2018 IEEE/ACM 4th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)

Integration of CUDA Processing within the C++
library for parallelism and concurrency (HPX)

Patrick Diehl, Madhavan Seshadri, Thomas Heller, Hartmut Kaiser

Abstract—Experience shows that on today’s high performance systems the utilization of different acceleration cards in conjunction
with a high utilization of all other parts of the system is difficult. Future architectures, like exascale clusters, are expected to aggravate
this issue as the number of cores are expected to increase and memory hierarchies are expected to become deeper. One big aspect
for distributed applications is to guarantee high utilization of all available resources, including local or remote acceleration cards on a
cluster while fully using all the available CPU resources and the integration of the GPU work into the overall programming model.

For the integration of CUDA code we extended HPX, a general purpose C++ run time system for parallel and distributed applications of
any scale, and enabled asynchronous data transfers from and to the GPU device and the asynchronous invocation of CUDA kernels on
this data. Both operations are well integrated into the general programming model of HPX which allows to seamlessly overlap any GPU
operation with work on the main cores. Any user defined CUDA kernel can be launched on any (local or remote) GPU device available

to the distributed application.

We present asynchronous implementations for the data transfers and kernel launches for CUDA code as part of a HPX asynchronous
execution graph. Using this approach we can combine all remotely and locally available acceleration cards on a cluster to utilize its full
performance capabilities. Overhead measurements show, that the integration of the asynchronous operations (data transfer + launches
of the kernels) as part of the HPX execution graph imposes no additional computational overhead and significantly eases orchestrating
coordinated and concurrent work on the main cores and the used GPU devices.

Index Terms—Asynchronous many task systems (ATM), CUDA, parallelism, concurrency, HPX

1 INTRODUCTION

The biggest disruption in the path to exascale will occur
at the intra-node level, due to severe memory and power
constraints per core, many-fold increase in the degree of
intra-node parallelism, and to the vast degrees of perfor-
mance and functional heterogeneity across cores. The sig-
nificant increase in complexity of new platforms due to en-
ergy constraints, increasing parallelism and major changes
to processor and memory architecture, requires advanced
programming techniques that are portable across multiple
future generations of machines [1]. This trend has already
manifested itself for some time in the domain of accelerator
and co-processor boards.

It is well known that a large part of the available com-
pute power of a machine (in terms of FLOPS) today is
provided by various accelerators and co-processors. Espe-
cially general purpose GPUs however require special pro-
gramming languages and techniques. Unfortunately, those
devices are architecturally not too well integrated with the
main cores. This requires special effort from the programmer
in terms of managing a heterogeneous code-base, having to
explicitly manage the data transfer to and from the devices
and the execution of special kernels. In order for this scheme

e P. Diehl, T. Heller, and H. Kaiser were with the Center for Computation
and Technology, Louisiana State University, LA, US.
E-mail: P. Diehl see https://orcid.org/0000-0003-3922-8419

e M. Seshadri was with the Nanyang Technological University, Singapore

o T. Heller was with the Department of Computer Science, Friedrich-
Alexander-University of Erlangen-Niirnberg, Germany

e H. Kaiser was with the Department of Computer Science, Louisiana State
University, LA. USA.

e P Diehl, T. Heller, and H. Kaiser were at the Ste||ar group

978-1-7281-0178-1/18/$31.00 ©2018 IEEE
DOI 10.1109/ESPM2.2018.00006

to be scaleable, special care is required to a) keep the main
cores busy while kernels are being executed on a GPU, and
b) hide the latencies and overheads of data transfers behind
useful work. In short, the currently available solutions make
it very hard to achieve scalability, programmability, and perfor-
mance portability for applications running on heterogeneous
resources.

In this paper we will focus on a technique and program-
ming environment, which overcomes part of the above men-
tioned problems by transparently enabling asynchronous
data transfer and kernel execution for CUDA, while still
being able to concurrently execute tasks on the main cores
in a seamless way. All GPU operations are represented as
asynchronous tasks similar to any other parallel task run
on a main core. This facilitates an easy way to express
dependencies which is a critical precondition for managing
parallel execution graphs in the HPX framework [2].

The presented solution not only transparently facilitates
the hiding of latencies of data transfers to and from ac-
celerators and the asynchronous execution of compute ker-
nels, it also provides a framework for load balancing work
across the system over large amount of (possibly remote)
accelerator cards. For the kernels themselves, the solution
still relies on the proven CUDA technology of the existing
and widely used programming environments for GPUs. We
do however expose the events generated by CUDA as C++
future objects to the user (see Section 3.1) which enables to
integrate the data transfer and the execution of the kernels
with the overall parallel execution flow on the main cores.

This paper makes the following contributions to the C++
library for parallelism and concurrency:

19

HPXCL provides an API for transparently enabling
asynchronous data transfer and kernel execution for
CUDA,

all API functions return a C++ future object, which
can be used within the synchronization mechanics
provided by HPX for the integration in its asyn-
chronous execution graph,

the CUDA specific elements, e.g. blockSize, thread-
Size, and the kernel code, are not hidden from the
user which allows the easy integration of existing
CUDA code into the HPX framework.

The remainder of this paper is structured as follows:
In Section 2 the related work is presented. In Section 3
HPX’s details, which are used for the integration, are briefly
introduced. In Section 4 examples for accessing all remote
and local CUDA devices and the complete work flow for
data transfers and launching a kernel are shown. Section 5
shows the overhead measurements compared to a native
CUDA implementation. Finally, Section 6 concludes this
presented approach.

