
Asynchronous Execution of Python Code on
Task-Based Runtime Systems

R. Tohid∗, Bibek Wagle∗, Shahrzad Shirzad∗, Patrick Diehl∗,
Adrian Serio∗, Alireza Kheirkhahan∗, Parsa Amini∗,

Katy Williams†, Kate Isaacs†, Kevin Huck‡, Steven Brandt ∗ and Hartmut Kaiser∗
∗ Louisiana State University, † University of Arizona, ‡ University of Oregon

E-mail: {mraste2, bwagle3, sshirz1, patrickdiehl, akheir1}@lsu.edu, {hkaiser, aserio, sbrandt, parsa}@cct.lsu.edu,
khuck@cs.uoregon.edu, kisaacs@cs.arizona.edu, kawilliams@email.arizona.edu

URL: Patrick Diehl (https://orcid.org/0000-0003-3922-8419)

Abstract—Despite advancements in the areas of par-
allel and distributed computing, the complexity of
programming on High Performance Computing (HPC)
resources has deterred many domain experts, espe-
cially in the areas of machine learning and artificial
intelligence (AI), from utilizing performance benefits
of such systems. Researchers and scientists favor high-
productivity languages to avoid the inconvenience of
programming in low-level languages and costs of ac-
quiring the necessary skills required for programming
at this level. In recent years, Python, with the sup-
port of linear algebra libraries like NumPy, has gained
popularity despite facing limitations which prevent this
code from distributed runs. Here we present a solution
which maintains both high level programming abstrac-
tions as well as parallel and distributed efficiency. Phy-
lanx, is an asynchronous array processing toolkit which
transforms Python and NumPy operations into code
which can be executed in parallel on HPC resources by
mapping Python and NumPy functions and variables
into a dependency tree executed by HPX, a general
purpose, parallel, task-based runtime system written
in C++. Phylanx additionally provides introspection
and visualization capabilities for debugging and perfor-
mance analysis. We have tested the foundations of our
approach by comparing our implementation of widely
used machine learning algorithms to accepted NumPy
standards.

Index Terms—Array computing, Asynchronous,
High Performance Computing, HPX, Python, Runtime
systems

I. Introduction
The ever-increasing size of data sets in recent years have

given the rise to the term “big data.” The field of big data
includes applications that utilize data sets so large that
traditional means of processing cannot handle them [1],
[2]. The tools that operate on such data sets are often
termed as big data platforms. Some prominent examples
are Spark, Hadoop, Theano and Tensorflow [3], [4].

One field which benefits form big data technology is
Machine learning. Machine learning techniques are used
to extract useful data from these large data sets [5],
[6]. Theano [7] and Tensorflow [8] are two prominent
frameworks that support machine learning as well as deep

learning [9] technology. Both frameworks provide a Python
interface, that has become the lingua franca for machine
learning experts. This is due, in part, to the elegant math-
like syntax of Python that has been popular with domain
scientists. Furthermore, the existence of frameworks and
libraries catering to machine learning in Python such as
NumPy, SciPy and Scikit-Learn have made Python the de
facto standard for machine learning.

While these solutions work well with mid-sized data
sets, larger data sets still pose a big challenge to the
field. Phylanx tackles this issue by providing a framework
that can execute arbitrary Python code in a distributed
setting using an asynchronous many-task runtime system.
Phylanx is based on the open source C++ library for
parallelism and concurrency (HPX [10], [11]).

This paper introduces the architecture of Phylanx and
demonstrates how this solution enables code expressed
in Python to run in an HPC environment with minimal
changes. While Phylanx provides general distributed array
functionalities that are applicable beyond the field of
machine learning, the examples in this paper focus on
machine learning applications, the main target of our
research.

This paper makes the following contributions:

• Describe the futurization technique used to decouple
the logical dependencies of the execution tree from its
execution.

• Illustrate the software architecture of Phylanx.
• Demonstrate the tooling support which visualizes
Phylanx’s performance data to easily find bottlenecks
and enhance performance.

• Present initial performance results of the method.

We will describe the background in Section III, Phy-
lanx’s architecture in Section IV, study the performance of
several machine learning algorithms in Section V, discuss
related work in Section II, and present conclusions in
Section VI.

