smeared observables
with compact support in a sphere. In the appropriate limit,

this set is suitable for recovering the area law scaling of the
geometric entropy associated with a spherical region in the
Minkowski vacuum of a massless scalar field. First of all,
we explain how the symmetry properties of the vacuum
select a particular complete basis of field fluctuations inside
the sphere as the modes that diagonalize the entanglement
Hamiltonian and make manifest its thermality. Then, we
introduce a discrete set of modes (and the smeared field
observables associated to them). These modes approach the
thermal modes in a suitable limit. In the next section, we
then compute the entanglement entropy associated to our
discrete set of smeared observables and show that its
scaling recovers the area law as a complete spherical basis
is approached.

A. Thermal vacuum and conformal transformations

Besides being Poincaré invariant, Minkowski space is
also invariant under a conformal transformation, which
preserves the boundary of a spacelike sphere and its causal
development [31].
The causal domain of a sphere of radius R is the space-

time region rþ jtj ≤ R. In this region, the Minkowski line
element can be written as

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ ðsin θÞ2dϕ2Þ ð4:1Þ

¼Ωðλ;σÞ2ð−dλ2þdσ2þðsinhσÞ2ðdθ2þðsinθÞ2dϕ2ÞÞ;
ð4:2Þ

where −∞ < λ < ∞, 0 ≤ σ < ∞ and the conformal factor
Ωðλ; σÞ is given by

Ωðλ; σÞ ¼ R
cosh λþ cosh σ

: ð4:3Þ

The coordinate transformation from spherical coordinates
ðt; r; θ;ϕÞ to coordinates ðλ; σ; θ;ϕÞ is given by

tðλ;σÞ ¼Ωðλ;σÞ sinhλ; rðλ;σÞ ¼Ωðλ;σÞsinhσ: ð4:4Þ

The expression (4.2) of the Minkowski metric ημν makes its
conformal symmetries manifest, in particular, its conformal
invariance under shifts of the timelike coordinate λ.
It is well known that the restriction of the massless

Minkowski vacuum state to the interior of a sphere results
in a thermal state [31]. The restriction of the vacuum is
thermal due to the 2π periodicity of the metric (and,
consequently, the vacuum two-point function) in the
imaginary extension of the coordinate λ. This is analogous
to the thermality of the restriction of the vacuum to half-
space, which is related to the periodicity of the Rindler time
coordinate η (the time along orbits of the boost Killing
vector). In the Rindler case, the basis of modes that expand
the field in the half-space that diagonalizes the thermal
vacuum is positive frequency in η. In a similar way, the

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

FIG. 2. Entropy of the S0k subsystem (solid line), the S0
subsystem (dashed line), and the Sk subsystem (dotted line),
as a function of κ ¼ kR.
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modes that diagonalize the vacuum restricted to the sphere
and make its thermal nature manifest are positive frequency
in λ. We proceed now to find these modes.

B. Orthonormal functions with
compact support in a sphere

Let us consider a spherical region of radius R and
adopt spherical coordinates ðr; θ;ϕÞ. We consider the
transformation

rðσÞ ¼ R tanh
σ

2
ð4:5Þ

and its inverse σ ¼ σðrÞ, which maps r ∈ ð0; RÞ in the
semi-infinite domain σ ∈ ð0;∞Þ; this is the same con-
formal coordinate introduced above in (4.4), specialized
to λ ¼ 0. We consider next the Laplacian Δh on the
constant curvature space with line element dh2 ¼
dσ2 þ ðsinh σÞ2ðdθ2 þ ðsin θÞ2dϕ2Þ and define the ortho-
normal functions fκlmðr; θ;ϕÞ as solutions of the differ-
ential equation

−ΔhfκlmðrðσÞ; θ;ϕÞ ¼ ðκ2 þ 1ÞfκlmðrðσÞ; θ;ϕÞ: ð4:6Þ

These functions have the form

fκlmðr; θ;ϕÞ ¼ RκlðrÞYlmðθ;ϕÞ; ð4:7Þ

where Ylmðθ;ϕÞ are spherical harmonics and the radial
functions RκlðrÞ have compact support in r ∈ ð0; RÞ. The
space-time modes e−iκλfκlmðr; θ;ϕÞ (suitably normalized)
provide a complete orthonormal basis for the field in the
sphere’s causal domain and are the modes that diagonalize
the entanglement Hamiltonian restricted to the sphere,
analogously to the Rindler modes for half-space.
Note that the index κ is continuous, while we are looking