2 RELATED WORK

This section provides a brief overview of related approaches
for the integration of CUDA processing. For unifying the
data transfer between different compute nodes via the Mes-
sage Passing Interface (MPI), Nvidia provides CUDA-aware
MPT [3]. Here, Unified Virtual Addressing (UVA) is utilized
to combine the host memory and device memory of a single
node into one virtual address space. Thus, pointers to data
on the device can be handled by MPI directly and can be
integrated in the MPI message transfer pipeline. However,
the synchronization of kernel launches and data transfer is
not addressed here.

The Chapel programming language [4] provides parallel
and distributed language features for parallel and distributed
computing. Thus, there is a distinct separation of parallelism
and locality in this programming model. In addition, the
specific functionality of the acceleration card is hidden from
the user trough parallel feature of the language.

HPX.Compute [5] is fully compatible to the C++ 17 stan-
dard N4578 [6] and implements the triple define execution
model: targets, allocator for memory allocation purposes, and
executors for specifying when, where, and how the work is
executed. HPX.Compute supports CUDA devices.

HPX.Compute SYCL [7] provides a new back end for
HPX.Compute utilizing SYCL, a Khronos standard for
single-source programming of OpenCL devices.

Kokkos [8] provides abstractions for parallel code ex-
ecution and data management for CUDA, OpenMP, and
Pthreads via a C++ library. Similar to CUDA-aware MP],
it does support a specific memory space (CudaVMSpace)
and allocation within this space are accessible from host
and device. The computational bodies (kernels) are passed
to Kokkos via function objects or lambda function to the
parallel executor.

The Phalanx programming model [9] provides a uni-
fied programming model for heterogeneous machines on
a single node. For multiple nodes of a distributed-memory
cluster the GASNet [10] run time is utilized. This model
provides its interface of generic and templated functions

20

TABLE 1
Summary of the different approaches for the integration of CUDA. The
second column lists the technologies provided by each approach, the
third column indicates the type of the approach, and the last column
provides the reference.

Name Technology Type Ref
Chapel CUDA,Xeon Phi Language [4]
CUDA-aware MPI MPI,CUDA Lib [3]
HPX.Compute HPX,CUDA C++ Lib [5]
HPX.Compute SYCL ~ HPX,OpenCL C++ Lib [7]
Kokkos CUDA,OpenMP C++ Lib [8]
Phalanx CUDA,OpenMP, GASNet ~ C++ Lib [9]
RAJA OpenMP,CUDA C++Lib [11]
Thrust CUDA,OpenMP C++ Lib [12]
X10 CUDA Language [13]

via C++ template library. The implementation of the kernel
function is identical for the CUDA and OpenMP backend
by providing an abstraction level and the asynchronous
launches of the kernels are synchronized using events.

RAJA [11] introduces its fundamental concept for sep-
arating the loop body from the loop transversal by intro-
ducing the forall feature where a sequential code block is
defined. By providing the execution policy and a indexset
the separation is modeled. Its concept is used in physics
code, where plenty of for loops are used to do multi physics
simulations.

Thrust [12] is based on the Standard Template Library
(STL) and CUDA:thrust is an extension for providing
CUDA devices and provides a set of common parallel algo-
rithms. CUDA::thrust tries to hide CUDA specific language
features by providing a similar API to the C++ APL

The programming language X10 [13], [14] provides an
open-source tool chain, which translates the X10 code to
C++. As the underlying programming model APGAS is
used on the GPU and the CPU. Thus, the CUDA threads
are defined as APGAS activities by specifying a first loop
over the CUDA blocks and a second loop over the CUDA
threads. Within the second for loop the sequential code for
each CUDA thread is defined. The philosophy here was
to use existing X10 constructs to hide the CUDA specific
semantics.

Table 1 summarizes all these different approaches. Two
different type of approaches can be seen in the related work.
First, the approaches of providing a programming language
are different from the presented approach, since the C++
library for parallelism (HPX) is extended for the integration
of CUDA. Second, the library-based approaches are more
similar to HPXCL, but all these approaches try to hide
the CUDA specific language features as much as possible
from the user. HPXCL instead allows the user to define
CUDA specific feature, e.g. provide kernel functions and
specify block and thread sizes. Therefore, HPXCL focuses
on the approach to integrate existing CUDA kernels in the
asynchronous execution graph of HPX. For hiding CUDA
specific language features the HPX.Compute framework is
more suitable.

3 HPX’s BAsIcS

The HPX compute language (HPXCL) [15] is an extension
for the Open Source C++ library for parallelism and con-

Thread Manager

AGAS Service
Parcel Handler

Resolves Remote Tasks

Fig. 1. Run time components of HPX (Thread manager,Active Global
Address Space (AGAS) Service, and Parcel Handler), which resolve
the remote tasks. The thread manager deals with the light-weight user
level threads and provides a high-level AP1.The Active Global Address
Space (AGAS) Service provides Global IDs to each allocated objects
for hiding the explicit message passing. The parcel handler provides
the communication between different nodes via remote procedure call /
Active Messaging. Adapted from [2].

currency (HPX) [2]. The asynchronous many tasks (AMT)
programming paradigm provided by HPX is extended with
the asynchronously data transfer from the host to device
(and vice versa) and asynchronously kernel launches. The
synchronization between the tasks on a CUDA devices and
CPUs is realized by the concept of futurization. We briefly
review the main components of HPX, which are utilized for
the integration of asynchronous tasks and synchronization.
For more details about HPX we refer to [2], [16], [17].
Figure 1 shows the three main components of HPX, which
resolve the remote tasks.