II. Related Work

Because of the popularity of Python, there have been
many efforts to improve the performance of this language.
Some specialized their solutions to machine learning while
others provide wider range of support for numerical com-
putations in general. NumPy [12] provides excellent sup-
port for numerical computations on CPUs within a single
node. Theano [13] provides a syntax similar to NumPy,
however, it supports multiple architectures as the backend.
Theano uses a symbolic representation to enable a range
of optimizations through its compiler. PyTorch [14] makes
heavy use of GPUs for high performance execution of deep
learning algorithms. Numba [15] is a jit compiler that
speeds up Python code by using decorators. It makes use
of LLVM compiler to compile and optimize the decorated
parts of the Python code. Numba relies on other libraries,
like Dask [16] to support distributed computation. Dask
is a distributed parallel computation library implemented
purely in Python with support for both local and dis-
tributed executions of the Python code. Dask works tightly
with NumPy and Pandas [17] data objects. The main
limitation of Dask is that its scheduler has a per task
overhead in the range of few hundred microseconds, which
limits its scaling beyond a few thousand of cores. Google’s
Tensorflow [8] is a symbolic math library with support for
parallel and distributed execution on many architectures
and provides many optimizations for operations widely
used in machine learning. Tensorflow is a library for
dataflow programing which is a programming paradigm
not natively supported by Python and, therefore, not
widely used.

III. Technologies utilized to implement Phylanx

HPX [10], [11] is an asynchronous many-task runtime
system capable of running scientific applications both
on a single process as well as in a distribued setting
on thousands of nodes. HPX achieves a high degree of
parallelism via lightweight tasks called HPX threads.
These threads are scheduled on top of the Operating
System threads via the HPX scheduler, which implements
an M : N thread scheduling system. HPX threads
can also be executed remotely via a form of active
messages [18] known as Parcels [19], [20]. We briefly
introduce the technique of futurization, which is utilized
within Phylanx. For more details we refer to [11].

// Definition of the function
int convert (std :: string s){ return std :: stoi(s); }
// Asynchronous execution of the function
hpx :: future <int > f = hpx :: async (convert , "42");
// Accessing the result of the function
std :: cout << f.get () << std :: endl;
Listing 1. Example for the concept of futurization within HPX.
Example code was adapted from [21].

The concept of futurization [22] is illustrated in
Listing 1. The function in Line 2 is intended to be
executed in parallel on one of the lightweight HPX
threads. Line 4 shows the usage of the asynchronous
return type hpx::future<T>, the so-called Future, of
the asynchronous function call hpx::async. Note that
hpx::async returns the future immediately even though
the computation within convert may not have started
yet. In Line 6, the result of the future is accessed via its
member function .get(). Listing 1 is just a simple usecase
of futurization which does not handle synchronization
very efficiently. Consider the call to .get(), if the Future
has not become "ready" .get() will cause the current
thread to suspend. Each suspension will incur a context
switch from the current thread which adds overhead to
the execution time. It is very important to avoid these
unnecessary suspensions for maximum efficiency.

Fortunately, HPX provides barriers for the synchro-
nization of dependencies. These include: hpx::wait_any,
hpx::wait_any, and hpx::wait_all().then(). These barriers
provide the user with a means to wait until a future is
ready before attempting to retrieve its value. In HPX
we have combined the hpx::wait_all().then() facility and
provided the user with the hpx::dataflow API [22] demon-
strated in Listing 2.

template <typename Func >
future <int > traverse (node& n, Func && f)
{

// traversal of left and right sub -tree
future <int > left =

n.left ? traverse (*n.left , f)
: make_ready_future (0);

future <int > right =
n. right ? traverse (*n.right , f)

: make_ready_future (0);

// return overall result for current node
return dataflow (

[&n, &f](future <int > l, future <int > r)
-> int

{
// calling .get () does not suspend
return f(n) + l.get () + r.get ();

},
std :: move(left), std :: move(right)

);
}
Listing 2. Example for the concept of hpx::dataflow for the trans-
verse of a tree. Example code was adapted from [21].

Listing 2 uses hpx::dataflow to traverse a tree. In
Line 5 and Line 8 the futures for the left and right
traversal are returned. Note that these futures may
have not been computed yet when they are passed into
the dataflow on Line 13. The user could have used an
hpx::async here instead of hpx::dataflow, but the Future
passed to the called function may have suspended the
thread while waiting for its results in the .get() function.
The hpx::dataflow will not pass the Future arguments

to the function until all of the Futures passed to the
hpx::dataflow are "ready". This avoids the suspension of
the child function call. In Section IV futurization and the
facility hpx::dataflow are heavily utilized to construct the
asynchronous architecture of Phylanx.