for a discrete set to define a discrete subalgebra of field
observables associated to a range of modes and compute its
entropy. We therefore seek a modification of these modes
that defines a discrete set such that the continuum limit can
be approached in a controlled way.
We define the discrete set of orthonormal functions

fnlmðr; θ;ϕÞ as solutions of the differential equation

ð−Δh þ c20θðσ − σ0ÞÞfnlmðrðσÞ; θ;ϕÞ
¼ ðκ2 þ 1ÞfnlmðrðσÞ; θ;ϕÞ; ð4:8Þ

where the potential step c20θðσ − σ0Þ with c0 > 0 defines a
spherical region of radius σ0 and results in a discrete set of
eigenvalues κnl for κ ≤ c0. The functions fnlmðr; θ;ϕÞ are
orthonormal with respect to a spherically symmetric
integration measure qðrÞ3r2dr sin θdθdϕ, i.e.,

Z
R

0

fnlmðr; θ;ϕÞf�nlmðr; θ;ϕÞqðrÞ3r2dr sin θdθdϕ

¼ δnn0δll0δmm0 ; ð4:9Þ

with the choice qðrðσÞÞ ¼ 2
R ðcosh σ

2
Þ2. This makes the

integration measure reduce to

qðrðσÞÞ3r2dr sinθdθdϕ¼ðsinhσÞ2dσ sinθdθdϕ; ð4:10Þ

which is the invariant measure on a constant-curvature
space. Note that for large σ0 we can define a small distance
ε from the boundary of the sphere,

ε ¼ R − rðσ0Þ ≈ 2Re−σ0 : ð4:11Þ

As the small distance ε is taken close to zero, the potential
step in the differential equation defining the modes is
removed (going to infinity in the hyperbolic conformal
space), and the continuum of exact solutions to the field
equation is recovered.
The ε parameter plays the role of an effective UV cutoff

in the computation of the entropy. Its role in the compu-
tation is similar to the cutoff in the brick wall regularization
of black hole entropy [15]. However, it is conceptually
different in two ways. First, due to the finiteness of the
potential barrier, it selects modes that vanish smoothly at
the boundary of the sphere rather than sharply at a “wall”
close to the boundary. Second, it will be used to define a
discrete set of observables (defined by smearing the field
with the discrete set of modified mode solutions) without
modifying in any way the theory or the quantum state, as
the usual forms of entropy regularization do. This point is
expanded upon in Sec. V.

C. Radial profile of the smearing functions

In order to determine the radial part RnlðrÞ of the
smearing function, we consider the change of variables

RnlðrðσÞÞ ¼
ψnlðσÞ
sinh σ

; ð4:12Þ

which allows us to write the orthonormality condition
(4.9) as Z

∞

0

ψnlðσÞψ�
n0l0 ðσÞdσ ¼ δnn0δll0 ð4:13Þ

and the differential equation (4.8) as

−ψ 00
nlðσÞ þ VlðσÞψnlðσÞ ¼ κ2ψnlðσÞ; ð4:14Þ

with the effective radial potential
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VlðσÞ ¼
lðlþ 1Þ
ðsinh σÞ2 þ c20θðσ − σ0Þ: ð4:15Þ

We have therefore reduced the problem to the one
of computing eigenfunctions of a time-independent
Schrödinger equation. The classical motion in the potential
VlðσÞ is bounded for κ ≤ c0. As a result, the eigenvalues κ
are quantized; i.e., they assume only a discrete set of values,

κ ¼ κnl with n ¼ 0; 1; 2;…; N: ð4:16Þ

We focus on this discrete part of the spectrum. The half-line
σ ∈ ð0;∞Þ can be divided in three regions:

(I) A classically forbidden region σ ∈ ð0; σminÞ with

σmin ¼ arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

κ2

r
; ð4:17Þ

where ψðσÞ is exponentially suppressed.
(II) A classically allowed region σ ∈ ðσmin; σ0Þ where

the function oscillates and can be approximated by a
WKB (Wentzel–Kramers–Brillouin) wave function,

ψnlðσÞ ¼WKBN nlsin

�Z
σ

σmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2nl−

lðlþ1Þ
ðsinhσ0Þ2

s
dσ0þΘnl

�
;

ð4:18Þ

whereN nl is a normalization and Θnl is fixed by the
matching condition with region I.