— The Thread Manager [18] deals with the light-weight
user level threads and provides a high level API. Within
HPX pre-defined scheduling policies are defined: 1) static
means that one queue is attached to one core, 2) thread local
which is HPX’s default scheduling policy and means one
queue is attached to one core, but in addition to the static
scheduling policy, task stealing from neighboring cores on
the same node is enabled and 3) hierarchical means that there
is a tree of queues and new tasks are attached to the root of
the tree and move down when a core fetches new work.
There is always the possibility to define application specific
scheduling policies, but HPXCL uses the static one.

— Active Global Address Space (AGAS) Service [17] supports
the distributed computing. Each object within AGAS is
represented by its Global ID (GID) to hide explicit message
passing. Thus, its address is not bound to a specific locality
on the system and its remote or local access is unified. This
feature allows us to provide the same API for a local or
remote CUDA device in our environment.

— Parcel Service [18], [19] For the communication between
different nodes in the cluster environment, HPX is utiliza-
tion remote procedure call (RPC) / Active Messaging. In the
terminology of HPX an active message is a so-called Parcel
which provides calls to remote nodes in a C++ fashion. For
the communication between nodes either the tcp protocol or
the Message passing Interface (MPI) is used.

21

3.1 Futurization

The API exposed by HPXCL is fully asynchronous and
returns a hpx: : future. The future is an important build-
ing block in the HPX infrastructure. By providing an uni-
form asynchronous return value, percolation as discussed
in this paper is tightly integrated with any other appli-
cation written in HPX and allows writing futurized code
by employing the standard-conforming API functions such
as hpx::future<T>::then and hpx: :when_all<T> for
composition, and hpx : : dataflow to build implicit parallel
execution flow graphs [20]. This allows for a unified con-
tinuation based programming style for both, regular host
code and device code, and is an excellent tool to close the
architectural gap between classic GPUs and CPUs.

4 DESIGN OF THE IMPLEMENTATION

Figure 2 shows the basic structure and relation between the
classes. The user facing API is represented by client side
objects referencing the object in AGAS via its Global ID
(GID). This approach offers two benefits: a) Both copying
and passing the object to different localities are now trans-
parent in regard to the object pointing to either a remote or
local object. b) They are also transparent in regard to where
the actual representation of the object resides, i.e. is the data
on the locality where it is needed.

For example, if a buffer or kernel is created for a specific
device, the client side object only references the actual mem-
ory. Once those objects are used, the operation is completely
local to the accelerator and the associated kernel is executed
where the data lives. The device code to be executed is
compiled just-in-time, that is, each accelerator action is
available in source code or compatible binary form and can
be sent and executed on the respective device, after it has
been compiled for a specific device.

This represents an implementation of percolation, which
allows data and code to be freely moved around in the
(possibly) distributed system using the parcel service. The
data is moved between the node using either tcp or MPI. The
functions exposed by this API are inherently asynchronous
(i.e. return a future object representing its return value) and
therefore allows to naturally overlap unavoidable latencies
when compiling kernels, copying data, or executing device
functions. Each of these functions is attached to an light-
weight user level thread using the static scheduling policy.

— A device is the logical representation of an accelera-
tor and defines the functionality to execute kernels, create
memory buffers, and to perform synchronization. HPXCL
exposes functionality to discover local and remote devices
within a system. Each device is equipped with its own,
platform dependent asynchronous work queue, while still
allowing cross-device synchronization through HPX's future
APL

— A buffer represents memory which is allocated on
a specific device. The operations defined on a buffer are
related to copying data from and to the host system and
between different devices. While the content itself is not
directly addressable through AGAS, the asynchronous copy
functionality is which allows effective memory exchange
between different entities of a possible distributed memory
system. The copy functions return futures which can be

Buffer

+ Explicit data movement to accelerators
+ Explicit copy t0/from host
+ Potentially remote copy possible

0..n

1
Device

+ Creates Buffers
+ Creates Programs

1

0..n

Program

+ Allows to launch specific kernels
+ Potentially remote launch possible

Fig. 2. Class diagram of Buffer, Device and Program and the functionality
provided by each class. The device represents a logical device on a
remote or local locality. A program which handles the compilation and
the potential remote launches of kernels. The memory of a device is
represented by a buffer. Adapted from [21].

used as dependencies to either kernel calls and additionally
allows for naturally overlapping of communication with
computation.

— A program serves as the compiled form of code that is
to be executed on a specific device. By executing kernels,
buffers need to be supplied as arguments. Executing a
kernel returns a future object as well. Those futures can also
be used to express data flow dependencies from memory
copy operations or other previous calls to kernels.

4.1

Listing 1 shows the one line of source code to discover
local and remote devices within a system. The method
get_all_devices takes two arguments (the major and
minor compute capability) and returns a std::vector
with all available devices hpx: : cuda: :device having at
least a compute capability as specified. The method returns
a future and therefore . get () has to be called to receive the
content of this future. Note that all device objects have the
same API independent of the device is a remote or a local
device.

Access of local and remote devices

4.2 Workflow of HPXCL

Listing 2 shows the work flow for running a CUDA kernel
for computing the sum of n elements and stores the result in
one variable. In Line 2 all available devices within the cluster
environment are collected. In Line 4-12 the data on the
host is allocated. In Line 14 the first device in the list which
can be either a remote or local device is selected to run
the computation. In Line 17-22 three buffers are generated
which means that internally a cudaMalloc is called. After
the creation of each buffer the data is copied into this
buffer which means internally a cudaMemcpyAsync is

22

Listing 1. Gathering all remote and local CUDA devices on the cluster
having CUDA compute capability of at least 1.0. Note that the function
call returns a future and calling the . get () function return the content
of this future.