Finally, the last technology we used to guide the devel-
opment of Phylanx is NumPy. NumPy [12] is a highly opti-
mized numerical computation library for Python. NumPy
is used in many scientific applications and supports highly
performant, multidimensional array operations for scien-
tific computing. Phylanx uses the library’s API as the
interface to the user. In addition, Phylanx supports nu-
merical computation on NumPy data objects through
pybind11 [23] without the need for data copies.

V
isu

al
iz
at
io
n
To

ol
s

Phylanx

Frontend

Optimizer

Backend

Compiler

Executor

Perf. Counters

py
bi
nd

11

Python

NumPy

Blaze

HPX

Fig. 1. Overview of the Phylanx toolkit and its interactions with
external libraries.

IV. Phylanx
In Python, the order of code blocks determines the

execution order of a program and implicit parallelism is
only available within each block. Therefore, asynchrony
and parallelism across code blocks must be explicitly ex-
plored by the programmer, a process which is tedious and
error prone. In this section we discuss the implementation
of our approach in Phylanx for automatic generation of
task graphs and the infrastructure used for running them
on HPX for parallel, asynchronous, distributed execution.
We also discuss a suite of analysis and optimization tools
included in the Phylanx toolkit. Figure 3 provides an
overview of program flow in Phylanx.

A. Frontend
The Phylanx frontend provides two essential function-

alities:
• Transform the python code into a Phylanx internal
representation called PhySL (Phylanx Specification
Language).

• Copy-free handling of data objects between Python
and Phylanx executor (in C++).

In addition, the frontend exposes two main functionali-
ties of Phylanx that are implemented in C++ and required
for generation and evaluation of the execution tree in
Python. These functions are the compile and eval methods.

1) Code Transformation: Performance benefits of
many-task runtime systems, like HPX, are more prominent
when the compute load of the system exceeds the available
resources. Therefore, using these runtimes for sections
of a program which are not computationally intensive
may result in little performance benefit. Moreover, the
overhead of code transformation and inherent extrane-
ous work imposed by runtime systems may even cause
performance degradation. Therefore, we have opted to
limit our optimizations to performance critical parts of
the code which we call computational kernels. The Phy-
lanx frontend provides a decorator (@Phylanx) to trigger
transformation of kernels into the execution tree.
We have developed a custom internal representation

of Python AST in order to facilitate the analysis of
static optimizations and streamline the generation of the
execution tree. The human-readable version of the AST,
aka PhySL, is automatically generated and compiled into
the execution tree by the frontend. More details on this
compilation process can be found in IV-B. The benefit of
using PhySL as the intermediate representation is twofold:
(1) it closely reflects the nodes of the execution tree as
each PhySL node represents a function that will be run
by an HPX task during evaluation, and (2) it can be
used for debugging and analyzing purposes for developers
interested in custom optimizations.
The compiled kernel is cached and can be be invoked

directly in Python or in other kernels.
2) Data Handling: Phylanx’s data structures rely on

the high-performance open-source C++ library Blaze [24],
[25]. Blaze already supports HPX as a parallelization
library backend and it perfectly maps its data to Python
data structures. Each Python list is mapped to a C++
vector and 1-D and 2-D NumPy arrays are mapped to a
Blaze vector and Blaze matrix respectively. To avoid data
copies between Python and C++, we take advantage of
Python buffer protocol through pybind11 library. Figure 1
shows how Phylanx manages interactions with external
libraries.

B. Execution Tree

After the transformation phase, the frontend passes the
generated AST to the Phylanx compiler to construct the
execution tree where nodes are primitives and edges rep-
resent dependencies between parents and children pairs.
Primitives are the cornerstones of the Phylanx toolkit

and building blocks of the Phylanx execution tree. Prim-
itives are C++ objects which contain a single execute
function. This function is wrapped in a dataflow and can be

Fig. 2. Phylanx visualization tool provides a side-by-side view of the code and the corresponding expression tree along with performance
information collected by builtin performance counters.

as simple as a single instruction or as complex as a sophis-
ticated algorithm. We have implemented and optimized
most Python constructs as well as many NumPy methods
as primitives. Futurization and asynchronous execution
of tasks are enabled through these constructs. One can
consider primitives as lightweight tasks that are mapped
to HPX threads. Each primitive accepts a list of futures
as its arguments and returns the result of its wrapped
function as a future. In this way, the primitive can accept
both constant values known at compile time as well as
the results of previous primitives known only after being
computed.