(III) A classically forbidden region σ ∈ ðσ0;∞Þ where
the wave function decays exponentially.

The matching conditions between these three regions result
in the Bohr-Sommerfeld quantization condition

�
nþ 1

2

�
π ¼WKB

Z
σ0

σmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −

lðlþ 1Þ
ðsinh σÞ2

s
dσ; ð4:19Þ

which is to be understood as an equation for the level
κ ¼ κnl. The discrete level with the largest n, denoted N

here, is given by N ¼WKB bnðc0Þc, where the function nðκÞ is
defined via Eq. (4.19).2

In Fig. 3, we exhibit the potential VðσÞ and the plot of
one particular eigenfunction ψ21ðσÞ, together with the
associated radial function R21ðrÞ ¼ ψ21ðσðrÞÞ=sinhðσðrÞÞ.
The radial functions RnlðrÞ show exponential falloff in

the range r ∈ ðR − ε; RÞ.

D. Density of levels

In the limit σ0 → ∞with c0 fixed, the number of discrete
levels κnl in the interval ½κ; κ þ δκ� diverges, and we can
define a density of levels μlðκÞ at fixed l. Using the WKB
approximation (4.19) for the function nðκÞ, we find

μlðκÞ≡dn
dκ

¼WKB 1

2π
log

�ðcoshσ0þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinhσ0Þ2− lðlþ1Þ=κ2

p
Þ2

1þ lðlþ1Þ=κ2
�
:

ð4:20Þ

The density of levels is plotted as a function of l for fixed
σ0 and κ in Fig. 4. Note that the density of levels is defined
only for l ≤ lmax, where

lmaxðlmax þ 1Þ ¼ κ2ðsinh σ0Þ2; ð4:21Þ

and vanishes at lmax: μlmax
ðκÞ ¼ 0.

The density of levels allows us to compute sums over n
as integrals over κ in the limit σ0 → ∞,

1 2 3 4 5 6
0.2 0.4 0.6 0.8 1.0

–0.2

0.2

0.4

0.6

FIG. 3. Left: Potential VðσÞ (blue) and eigenfunction ψ21ðσÞ (red). Right: Radial function R21ðrÞ.

2The integral in Eq. (4.19) can be computed explicitly,

nðκÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
π

arccot

�
κsechðσ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsinh σ0Þ2 − lðlþ 1Þ=κ2
q �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
2

þ κ

2π
log

�ðcosh σ0 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinhσ0Þ2 − lðlþ 1Þ=κ2

p
Þ2

1þ lðlþ 1Þ=κ2
�
:
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X
n

X
l

Xl
m¼−l

→
X
l

Xl
m¼−l

Z
dκμlðκÞ; ð4:22Þ

δnn0δll0δmm0 →
1

μlðκÞ
δðκ − κ0Þδll0δmm0 : ð4:23Þ

It is also useful to note that the discrete basis of eigen-
functions ψnlðσÞ goes to the continuous basis of radial
solutions of (4.14) in an infinite domain, given by the
Dolginov-Toptygin functions3

ψnlðσÞ
sinh σ

→
1ffiffiffiffiffiffiffiffiffiffi
μlðκÞ

p Dð−Þ
κl ðσÞ; ð4:25Þ

which satisfy Eq. (4.8) with σ0 → ∞ and are Delta-function
orthonormal,

Z
∞

0

Dð−Þ
κl ðσÞDð−Þ

κl ðσÞðsinh σÞ2dσ ¼ δðκ − κ0Þδll0 : ð4:26Þ

Up to a normalization factor, the Dolginov-Toptygin
functions are precisely the continuum radial solutions
RκlðrðσÞÞ described in Sec. IV B.
We note that the limit in which the density of levels

diverges, σ0 → ∞, corresponds to a vanishing size of the
region (R − ε, R). The total number of levels in the
infinitesimal interval ½κ; κ þ δκ� is given by

Xlmax

l¼0

ð2lþ 1ÞμlðκÞδκ ¼WKB sinhð2σ0Þ − 2σ0
2π

κ2δκ ≈
2R2

πε2
κ2δκ;

ð4:27Þ

which diverges as ðR=εÞ2 in the limit ε → 0.