{

int hpx_main(int argc, charx argvl[])

//Get list of available CUDA Devices.
std::vector<hpx::cuda::device> devices
hpx::cuda::get_all_devices (1,0) .get();

return hpx::finalize();

}

done and the future of this function calls are stored in a
vector futures for later synchronization. In Line 25 the
CUDA kernel is loaded from the file kernel.cu, the run
time compilation of the kernel is started using NVRTC -
CUDA Runtime Compilation, and the future is added to
the vector of futures. In Line 27-31 the configuration of the
kernel launch is defined. In Line 33-36 the arguments of
the CUDA kernel are defined. In Line 38 the compilation of
kernel and the copy from the data to the CUDA device have
to be finished to execute the kernel properly. Therefore, a
barrier with hpx::wait_all is introduced to assure that
all these dependencies are finished. In Line 40 the kernel is
executed and finally in Line 42 the result of the execution is
copied to the host using cudaMemcpyAsync.

Note that we use native CUDA functionality to syn-
chronize the asynchronous CUDA function calls, but we
hide this from the user by returning a future object. This
allows the users to combine these tasks with tasks on the
CPU within the cluster environment in a unified fashion. In
addition, the usage of remote or local devices has the same
unified API and HPXCL internally copy the data to the node
where the data is needed.

5 OVERHEAD MEASUREMENTS

The unified API and utilizing HPX as an additional layer
introduces some overhead. To measure the which is intro-
duced by additional layer of HPX, the same benchmark is
done by using native CUDA. Therefore, the native CUDA
functions call used in each method and there synchroniza-
tion were analyzed and were re-implemented without using
the additional layer of HPX. For all benchmarks the same
kernel, block size, and thread size were used. Note that
for these measurements, the focus is on the overhead intro-
duced by HPXCL and not on the optimization of the kernels
for obtaining the optimal performance. The authors are
aware that several highly optimized benchmark suites are
available. However, comparing against these suites would
not measure the overhead introduced by HPXCL, since the
memory bandwidth and the computational throughput are
measure for a kernel [22]. Since we use the same kernel, the
device performance would not change significantly and in-
stead the overall end to end performance can be compared.

In the Appendix: the software, the hardware, the operat-
ing system and drivers, and compilers are listed in detail,
to enhance the reader’s ability to easily reproduce these

—_ =
— OO0 OOk WN -

o s 0 0 W0 W W R W WWWNININNINNDNNRNRNRE PR
N, OOV KR WNRFROOWOXNANUTE WNRFR, OWOVONOUG R WN

Listing 2. Workflow of a simple application.
// Get list of available Cuda Devices.
std::vector<device> devices =
// Allocate the host data
unsigned intx input;
unsigned int* nj;
unsigned intx res;
cudaMallocHost ((voidx*) &input,

get_all_devices (2,

0) .get ();

sizeof (unsigned int)x 1000);

cudaMallocHost ((voidxx) &result, sizeof (unsigned int));
cudaMallocHost ((voidxx) &n, sizeof (unsigned int));

memset (input,1l,1000);

result [0] = 0;

n[0] = 1000,

// Create a device component from the
device cudaDevice = devices|[0];

first device found

// Create a buffers and copy data into them
std::vector<hpx::1lcos::future<void>> futures;

buffer outbuffer =

futures.push_back (outbuffer.enqueue_write (0,

cudaDevice.create_buffer (SIZE x sizeof (unsigned int)) .get ();
inputData)) ;

SIZE % sizeof (unsigned int),

buffer resbuffer cudaDevice.create_buffer (sizeof (unsigned int)) .get();
futures.push_back (resbuffer.enqueue_write (0, sizeof (unsigned int), result));
buffer lengthbuffer = cudaDevice.create_buffer (sizeof (unsigned int)) .get ();
futures.push_back (lengthbuffer.enqueue_write (0, sizeof (unsigned int), n));
// Compile the CUDA Kernel

program prog = cudaDevice.create_program_with_file("kernel.cu") .get();

futures.push_back (prog.build ("sum"));

// Prepare the configuration of the kernel

hpx::cuda::server::program: :Dim3 grid;

hpx::cuda::server::program: :Dim3 block;

grid.x = grid.y = grid.z = 1;
block.x = 32;
block.y = block.z = 1;

// Set the arguments of the kernel
std::vector<hpx::cuda::buffer>args;
args.push_back (outbuffer) ;
args.push_back (resbuffer);
args.push_back (lengthbuffer) ;

// Synchronize the copy of data to the device and the compilation of the kernel

hpx::wait_all (data_futures);

//Run the kernel at the default stream

prog.run(args, "sum",grid,block) .get () ;
//Copy the result back
unsigned intx res =

benchmarks on their own cluster environment. In order
to alleviate start-up times, we repeated the algorithm for
11 iterations and took the mean execution time out of the
last ten iterations, the first iteration was considered to be
the warm-up (meant to be ignored). For the corresponding
details, we refer to the appendix.

5.1 Single device

For the single devices overhead measurements, a Nvidia
Tesla K40 and Nvida Tesla K80 in to different compute
nodes (bahram,reno) were utilized. For each benchmark
the identical kernel was executed using the native CUDA
implementation and the equivalent HPX implementation.

resbuffer.enqueue_

read_sync<unsigned int>(0,sizeof (unsigned int));

5.1.1

This benchmark, where a 3-point stencil s(z;) := 0.52;_1 +
x;+0.52,11 is computed for a vector X := {x;,..., X,|z; €
R} has been defined within the Intel Parallel Research
Kernels (PRK) [23] developed by Intel labs. The block size
was one and the thread size was 32 for all benchmarks.
The aim of this benchmark is to test the computation and
synchronization of the application. Figure 3 shows the ex-
ecution time vs. length of the vector for the K40 (black
lines) and for the K80 (blue lines). In both cases, the HPX
implementation is ~ 28% faster than the native CUDA
implementation and the trend of the two lines is nearly
linear. Thus, overlapping computation and data transfer uti-
lizing futures has helped reduce the overall compute time.
Note, that in this benchmark the CUDA code was executed