C. Futurized Execution
Upon the invocation of a kernel, Phylanx triggers the

evaluation function of the root node. This node represents
the primitive corresponding to the result of the kernel. In
the evaluation function, the root node will call the eval-
uation function of all of its children and those primitives
will call the evaluation functions of their children. This
process will continue until the the leaf nodes have been
reached where the primitives evaluation functions do not
depend on other primitives to be resolved (e.g. a primitive
which is a constant, a primitive which reads from a file,
etc.). It is important to note that it does not matter where
each primitive is placed in a distributed system as HPX
will resolve its location and properly call its eval function
as well as return the primitive’s result to the caller.

As the leaf primitives are reached and their values,
held in futures, are returned to their parents the tree will

unravel at the speed of the critical path through the tree.
The results from each primitive satisfy one of the inputs
of its parent node. After the root primitive finishes its
execution, the result of the entire tree is then ready to be
consumed by the calling function.

D. Instrumentation

Application performance analysis is a critical part of
developing a parallel application. Phylanx enables perfor-
mance analysis by providing performance counters to pro-
vide insight into its intrinsics. Time performance counters
show the amount of time that is spent executing code in
each subtree of the execution tree, and count performance
counters show how many times an execution tree node
is executed. This data aides in identifying performance
hotspots and bottlenecks, which can either be directly
used by the users or fed into APEX [26] for adaptive load
balancing. The data can also be used by the visualization
tools described in the next section.

E. Visualization

Embedding annotations and measurements for visu-
alizations and performance analysis within the runtime
provides a way to determine where performance bottle-
necks are occurring and to gain insight into the resource
management within the machines. We show an example of
Phylanx’s visualization capabilities in Figure 2. This tree
shows the execution tree from a test run of the factorial
algorithm, implemented in Python. In the tree, nodes are

Python

Decorated
Code

Output

Transformation
Rules Frontend

Optimizer

Compiler

Executer

HPX

AST

AST

AST

Execution Tree

Tasks

Result

Fig. 3. Phylanx program flow. Phylanx frontend generates AST
(PhySL) of the decorated Python code. The AST could be directly
passed to the compiler to generate the execution tree or, optionally,
fed to the optimizer first and then the compiler. Once the Kernel is
invoked, Phylanx triggers the evaluation of the the execution tree on
HPX. After finishing the evaluation, the result is returned in Python.

Phylanx primitives and edges show parent/child relation-
ships regarding how the child was called. The nodes are
colored purple for the inclusive time, the total time spent
executing that primitive and its children. A switch in the
toolbox in the upper left corner allows for the user to
switch from inclusive time to exclusive time, the time spent
executing only that primitive. This allows for identification
of hotspots in the tree. Each primitive can be executed
asynchronously or synchronously in the parent thread.
This distinction is shown in dotted versus solid circles for
nodes in the tree. The tree is interactive, allowing users to
drill down and focus by expanding or collapsing tree nodes
and hover for more details. The visualization is linked
with a code view showing the Python source code (the
corresponding PhySL is shown as well). Hovering over a
node or line in one will highlight the corresponding line or
node in the other.

V. Experiments

This section details the performance comparison of
PhySL to a corresponding Python implementation utiliz-
ing multiple cores on top of NumPy using OpenBlas for
BLAS/LAPACK routines. We used reference implementa-

tions of Alternating Least Squares [27] and Binary Logistic
Regression [28] algorithms to analyze the performance of
equivalent code written in PhySL. The Logistic Regres-
sion coupled with Alternating Least Squares provides a
wide variety of computationally intensive operations which
makes them useful for experimentation and are also used
as benchmarks for the Intel MKL Library [29].

A. Experimental Testbed
We ran our experiments on LSU’s Rostam cluster.

These experiments were performed on a node consisting
of Intel(R) Xeon(R) CPU E5-2660 v3 clocked at 2.6GHZ,
with 10 cores (20 threads), and 128 GB DDR4 Mem-
ory. All Experiments were performed on HPX v1.2 com-
mit 9182ac6182, Phylanx v0.1 commit 116c46a8 Python
v3.5.1, NumPy v1.15.0 , OpenBlas v0.3.2 and Blaze v3.3.

