An Introduction to hpxMP - A Modern OpenMP Implementation
Leveraging HPX, An Asynchronous Many-Task System

Tianyi Zhang
tzhan18@lsu.edu
Center for Computation and
Technology, LSU

R. Tohid
mraste2@lsu.edu
Center for Computation and
Technology, LSU

ABSTRACT

Asynchronous Many-task (AMT) runtime systems have gained in-
creasing acceptance in the HPC community due to the performance
improvements offered by fine-grained tasking runtime systems. At
the same time, C++ standardization efforts are focused on creating
higher-level interfaces able to replace OpenMP or OpenACC in
modern C++ codes. These higher level functions have been adopted
in standards conforming runtime systems such as HPX, giving users
the ability to simply utilize fork-join parallelism in their own codes.
Despite innovations in runtime systems and standardization efforts
users face enormous challenges porting legacy applications. Not
only must users port their own codes, but often users rely on highly
optimized libraries such as BLAS and LAPACK which use OpenMP
for parallization. Current efforts to create smooth migration paths
have struggled with these challenges, especially as the threading
systems of AMT libraries often compete with the treading system
of OpenMP.

To overcome these issues, our team has developed hpxMP, an
implementation of the OpenMP standard, which utilizes the under-
lying AMT system to schedule and manage tasks. This approach
leverages the C++ interfaces exposed by HPX and allows users to
execute their applications on an AMT system without changing
their code.

In this work, we compare hpxMP with Clang’s OpenMP library
with four linear algebra benchmarks of the Blaze C++ library. While
hpxMP is often not able to reach the same performance, we demon-
strate viability for providing a smooth migration for applications
but have to be extended to benefit from a more general task based
programming model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWOCL’19, May 13-15,2019, Boston, MA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6230-6/19/05...$15.00
https://doi.org/10.1145/3318170.3318191

Shahrzad Shirzad
sshirz1@Isu.edu
Center for Computation and
Technology, LSU

Weile Wei
wwei9@lsu.edu
Center for Computation and
Technology, LSU

Patrick Diehl
patrickdiehl@lsu.edu
Center for Computation and
Technology, LSU

Hartmut Kaiser
hkaiser@cct.lsu.edu
Center for Computation and
Technology, LSU

CCS CONCEPTS

« Computing methodologies — Parallel programming lan-
guages;

KEYWORDS

OpenMP, hpxMP, Asynchronous Many-task Systems, C++, clang,
gee, HPX

ACM Reference Format:

Tianyi Zhang, Shahrzad Shirzad, Patrick Diehl, R. Tohid, Weile Wei, and Hart-
mut Kaiser. 2019. An Introduction to hpxMP — A Modern OpenMP Imple-
mentation Leveraging HPX, An Asynchronous Many-Task System. In Inter-
national Workshop on OpenCL (IWOCL’19), May 13-15,2019, Boston, MA, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3318170.3318191

1 INTRODUCTION

The Open Multi-Processing (OpenMP) [OpenMP Consortium 2018]
standard is widely used for shared memory multiprocessing and is
often coupled with the Message Passing Interface (MPI) as MPI+X
[Bader 2016] for distributed programming. Here, MPI is used for
the inter-node communication and X, in this case, OpenMP, for
the intra-node parallelism. Nowadays, Asynchronous Many Task
(AMT) run time systems are emerging as a new parallel program-
ming paradigm. These systems are able to take advantage of fine
grained tasks to better distribute work across a machine. The C++
standard library for concurrency and parallelism (HPX) [Heller et al.
2017] is one example of an AMT runtime system. The HPX API
conforms to the concurrency abstractions introduced by the C++
11 standard [C++ Standards Committee 2011] and to the parallel
algorithms introduced by the C++ 17 standard [C++ Standards Com-
mittee 2017]. These algorithms are similar to the concepts exposed
by OpenMP, e.g. #pragma omp parallel for.

AMT runtime systems are becoming increasing used for HPC
applications as they have shown superior scalability and parallel
efficiency for certain classes of applications (see [Heller et al. 2018]).
At the same time, the C++ standardization efforts currently focus
on creating higher-level interfaces usable to replace OpenMP (and
other #pragma-based parallelization solutions like OpenACC) for
modern C++ codes. This effort is driven by the lack of integration
of #pragma based solutions into the C++ language, especially the
language’s type system.

IWOCL’19, May 13-15,2019, Boston, MA, USA

Both trends call for a migration path which will allow existing
applications that directly or indirectly use OpenMP to port potions
of the code an AMT paradigm. This is especially critical for ap-
plications which use highly optimized OpenMP libraries where
it is not feasible to re-implement all the provided functionalities
into a new paradigm. Examples of these libraries are linear algebra
libraries [Anderson et al. 1999; Blackford et al. 2002; Galassi et al.
2002; Guennebaud et al. 2010; Iglberger et al. 2012; Rupp et al. 2016;
Sanderson and Curtin 2016; Wang et al. 2013], such as the Intel
math kernel library or the Eigen library.