E. Smeared observables in a spherical region

Having set up the necessary preliminary tools, we now
define a set of smeared observables with support in a sphere
of radius R as

Φnlm ¼
Z

R

0

ϕðr;θ;ϕÞRnlðrÞYlmðθ;ϕÞqðrÞ2r2dr sinθdθdϕ;

ð4:28Þ

Πnlm ¼
Z

R

0

πðr; θ;ϕÞRnlðrÞYlmðθ;ϕÞqðrÞr2dr sin θ dθdϕ:

ð4:29Þ

The smearing functions for the field ϕðr; θ;ϕÞ and the
momentum πðr; θ;ϕÞ vanish at the boundary of the sphere
and fall off to zero exponentially in the region
r ∈ ðR − ε; RÞ. The observables satisfy canonical commu-
tation relations

½Φnlm;Πn0l0m0 � ¼ iδnn0δll0δm;−m0 ; ð4:30Þ

which follow from the orthonormality of the smearing
functions with respect to the integration measure qðrÞ3,
specificallyZ

R

0

RnlðrÞRn0lðrÞqðrÞ3r2dr¼
Z

∞

0

ψnlðσÞψn0lðσÞdσ¼δnn0 :

ð4:31Þ

The observables Φnlm and Πnlm are defined for
n ¼ 1;…; N, with N → ∞ as ε → 0.
We have shown that these observables satisfy the second

desideratum (ii) listed at the end of Sec. III; they strictly
vanishing outside the spherical region, and they are smooth
enough to guarantee that the correlation functions are finite.
As for the first desideratum (i), the off-diagonal commu-
tators between these observables vanish by construction.
The off-diagonal correlation functions, while not identi-
cally zero when evaluated in the Minkowski vacuum, do
vanish in the limit in which the continuum basis is
recovered. As explained in Sec. IVA, this is a manifestation
of the diagonal and thermal nature of the entanglement
Hamiltonian in the continuum basis approached by the
discrete modes in the limit ε → 0. In this limit, the
correlation functions of the observables Φnlm and Πnlm
take the simple form

20 40 60 80 100

0.5

1.0

1.5

20 40 60 80 100

0.5

1.0

1.5

FIG. 4. Level density at fixed κ and σ0, as a function of l, for
four different values of κ.

3TheDolginov-Toptygin functions (see, for example, Ref. [32])
are given by the expression

Dð−Þ
κl ðσÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=πQ

l
m¼0ðκ2 þm2Þ

s
ðsinh σÞl

�
−1

sinh σ
d
dσ

�
lþ1

cosðκσÞ:

ð4:24Þ
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h0jΦnlmΦn0l0m0 j0i ≈ 1

4πκnl tanhðπκnlÞ
δnn0δll0δm;−m0 ; ð4:32Þ

h0jΠnlmΠn0l0m0 j0i ≈ κnl
4π tanhðπκnlÞ

δnn0δll0δm;−m0 ; ð4:33Þ

h0jΦnlmΠn0l0m0 þ Πn0l0m0Φnlmj0i ¼ 0: ð4:34Þ

Mode by mode, these are the correlation functions of a
thermal harmonic oscillator of frequency κnl and temper-
ature 1=2π. The ≈ notation implies equality up to correc-
tions that vanish in the limit ε → 0

V. ENTANGLEMENT ENTROPY OF
OBSERVABLES IN A SPHERICAL REGION

With all the pieces in place, the computation of the
entanglement entropy of a subalgebra of smeared field
observables is a simple matter. The diagonal commutators
(4.30) and the diagonal correlators (4.32)–(4.34) imply that
the restricted complex structure iJA for the subalgebra of
observables has eigenvalues

νnl ¼ ðtanhðπκnlÞÞ−2: ð5:1Þ

The entanglement entropy of modes in the range κnl ∈
½κmin; κmax� is

SAðj0iÞ ¼
X
nlm

sðκnlÞ ¼
X∞
l¼0

ð2lþ 1Þ
Xnmax

n¼nmin

sðκnlÞ; ð5:2Þ

where

sðκÞ ¼ − ln ð1 − e−2πκÞ þ 2πκ
e−2πκ

1 − e−2πκ
ð5:3Þ

is the result of (2.22) applied to (5.1). This result coincides
with the entropy of an oscillator at temperature T ¼ 2π.