B. LRA
We implemented the Binary Logistic Regression al-

gorithm in Python and used the Phylanx decorator to
generate the corresponding PhySL code. In order to test
the performance of the two implementations of the Lo-
gistic regression algorithm, we created a custom binary
classification dataset with 10,000 features and 10,000 ob-
servations.

Figure 5 shows the performance of the Python and
PhySL codes in terms of the execution time. Our ex-
periments show that on a single thread both PhySL and
Python perform on par with each other. However, PhySL
scales faster up to eight cores and plateaus afterwards
while Python scales at a lower rate but up to 20 cores.

C. Alternating Least Squares
Alternating Least Squares is a method used in collabora-

tive filtering based on matrix factorization [27]. Collabora-
tive filtering as a recommender system is utilized to predict
a user’s interest in a set of items based on other users in-
teraction with those items, and also the user’s interactions
with other items. In order to test the implementation of
the Alternating Least Squares algorithm in Phylanx, we
implemented the algorithm in Python using NumPy and
generated the corresponding PhySL implementation using
the Phylanx decorator . The two implementations of the
algorithms were tested on MovieLens-20M dataset [30],
which is a collection of 20 million ratings gathered by
138,000 users over 27,000 movies.

Figure 6 shows the execution times of the PhySL and
Python versions of Alternating least squares. Both ver-
sions were run with number of factors set to 40 while
the number of movies were set to 5,000, 10,000 and
20,000. The PhySL version of the ALS algorithm starts
to outperform the Numpy/Python version as the number
of threads increases. The fastest time for the Phylanx
implementation is seen using 16 threads and the number of
movies set to 20,000. When the number of movies were set
to 10,000, the fastest time was seen using 12 threads. There

Fig. 4. Speedup of the PhySL implementation of the ALS algorithm over the Python implementation. Number of threads represents the
number of OS threads used by both Phylanx and Python.

Fig. 5. Comparing execution time of the reference implementation of
the Logistic Regression algorithm in Python with the corresponding
PhySL code. Each datapoint represents the average execution time
over ten runs.

Fig. 6. Comparing execution time of the reference implementation
of the Alternating Least Squares algorithm in Python and the
corresponding PhySL code. Each datapoint represents the average
execution time over ten runs.

is a noticeable difference in execution time between the
Python and the PhySL implementation when the number
of threads is set to one. In this configuration the Phylanx
version is much slower than the Python implementation.
Such behavior is not seen with the Logistic Regression
example. This behavior is currently under investigation.

Figure 4 shows the speedup of the Phylanx implemen-
tation of the Alternating least square using the Python
implementation’s performance as the baseline. Both im-
plementations were run with the number of factors set
to 10, 20 and 40. while the number of movies were set
to 5,000, 10,000, and 20,000. It is seen that the Phylanx
implementation outperforms the Python implementation
as the number of threads are increased on wide variety of
problem sizes.

VI. Conclusion

Despite the solutions provided by current machine
learning frameworks, better methodologies are needed to
process the large amounts of data consumed by cutting
edge machine learning applications in a timely manner.
These new tools need to be accessible to the domain
scientists who currently use them as well as efficient with
the computational resources provided to them.

In this paper, we have introduced a novel approach
for transformation and execution of high-productivity lan-
guages on top of the highly performant, low-level HPX
runtime system. We have implemented our approach along
with a suit of performance and visualization tools in the
Phylanx array processing toolkit. Phylanx enables auto-
matic generation of asynchronous task graphs from regular
Python code and facilitates finer grain configurability.
Our early experiments on representative applications and
datasets demonstrate the performance benefits of our
methods on a single node. However, we expect that the real
benefits of our approach will manifest in a distributed run-
time environment. Here the asynchronous execution and

locality abstractions provided by HPX stand to benefit
users immensely by drastically decreasing execution times
with little effort from the user.

VII. Future work
As the Phylanx technology matures we intend focus on

two major goals: first, to improve the performance of single
node runs and second to extend the framework to auto-
matically run user supplied codes in distributed settings.
Improving single node runs will entail implementing more
basic algorithms utilized by the machine learning commu-
nity and using that experience to improve the underlying
toolkit. We anticipate that we will be able to uncover
performance bugs as well as opportunities to improve the
performance of our toolkit from this experience. One such
opportunity is the support for hardware accelerators such
as GPUs.