Stencil kernel (Intel Parallel Research Kernels)

23

-10°
12]
1h i
B
~ 0.8 .
<]
g
= 06] i
3
S 04f .
%
(i
0.2} |
0 | | | | | | i
0 0.2 0.4 0.6 0.8 1
Length of the vector n 109
—e— CUDA K40 —=— HPX K40
—e— CUDA K80 —=— HPX K80

Fig. 3. Comparison for the overhead introduced by the additional layer of
HPXCL for the stencil benchmark. The measurements were performed
on a single Tesla K40 and a single K80. The native CUDA implementa-
tion is compared against the HPX implementation using one CPU.

sequentially and the HPX code was using the asynchronous
functionality within the CUDA SDK. In the next benchmark,
the asynchronous functionality will be used in the native
CUDA implementation as well.

5.1.2 Partition example

This benchmark focuses on the asynchronous data trans-
fer and the efficient overlapping between communication
and computation. The native CUDA implementation was
adopted from [24] and asynchronous function calls are
used in both implementations. In this benchmark, a ker-

nel k(x;) := y/sin?i+ cos2(i) is computed for a vector
X :={w,..., X, |z; € R}. The length of the vector is given

by n = 2" %1024 *blockSizexp, wherem = {1,2,...,7,8},
blockSize = 256, and p = 4 is the amount of partitions.
The vector is divided in p partitions and each partition is
asynchronously copied to the CUDA device, the kernel k
is executed, and the result is asynchronously copied back
to the host, see Algorithm 1. CUDA streams are used for
the synchronization for the native CUDA implementation
and the HPX implementation. Figure 4 shows the execution

Algorithm 1 Multiple Partitions Benchmark

Init X

for 1 =0;i<p;++i do
cudaMemcpyAsync(X;,cudaMemcpyHostToDevice)

end for

for 1 =0;i<p;++i do
Apply kernel k to partition X;

end for

for 1 =0;i<p;++i do
cudaMemcpyAsync(R;,cudaMemcpyDeviceToHost)

end for

24

104

t !.\.\'/—k/* |
— 0.8} i
E
£ 06) .
I
8
g 04 =
ot
A .'_.,/*/k/"
= 02) }
0 L | | | | | | |
0 0.5 1 1.5 2 2.5
Length of the vector n 108
—e— CUDA K40 —=— HPX K40
—e— CUDA K80 —=— HPX K80

Fig. 4. Comparison for the overhead introduced by the additional layer of
HPXCL for the partition benchmark. The measurements were performed
on a single Tesla K40 and a single K80. The native CUDA implemen-
tation using asynchronous function calls and synchronization utilizing
streams is compared against the HPX implementation using one CPU.

time vs. length of the vector for the K40 (black lines) and
for the K80 (blue lines) using four partitions. In both cases,
the HPX implementation is ~ 4% faster than the native
CUDA implementation and the trend of the two lines is
nearly linear. It is clearly shown that the speed-up of HPX
is reduced by a factor of =~ 4 when the native CUDA
implementation utilizes asynchronous function calls. This
benchmarks shows that the overhead introduced by HPXCL
is negligible, even when the CUDA kernel is compiled at run
time, for large enough vector sizes.

5.1.3 Mandelbrot example using concurrency with CPUS

The Mandelbrot set is a set of complex numbers for which ¢
does not diverge from 0 for the function f.(z) = 2% +c when
integrated from zero. The pixels are then colored based on
how rapidly the function value diverges from zero. In this
example the Mandelbrot set for increasing images sizes is
computed on a K80 GPU using HPXCL and saved to the
file system as a PNG image. Figure 5 shows the computation
time (blue line) when the image is synchronously written af-
ter the computation. The black line shows the computational
time when the concurrency with the CPU of the HPXCL
framework is used and the image is written asynchronously
using hpx::async to the file system. Using the concur-
rency with the CPU decreases the computational time and
this feature is beneficial for example to write results to the
file system and asynchronously compute the next iteration.

5.2 Multiple devices

For the multiple device partition benchmark two Nvidia
Tesla K80 cards containing two sub cards in one node
(bahram) were utilized. Note, that each K80 has a dual-GPU
design and therefore, 2 x 2 GPUs are available.

104

I
2 i
g 151 .
[}
E
= 1 |
g
5
g
& 051 -
0 |
| | | | | | |
0 02 04 06 08 1 1.2
Image size in bytes 109

—e— Asynchronous (hpx : : async) —e— Synchronous

Fig. 5. Comparison of synchronous and asynchronous writing the result-
ing image of the Mandelbrot set to the file system. Both measurements
were done on one K80 card using HPXCL.

5.2.1

The benchmark describes in Section 5.1.2 is modified, such
that each partition of the vector is handled by one of
the Nvidia Tesla K80 cards in the bahram node. The vec-
tor with the length n = 2™ % 1024 * blockSize, where
m=1{1,2,...,7,8} and blockSize is 256, is sliced in 1,2, 3,
and 4 partitions and each partition is handled by one of
the K80 cards. The black lines show the execution time
for the native CUDA implementation and the blue lines
for 1 up to 4 K80 devices, see Figure 6. For the native
CUDA implementation a increase of computation time is
seen when going from one physical card to two physical
cards. Once the dual-GPU architecture is used, a increase in
computational time is seen. For the HPXCL implementation
the same behavior for the computational time (blue lines)
is seen. The difference between the computational times is
one order of magnitude. First, the exact behavior for the
dual-GPU case was obtained. This could be improved by
using new CUDA features, but since the focus is on the
overhead and not the performance this is not relevant for
this paper. Second, also for the Multiple GPUs case, the
overhead introduced by HPXCL is small and the execution
time is faster.