For these reasons, it is beneficial to combine both technologies,
AMT+OpenMP, where the distributed communication is handled by
the AMT runtime system and the intra-node parallelism is handled
by OpenMP or even combine OpenMP and the parallel algorithms
on a shared memory system. Currently, these two scenarios are not
possible, since the light-weighted thread implementations usually
present in AMTs interferes with the system threads utilized by the
available OpenMP implementations.

To overcome this issue, hpxMP, an implementation of the OpenMP
standard [OpenMP Consortium 2018] that utilizes HPX’s light-
weight threads is presented in this paper. The hpxMP library is
compatible with the clang and gcc compiler and replaces their
shared library implementations of OpenMP. hpxMP implements all
of the OpenMP runtime functionalities using HPX’s lightweight
threads instead of system threads.

Blaze, an open source, high performance C++ math library,
[Iglberger et al. 2012] is selected as an example library to vali-
date our implementation. Blazemark, the benchmark suite available
with Blaze, is used to run some common benchmarks. The mea-
sured results are compared against the same benchmarks run on
top of the compiler-supplied OpenMP runtime. This paper focuses
on the implementation details of hpxMP as a proof of concept im-
plementing OpenMP with an AMT runtime system. We use HPX
as an exemplary AMT system that already exposes all the required
functionalities.

The paper is structured as follows: Section 2 emphasizes the
related work. Section 3 provides a brief introduction to HPX’s con-
cepts and Section 4 a brief introduction to OpenMP’s concepts
utilized in the implementation in Section 5. The benchmarks com-
paring hpxMP with clang’s OpenMP implementation are shown in
Section 6. Finally, we draw our conclusions in Section 7.

2 RELATED WORK

Exploiting parallelism on multi-core processors with shared mem-
ory has been extensively studied and many solutions have been
implemented. The POSIX Threads [Alfieri 1994] execution model
enables fine grain parallelism independent of any language. At
higher levels, there are also library solutions like Intel’s Threading
Building Blocks (TBB) [Intel 2019] and Microsoft’s Parallel Pattern
Library (PPL) [Microsoft 2010]. TBB is a C++ template library for
task parallelism while PPL provides features like task parallelism,
as well as parallel algorithms and containers with an imperative
programming model. There are also several language solutions.
Chapel [Chamberlain et al. 2007] is a parallel programming lan-
guage with parallel data and task abstractions. The Cilk family of

Zhang, et al.

languages [Leiserson 2009] are general-purpose programming lan-
guages which target multi-thread parallelism by extending C/C++
with parallel loop constructs and a fork-join model. Kokkos [Ed-
wards et al. 2014] is a package which exposes multiple parallel
programming models such as CUDA and pthreads through a com-
mon C++ interface. Open Multi-Processing (OpenMP) [Dagum and
Menon 1998] is a widely accepted standard used by application
and library developers. OpenMP exposes fork-join model through
compiler directives and supports tasks.

The OpenMP 3.0 standard? introduced the concept of task-based
programming. The OpenMP 3.1 standard? added task optimization
within the tasking model. The OpenMP 4.0 standard® offers user
a more graceful and efficient way to handle task synchronization
by introducing depend tasks and task group. The OpenMP 4.5 stan-
dard* was released with its support for a new task-loop construct,
which is providing a way to separate loops into tasks. The most
recent, the OpenMP 5.0 standard® supports detached tasks.

There have also been efforts to integrate multi-thread parallelism
with distributed programming models. Charm++ has integrated
OpenMP into its programming model to improve load balance [PPL
2011]. However, most of the research in this area has focused on
MPI+X [Bader 2016; Barrett et al. 2015] model.

3 C++ STANDARD LIBRARY FOR
CONCURRENCY AND PARALLELISM (HPX)

This section briefly describes the features of the C++ Standard Li-
brary for Concurrency and Parallelism (HPX) [Heller et al. 2017]
which are utilized in the implementation of hpxMP in the Sec-
tion 5. HPX facilitates distributed parallel applications of any scale
and uses fine-grain multi-threading and asynchronous communi-
cations [Khatami et al. 2016]. HPX exposes an API that strictly
adheres the current ISO C++ standards [Heller et al. 2017]. This
approach to standardization encourages programmers to write code
that is high portability in heterogeneous systems [Copik and Kaiser
2017].

HPX is highly interoperable in distributed parallel applications,
such that, it can be used on inter-node communication setting of
a single machine as well as intra-node parallelization scenario of
hundreds of thousands of nodes [Wagle et al. 2018]. The future
functionality implemented in HPX permits threads to continually
finish their computation without waiting for their previous steps
to be completed which can achieve a maximum possible level of
parallelization in time and space [Khatami et al. 2017].

3.1 HPX Threads

The HPX light-weight threading system provides user level threads,
which enables fast context switching [Biddiscombe et al. 2017].
With lower overheads per thread, programs are able to create and
schedule a large number of tasks with little penalty [Wagle et al.
2018]. The advantage of this threading system combined with the fu-
ture functionality in HPX facilitates auto-parallelization in a highly
efficient fashion as such combination allows the direct expression
Lhttps://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
Shttps://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdff

“https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
Shttps://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

An Introduction to hpxMP

of the generated dependency graph as an execution tree generated
at runtime [Grubel et al. 2015].