Phylanx plans to enable users to execute their existing
Python code on clusters. This provides them with the
ability to handle large data sets and achieve better scaling.
While Phylanx is built with distributed runs in mind
(execution trees can span across several nodes and eval-
uation is done using features from HPX), distributed runs
will require extensions to the current toolkit to determine
optimal data layout and data tiling given the algorithms
provided by the user. We also intend to look at using code
transformations to replace slower user-written algorithms
with more efficient ones. While these goals present a
research challenge, we believe that the support provided
by the HPX runtime system will substantially reduce the
barriers to providing distributed execution capabilities.

VIII. Acknowledgments
This work was funded by the NSF Phylanx project

award #1737785. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

References
[1] C. Snijders, U. Matzat, and U.-D. Reips, “" big data": big gaps of

knowledge in the field of internet science,” International Journal
of Internet Science, vol. 7, no. 1, pp. 1–5, 2012.

[2] A. D. Mauro, M. Greco, and M. Grimaldi, “A formal
definition of big data based on its essential features,” Library
Review, vol. 65, no. 3, pp. 122–135, 2016. [Online]. Available:
https://doi.org/10.1108/LR-06-2015-0061

[3] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani,
and S. U. Khan, “The rise of big data on cloud computing:
Review and open research issues,” Information Systems, vol. 47,
pp. 98 – 115, 2015.

[4] S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013
International Conference on Collaboration Technologies and
Systems (CTS), May 2013, pp. 42–47.

[5] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin,
“A survey of open source tools for machine learning with big
data in the hadoop ecosystem,” Journal of Big Data, vol. 2,
no. 1, p. 24, Nov 2015.

[6] O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagianni-
dis, and K. Taha, “Efficient machine learning for big data: A
review,” Big Data Research, vol. 2, no. 3, pp. 87 – 93, 2015, big
Data, Analytics, and High-Performance Computing.

[7] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv
e-prints, vol. abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature,
vol. 521, no. 7553, p. 436, 2015.

[10] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address
space,” in Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, ser.
PGAS ’14. New York, NY, USA: ACM, 2014, pp. 6:1–6:11.

[11] T. Heller, P. Diehl, Z. Byerly, J. Biddiscombe, and H. Kaiser,
“HPX – An open source C++ Standard Library for Parallelism
and Concurrency,” in Proceedings of OpenSuCo 2017, Denver,
Colorado USA, November 2017 (OpenSuCo’17), 2017, p. 5.

[12] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy
array: a structure for efficient numerical computation,” Comput-
ing in Science & Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[13] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Anger-
mueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Be-
likov et al., “Theano: A python framework for fast computation
of mathematical expressions,” arXiv preprint arXiv:1605.02688,
2016.

[14] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch:
Tensors and dynamic neural networks in python with strong
gpu acceleration,” 2017.

[15] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based
python jit compiler,” in Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC. ACM, 2015, p. 7.

[16] Dask Development Team, Dask: Library for dynamic task
scheduling, 2016. [Online]. Available: http://dask.pydata.org

[17] W. McKinney, “pandas: a foundational python library for data
analysis and statistics.”

[18] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active messages: a mechanism for integrated communication
and computation,” in ACM SIGARCH Computer Architecture
News, vol. 20, no. 2. ACM, 1992, pp. 256–266.

[19] B. Wagle, S. Kellar, A. Serio, and H. Kaiser, “Methodology
for adaptive active message coalescing in task based runtime
systems,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2018,
pp. 1133–1140.

[20] H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced
parallel execution model for scaling-impaired applications,” in
Parallel Processing Workshops, 2009. ICPPW’09. International
Conference on. IEEE, 2009, pp. 394–401.

[21] H. Kaiser, HPX and C++ Dataflow, 2015. [Online]. Available:
http://stellar-group.org/2015/06/hpx-and-cpp-dataflow/

[22] H. Kaiser, T. Heller, D. Bourgeois, and D. Fey, “Higher-level
parallelization for local and distributed asynchronous task-
based programming,” in Proceedings of the First International
Workshop on Extreme Scale Programming Models and Middle-
ware. ACM, 2015, pp. 29–37.

[23] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11
– seamless operability between c++11 and python,” 2016,
https://github.com/pybind/pybind11.

[24] K. Iglberger, G. Hager, J. Treibig, and U. Rüde, “Expression
templates revisited: a performance analysis of current method-
ologies,” SIAM Journal on Scientific Computing, vol. 34, no. 2,
pp. C42–C69, 2012.