Partition example

6 CONCLUSION AND FUTURE WORK

In this paper we present an abstraction over CUDA -
HPXCL - which is tightly integrated into the HPX general
purpose parallel run time system. This allows seamless inte-
gration into a fully heterogeneous application accessing lo-
cal and remote devices in a unified fashion. Note that within
this implementation the CUDA specific functionality, e.g.
blockSize, threadSize, and kernel code, is not hidden from
the application developer. Therefore, HPXCL is suitable
to integrate existing CUDA kernel into the asynchronous
execution of HPX.

25

-10*
1.2 [[[[[[]
10 % i
B
= 0.8 -
<]
g
c 0.6 -
8
g 04 |
<]
X
&5
0.2} é -
op | | | | | |
0 0.5 1 1.5 2 2.5
Length of the vector n 108

—o— CUDA 1xK80 —e— HPX 1xK80
—a— CUDA 2xK80 —s— HPX 2xK80
—+— CUDA 3xK80 —— HPX 3xK80
—+— CUDA 4xK80 —— HPX 4xK80

Fig. 6. Comparison for the overhead introduced by the additional layer
of HPXCL for the partition benchmark on multiple devices. The vector is
sliced in 1,2, 3, and 4 partitions and each partition is handled by one of
the K80 cards.

Our overhead evaluation showed that the performance
cost of using such an abstraction is minimal and our
implementation could outperform the native CUDA im-
plementation. For the sake of fairness, the same features,
e.g. CUDA streams, asynchronous memory functionality
(cudaMemcpyAsync), and cudaStreamSynchronize for
synchronization, were used in both implementations. How-
ever, HPX uses light-weighted threads and even with the
usage of one CPU, more than one light-weighted thread is
generated. Thus, HPX has the benefit of using more threads
which results in the faster computational times. Also, the
CUDA kernel is compiled at run time using NVRTC - CUDA
Runtime Compilation for HPXCL and compiled at compile
time for the native CUDA application. Within this set up a
fair comparison of the execution times is hard to archive.

Nevertheless, the presented abstraction can be consid-
ered to improve programmability and maintainability of
heterogeneous, distributed workloads. The data transfers
and the launch of the kernel can be easily integrated in the
asynchronous workload on the CPU, like the writing of the
image in the Mandelbrot benchmark while the next image
size is computed.

This work showed the proof of concept for an unified
API for the integration CUDA to HPX by introducing a
negligible overhead. A next step would be to do some
performance benchmarks against existing benchmark suits
which would require more optimization in the naive CUDA
kernels. Two possible future directions for HPXCL are
PeridynamicHPX [25] and a simple computational fluid
dynamics (CFD)! solver for in compressible Navier-Stokes
equations [26].

1. https:/ /github.com/ltroska/nast_hpx

For most CFD problems, e.q. driven cavity, natural con-
vection and the Karman vortex street, the matrix-vector
operation is the bottle neck for the overall computational
time. Here, the benefits of GPUs for solving such problems is
easily integrated in the existing HPX code with the HPXCL
library. For PeridynamicHPX, a non-local fracture mechan-
ics code, one large portion of the computational costs is the
neighbor search. Here, this task could be done on GPUs,
where fast algorithms for this task are available.

ACKNOWLEDGEMENTS

This material is based upon work supported by the NSF
Award 1737785 and a Google Summer of Code stipend.

REFERENCES

[1] “X-Stack: Programming Challenges, Runtime Sys-
tems, and Tools, DoE-FOA-0000619,” 2012. [On-
line]. Available: http://science.energy.gov/~/media/grants/

pdf/foas/2012/SC_FOA_0000619.pdf

T. Heller, P. Diehl, Z. Byerly, J. Biddiscombe, and H. Kaiser, “HPX
- An open source C++ Standard Library for Parallelism and
Concurrency,” in Proceedings of OpenSuCo 2017, Denver, Colorado
USA, November 2017 (OpenSuCo’17), 2017, p. 5.

J. Kraus, “An introduction to cuda-aware mpi,” https://devblogs.
nvidia.com/parallelforall /introduction-cuda-aware-mpi/, 2013,
accessed: 2017-11-24.

B. Chamberlain, D. Callahan, and H. Zima, “Parallel
programmability and the chapel language,” Int. |. High
Perform. Comput. Appl., vol. 21, no. 3, pp. 291-312, Aug. 2007.
[Online]. Available: http://dx.doi.org/10.1177/1094342007078442
T. Heller, H. Kaiser, P. Diehl, D. Fey, and M. A. Schweitzer,
“Closing the performance gap with modern c++,” in International
Conference on High Performance Computing. — Springer, 2016, pp.
18-31.

T. C. S. Committee, “N4578: Working draft, technical
specification for c++ extensions for parallelism version 2.”
Tech. Rep. [Online]. Available: http://open-std.org/JTC1/SC22/
WG21/docs/papers/2016 /n4578 pdf

M. Copik and H. Kaiser, “Using sycl as an implementation
framework for hpx.compute,” in Proceedings of the 5th International
Workshop on OpenCL, ser. IWOCL 2017. New York, NY,
USA: ACM, 2017, pp. 30:1-30:7. [Online]. Available: http:
//doi.acm.org/10.1145/3078155.3078187

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos:
Enabling manycore performance portability through polymorphic
memory access patterns,” Journal of Parallel and Distributed
Computing, vol. 74, no. 12, pp. 3202 — 3216, 2014, domain-Specific
Languages and High-Level Frameworks for High-Performance
Computing. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0743731514001257

M. Garland, M. Kudlur, and Y. Zheng, “Designing a unified
programming model for heterogeneous machines,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC “12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 67:1-67:11. [Online].
Available: http:/ /dl.acm.org/citation.cfm?id=2388996.2389087

D. Bonachea and P. Hargrove, “Gasnet specification, v1. 8.1,” 2017.
R. D. Hornung and J. A. Keasler, “The raja portability layer:
Overview and status,” 9 2014.