In the ε → 0 limit, we can evaluate the entropy using our
results on the density of levels obtained in Sec. IV D. Using
(4.22) and (4.27), we get

SAðj0iÞ ≈
X∞
l¼0

ð2lþ 1Þ
Z

∞

0

sðκÞμlðκÞdκ

≈
Z

κmax

κmin

sðκÞ
�
2R2

πε2
κ2
�
dκ ð5:4Þ

¼ cðκmin; κmaxÞ
AreaðRÞ

ε2
; ð5:5Þ

where AreaðRÞ ¼ 4πR2 and

cðκmin; κmaxÞ ¼
1

4π

Z
κmax

κmin

sðκÞ
�
2R2

πε2
κ2
�
dκ: ð5:6Þ

The entropy of a subalgebra of observables capturing any
finite range of radial modes (and all angular d.o.f. in that
range) is therefore proportional to the area of the sphere
divided by the cutoff parameter ε2. (Recall that the radial
frequencies κ are dimensionless and the dimensionful
parameter ε guarantees that the smearing functions vanish
smoothly at the boundary of the sphere). In the limit
κmin → 0, κmax → ∞, this entropy approaches the entan-
glement entropy of all the d.o.f. in the spherical region of
radius R. To the leading order in the parameter ε, this is
given by

SRðj0iÞ ¼ lim
κmin→0
κmax→∞

SAðj0iÞ ¼
1

360π

AreaðRÞ
ε2

þ… ð5:7Þ

We have therefore recovered the area law for the geometric
entropy.
In calculations of the geometric entanglement entropy, it

is known that the numerical coefficient in front of the area
law is not universal as it depends on the specific regulari-
zationmethod employed. Intriguingly, in our result (5.7), we
find a coefficient 1=360π, which matches the one appearing
in the brick-wall regularization [15] of the entanglement
entropy across a planar surface of Minkowski half-space
found inRef. [17].We note that, while these coefficients turn
out to be the same, the intermediate steps of the calculation
differ. More importantly, the brick-wall regularization
modifies the vacuum state in the vicinity of the boundary
of the sphere, while our construction never modifies the
state; it is the subalgebra of observables that probes the state
only with finite resolution (measured by the parameter ε),
therefore rendering the entropy finite.

VI. DISCUSSION

Measurements of a field are often restricted to a region of
space and have only a finite resolution. Such measurements
can be described as a subalgebra of observables generated
by a linear smearing of the field against smooth functions
with support on the region. The uncertainty in the results of
such measurements is characterized by the entropy of the
state restricted to the subalgebra. In Sec. II, we showed
how to compute the entropy of a Gaussian state restricted to
such a subalgebra using linear symplectic methods
adapted from Refs. [26–30]. Using this definition, in
Sec. III, we computed the entropy of the Minkowski
vacuum state restricted to some simple classes of smeared
field observables.
The geometric entanglement entropy can be understood

as the entropy of the vacuum state of a field theory,
restricted to a region of space. The result of this calculation
is generally divergent because of the presence of short-
ranged correlations across the boundary of the region of
space. A standard procedure for defining the geometric
entropy involves a modification of the field theory in the
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short-ranged correlations of the field theory via the intro-
duction of a UV cutoff. The result of this procedure is an
area law for the geometric entropy. Here, we proposed a
different, operational definition of the geometric entropy
that does not involve a modification of the theory in the UV.
A set of measurements with finite resolution provides a
subalgebra of observables that does not probe short-ranged
correlations, and therefore there is no need to introduce
ad hoc modifications of the theory or the state in the UV.
The choice of subalgebra is dictated by the set of observ-
ables we measure. In particular, in Secs. IV and V, we
considered the entropy of the Minkowski vacuum of a
massless scalar field restricted to a spherical region. In
order to provide a concrete example, we considered a
specific subalgebra of observables and showed that, refin-
ing it and increasing its resolution, the standard formula for
the area law is recovered.
Identifying a subalgebra of observables that can be

easily refined, while keeping the computation feasible, is

nontrivial. Here, we started by considered smearing func-
tions that formally diagonalize the modular Hamiltonian in
a spherical region. Such functions are eigenfunctions of a
specific differential operator and form a continuous set
labeled by a radial quantum number κ. In order to extract a
finite set of smearing functions that vanish smoothly at the
boundary of the sphere, we introduced a step function at
distance ε from the boundary, which results in a quantiza-
tion κnl of κ. In the limit ε → 0, the full subalgebra
associated with the interior of the sphere is recovered,
and the entropy of the subalgebra is found to approach the
divergent geometric entropy with an area law.
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