[25] ——, “High performance smart expression template math li-
braries,” in 2012 International Conference on High Performance
Computing Simulation (HPCS), July 2012, pp. 367–373.

[26] K. A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A. D.
Malony, T. Sterling, and R. Fowler, “An autonomic performance
environment for exascale,” Supercomputing frontiers and inno-
vations, vol. 2, no. 3, pp. 49–66, 2015.

[27] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on. Ieee, 2008, pp. 263–
272.

[28] C. Bishop, “Pattern recognition and machine learning (infor-
mation science and statistics), 1st edn. 2006. corr. 2nd printing
edn,” Springer, New York, 2007.

[29] A. Iyer and V. Saletore, “Accelerating apache spark
mllib with intel math kernel library (intel mkl),” 2017,
https://blog.cloudera.com/blog/2017/02/accelerating-apache-
spark-mllib-with-intel-math-kernel-library-intel-mkl/.

[30] [Online]. Available: http://grouplens.org/datasets/movielens/

1

APPENDIX

A. Abstract

The appendix contains the information on how to build and
run the experiments presented in the paper ”Asynchronous
Execution of Python Code on Task-Based Runtime Systems”.
We provide the list of compilers and libraries used to build
HPX and Phylanx as well as instructions to build and run the
experiments.

B. Description
1) Check-list (artifact meta information):
• Program: HPX , Phylanx
• Compilation: GCC 8.1
• Data set: MovieLens, Custom Dataset
• Hardware: Intel(R) Xeon(R) CPU E5-2660, 128 G DDR4

Memory
• Experiment workflow: Range of input sizes, number of

threads
• Publicly available?: Yes
2) How software can be obtained:

HPX can be obtained from https://github.com/
STEllAR-GROUP/hpx, and Phylanx from https:
//github.com/STEllAR-GROUP/phylanx

3) Software dependencies:
• HPX
• Blaze
• Pybind11
• hwloc
• OpenBlas
• NumPy
4) Datasets:

MovieLens dataset: https://grouplens.org/datasets/movielens/
Custom dataset: http://stellar.cct.lsu.edu/files/espm2 2018/

custom dataset 10kx10k.tar.gz

C. Installation

Please refer to Phylanx wiki for build instructions, found
at: https://github.com/STEllAR-GROUP/phylanx/wiki/Build-
Instructions

D. Experiment workflow

For Phylanx LRA, set the environment variable
OMP NUM THREADS to 1 and Run lra csv from the
bin directory of phylanx with the following command line
options

--hpx:threads=num_threads_you_want_to_run_with
--data_csv=/path/to/custom/dataset
--hpx:bind=balanced
--hpx:numa-sensitive
--n=10000
--row_stop=10000
--col_stop=10000

For Phylanx ALS, set the environment variable
OMP NUM THREADS to 1 and Run als csv instrumented
from the bin directory of phylanx with the following command
line options

--hpx:threads=num_threads_you_want_to_run_with
--data_csv=/path/to/MovieLens/dataset
--hpx:bind=balanced
--hpx:numa-sensitive
--iterations=1
--f={40,20,10}
--row_stop=700
--col_stop={20000, 10000, 5000}

For Python LRA, set the environment variable
OMP PLACES to cores and OMP NUM THREADS
to the number of threads you want to run the python example
with. Run the python example by varying the number of
threads for 10000 iterations.

For Python ALS, set the environment variable
OMP PLACES to cores and OMP NUM THREADS
to the number of threads you want to run the python example
with. Run the python example by varying the number of
threads. Also vary the number of factors and number of
movies. In the paper, experiments were performed with
number of factors set to 10, 20 and 40 whereas the number
of movies were set to 5000, 10000 and 20000.

E. Evaluation and expected result

The execution time obtained from both the Phylanx runs
and the Python runs should be compared. The expected
result should look like the one in the graphs presented in the
paper. In order to test whether the output is correct, the last
seven values printed by the alternating least square phylanx
implementation for number of factors set to 40, and number
of movies set to 20000 should be as follows:
-0.00167161, 0.000985893, -0.00264197, -0.00110344,
0.00372654, 0.00290297, 0.00105101
Similarly, the last seven values printed in case of Logistic
Regression Phylanx implementation when run for 10000
iterations with the custom dataset should be as follows:
-1.19866, 1.32052, 0.0529683, -0.790137, -1.09337, -1.12403
, -1.30093