N. Bell and]J. Hoberock, “Chapter 26 - thrust: A productivity-
oriented library for cuda,” in GPU Computing Gems Jade
Edition, ser. Applications of GPU Computing Series, W. mei
W. Hwu, Ed. Boston: Morgan Kaufmann, 2012, pp. 359 -
371. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/B9780123859631000265

K. Ebcioglu, V. Saraswat, and V. Sarkar, “X10: Programming for
hierarchical parallelism and non-uniform data access,” in Proceed-
ings of the International Workshop on Language Runtimes, OOPSLA,
vol. 30, 2004.

[2]

[3]

[4]

(5]

[6]

(71

(8]

[9]

[10]
(1]

[12]

[13]

26

[14] , “X10: an experimental language for high productivity
programming of scalable systems,” in Proceedings of the Second
Workshop on Productivity and Performance in High-End Computing
(PPHEC-05), 2005.

P. Diehl, M. Stumpf, T. Heller, M. Seshadri, and H. Kaiser,
“HPXCL v0.1,” September 2018. [Online]. Available: https:
//doi.org/10.5281/zenodo.1409043

A. Tabbal, M. Anderson, M. Brodowicz, H. Kaiser, and T. Sterling,
“Preliminary design examination of the parallex system from a
software and hardware perspective,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 38, no. 4, pp. 81-87, 2011.

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address
space,” in Proceedings of the 8th International Conference on Parti-
tioned Global Address Space Programming Models. ACM, 2014, p. 6.
H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced
parallel execution model for scaling-impaired applications,” in
Parallel Processing Workshops, 2009. ICPPW’09. International Confer-
ence on. 1EEE, 2009, pp. 394-401.

[19] J. Biddiscombe, T. Heller, A. Bikineev, and H. Kaiser, “Zero
Copy Serialization using RMA in the Distributed Task-Based HPX
runtime,” in 14th International Conference on Applied Computing.
TADIS, International Association for Development of the Informa-
tion Society, 2017.

H. Kaiser, T. Heller, D. Bourgeois, and D. Fey, “Higher-level
parallelization for local and distributed asynchronous task-based
programming,” in Proceedings of the First International Workshop on
Extreme Scale Programming Models and Middleware, ser. ESPM "15.
New York, NY, USA: ACM, 2015, pp. 29-37. [Online]. Available:
http:/ /doi.acm.org/10.1145/2832241.2832244

P. Diehl, “Modeling and simulation of cracks and fractures with
peridynamics in brittle materials.” Dissertation, Institut fiir Nu-
merische Simulation, Universitit Bonn, 2017.

M. Harris, “How to implement performance met-
rics in cuda c/c++,” https://devblogs.nvidia.com/
how-implement-performance-metrics-cuda-cc/, 2012, accessed:
2018-06-24.

R. E Van der Wijngaart and T. G. Mattson, “The parallel re-
search kernels,” in High Performance Extreme Computing Conference
(HPEC), 2014 IEEE. 1EEE, 2014, pp. 1-6.

M. Harris, “How to Overlap Data Transfers in CUDA
C/C++,” https:/ /devblogs.nvidia.com/parallelforall /
how-overlap-data-transfers-cuda-cc/, 2012, accessed: 2017-11-24.
P. Diehl, P. K. Jha, H. Kaiser, R. Lipton, and M. Levesque, “Im-
plementation of Peridynamics utilizing HPX - the C++ standard
library for parallelism and concurrency,” ArXiv e-prints, Jun. 2018.
L. Troska, “A HPX-based parallelization of a Navier-Stokes-
solver,” Master’s thesis, Universitat Bonn, August 2016.

[15]

[16]

[17]

[18]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: INTEGRATION OF
CUDA PROCESSING WITHIN THE C++ LIBRARY FOR
PARALLELISM AND CONCURRENCY (HPX)

Patrick Diehl and Hartmut Kaiser
Center for Computation & Technology
Louisiana State University

A. Abstract

The appendix contains the information to launch the ex-
amples presented in the SC18 paper ” Integration of CUDA
Processing within the C++ library for parallelism and con-
currency (HPX)” in Section 5. We provide the used compilers
and libraries, which were used to compile HPXCL. In addition,
we provide the shell scripts and sbatch scripts, we used to run
the examples on the rostam' cluster. HPX and HPXCL are
available on github.

B. Description
1) Check-list (artifact meta information):
Algorithm: Stencil kernel (Intel Parallel Research Kernels),
Mandelbrot set
Program: C++ binary, C, and C++ libraries
Compilation: gcc (20160615) 5.4.0, nvee 8.0, V8.0.61, CMake
3.9, and OpenMPI (OpenRTE) 1.10.7
Run-time environment: Cent OS 7 running on kernel 3.11
using Nvidia SMI 396.37 and Nvidia Driver 396.37
Hardware:
1) Bahram: Intel E5-2660 v3 (2.60GHz), 128GB Memory,
2 Nvidia K80 with 25GB memory
2) Reno: Intel CPU E5-2670 v2 (2.50GHz), 1 Nvidia K40
with 12GB memory

Execution: Jobs were sent to the nodes using slurm 17.02.10
Output: execution time,length of vector or execution time,
image size in bytes
Experiment workflow: Variation of input sizes, amount of
GPUs, and amount of nodes
Publicly available?: yes

2) How software can be obtained: HPX(7f3e67c)’> and
HPXCL? can be obtained via github.

3) Hardware dependencies: Nvidia CUDA cards

4) Software dependencies: For this paper following li-
braries were utilized in the version showed in the table. For a
minimal required version for HPX we refer to* and for HPXCL
to’. The compilers used for this paper are listed above.

Libraries
hwloc 1.11.2
boost 1.62
libpng 1.5.13

Uhttps://github.com/STEIIAR-GROUP/hpx/wiki/Running- HPX-on-Rostam

Zhttps://github.com/STEIIAR-GROUP/hpx

3https://github.com/STEIIAR-GROUP/hpxcl

“http://stellar.cct.Isu.edu/files/hpx- 1.1.0/htmI/hpx/manual/build_system/
prerequisites.html

Shttps://github.com/STEIIAR-GROUP/hpxcl

27

C. Installation

We assume that the prerequisites, boost, hwloc, libpng, gcc,
cmake, CUDA SDK, are already installed on the system.
We assume that boost was compiled with the same compiler,
which was used to compile HPX.

Listing 1. Compile HPX

module load gcc hwloc boost

git clone \
https://github.com/STE11AR-GROUP/hpx.git

cd hpx && mkdir build

cmake \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=path_to_hpx \

make core —j
make install

Listing 2. Compile HPXCL

module load gcc cuda libpng

git clone \
https://github.com/STE11AR-GROUP /hpxcl.git

cd hpxcl && mkdir build

cmake \
-DCMAKE_BUILD_TYPE=Release \
-DHPX_ROOT=path_to_hpx \
~DHPXCL_WITH_CUDA=ON \

make -3

D. Experiment workflow

For each input size the program was executed 11 times
on the same node within the same slurm job. The first
execution time was ignored and the average out of the 10
reaming times was computed and used as the execution
time in each benchmark. For all benchmarks, everything was
measured, including allocation, data transfer, and deallocation
of memory. Expect the validation of the copied data from
the device was excluded from the overall computation time.
For the Mandelbrot example in Section 5.1.3 only one
measurement due to the writing of the images to the file
system was recorded.

Listing 3 shows the sbatch script, which was used to send
all jobs to the cluster nodes. Listing 4 shows the shell script,
which was used to obtain the measurements in Section 5.1.1.
Listing 5 shows the shell script, which was used to obtain the
measurements in Section 5.1.2 and Section 5.2.1. Listing 6
shows the shell script for the measurements obtained in
Section 5.1.3.

Listing 3. Slurm script for sending the jobs to the nodes reno (K40) and
bahram (K80).
#!/usr/bin/env bash

#SBATCH -o application_%j.out
#SBATCH -t 1:00:00

#SBATCH -p {bahram/reno}
#SBATCH -N 1

#SBATCH -D path_to_application

module load gcc/5.4.0 cuda/8.0.61 \
boost/1.62.0-gcc5.4.0
srun script or executable

Listing 4. Bash script to run the stencil example.

#!/bin/bash

for 3 in 100 1000 10000 50000 100000 250000
500000 750000 1000000 1500000 2000000

5000000 10000000 20000000 50000000 100000000

1000000000 200000000 500000000 1000000000

Fig. 1. Resulting Mandelbrot set image from the example in Section ??.

2000000000 5000000000 10000000000 20000000000

50000000000
do
for 1 in {0..10..1}
do
executable ${7j}
done
done

Listing 5. Bash script to run the partition example.
#!/bin/bash
for 3 in {1..8..1}
do
for 1 in {0..10.
do
executable ${7}
done

.1}

done

Listing 6. Bash script to run the Mandelbrot example.
#!/bin/bash
./mandelbrot_cuda h w iterations devices

E. Evaluation and expected result

For the benchmarks in Section 5.1.1, Section 5.1.2, and
Section 5.2.1 the CUDA kernel was implemented in C++ and
the result of the CUDA kernel launch was compared with
the result of the C++ implemented for each input vector. All
resulting images for the Mandelbrot examples in Section 5.1.3
and Section ?? were validated by eye for correctness and
Figure 1 shows one resulting image. For all examples the
length of the input vector or the image size in byes were
stored together with the execution time in second as comma
separated values (CSV) files, see Listing 7.

Listing 7. Example output for the Mandelbrot example.
cat imagesync.dat
3000000,527.689
12000000,490.021

28

27000000,749.036
48000000,2002.65
75000000,2096.07
108000000,2160.49
147000000,3549

192000000, 3564.16

F. Experiment customization

For all experiments the same executable were used and
the experiment customization is realized via command line
arguments. For the examples in Section 5.1.1 and Section 5.1.2
the input size of the vector varies. In Section 5.2.1 in addition
to the input size of the vector, we varied the amount of GPUs.
In Section 5.1.3 the size of the image in bytes is varied and the
resulting image is asynchronously and synchronously written
to the file system.

G. Notes

The aim of this paper was to measure the overhead in-
troduced by the additional layer of the HPXCL API. The
authors are aware that several highly optimized benchmark
suites are available for measurement of performance of CUDA
kernels.We did not use these and tried to mimic the same
behavior as in the HPXCL layer by re-implementing it in
native CUDA, using the same kernels and the same CUDA fea-
tures, e.g. CUDA streams, asynchronous memory functionality
(cudaMemcpyAsync), and cudaStreamSynchronize
for synchronization.