3.2 HPX Thread Scheduling and Policies

The adaptive thread scheduling system employed in HPX improves
performance of parallel applications [Biddiscombe et al. 2017]. The
built-in scheduling policies enable optimal task scheduling for a
given application and/or algorithm [Heller et al. 2017]. The pro-
grammers can code efficiently as they can focus on algorithms or
application development itself instead of manually scheduling CPU
resources. Also, the built-in scheduling policies allow users to pro-
vide their own scheduling policies if they require more specific
control on application-level.

The HPX runtime now supports eight different thread scheduling
policies: priority local scheduling (default option): this policy creates
one queue per OS thread. The OS threads remove waiting tasks
from the queue and start task execution accordingly. The number
of high priority queues equal to the number of OS threads. Static
priority scheduling: the static priority scheduling policy maintains
one queue per OS thread from which each OS thread places its
tasks. Round Robin model is used in this policy. Local scheduling:
this policy maintains one queue per OS threads from which each
OS thread removes waiting tasks from the queue and start task
execution accordingly. Global scheduling: this policy maintains one
shared queue from which all OS threads pull waiting tasks. ABP
scheduling: this policy maintains a double ended lock-free queue
per OS thread. Threads are inserted on the top of the queue and
are stolen from the bottom of the queue during the work stealing.
Hierarchy scheduling policy: this policy constructs a tree of task
items, and each OS thread traverses through the tree to obtain new
task item. Periodic priority scheduling policy: this policy arranges
one queue of task items per OS thread, a couple of high priority
queues and one low priority queue.

These policies can be categorized into three types: thread local:
the thread local is currently set as the default scheduling option.
This policy schedules one queue for each OS core, and the queues
with high priority will be scheduled before any other works with
lower priority; static: the static scheduling policy follows round
robin principle and the thread stealing is not allowed in this pol-
icy; hierarchical: the hierarchical scheduling policy utilizes a tree
structure of run queues. The OS threads need to traverse the tree
to new task items.

4 INTEGRATION OF HPX IN OPENMP
APPLICATIONS

This section describes the integration of HPX to the OpenMP 4.0°
specification. Figure 1 illustrates how hpxMP fits in an OpenMP
application. A user-defined application with OpenMP directives,
library functions, and environment variable can be compiled with
any compiler that supports OpenMP. The hpxMP shared library
adds an additional layer, marked in gray, which carries out the
parallel computation. Instead of calling the OpenMP functions and
running them on OpenMP threads, the equivalent hpxMP functions
are called redirecting the program to the corresponding function-
ality in HPX. HPX employs light-weight HPX threads following

Chttps://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf

IWOCL’19, May 13-15,2019, Boston, MA, USA

User ‘

End User and Application ‘
Layer i

OpenMP OpenMP
Program | Per b Environment
Layer Directives, Library Variabl
Compiler Function fariable Create HPX

thread

:
| |

System ‘ 0S/system Support for shared memory and threading ‘
Layer
Machine

‘ Shared Address Spaces ‘

Figure 1: Layers of an hpxMP application. Applications are
compiled with OpenMP flags and linked against the hpxMP
runtime library where HPX threads perform the compu-
tation in parallel. Gray layers are implemented in hpxMP.
This figure is adapted from [Mattson 2013].

thread scheduling policies for parallel computing. For more details
see Section 3.

Table 1 provides the list of the directives that are currently sup-
ported by hpxMP. A list of runtime library functions implemented
in hpxMP runtime library is available in Table 2. In the next section,
the detailed implementation of these directives is discussed.

5 IMPLEMENTATION OF HPXMP

This section provides an overview of prominent OpenMP and
OpenMP Performance Toolkit (OMPT) functionalities and elab-
orates on implementations of these functionalities in hpxMP.

The fundamental directives described in the OpenMP specifica-
tion [de Supinski Michael Klemm 2017] are shown in Listing 1. It is
important to note that implementation of OpenMP directives may
differ based on the compiler. hpxMP is mapped onto LLVM-Clang
as specified by LLVM OpenMP Runtime Library’. However, hpxMP
also supports GCC® entry by mapping the function calls generated
by the GCC compiler on to the Clang entry.

Listing 1: Fundamental OpenMP directives

#pragma omp parallel
#pragma omp for
#pragma omp task

5.1 Parallel Construct

Parallel construct initiates the parallel execution of the portion of
the code annotated by the parallel directive. The directive #pragma

omp parallel with its associated structured block is treated as a
function call to __kmpc_fork_call, which preprocesses the argu-
ments passed by the compiler and calls the function named fork,
implemented in hpxMP runtime, see Figure 1. The implementation
of __kmpc_fork_call is shown in Listing 2. HPX threads, as many
as requested by the user, are created during the fork call which
explicitly registers HPX threads, see Listing 3. Each HPX thread

"https://openmp.llvm.org/Reference.pdf
8https://gec.gnu.org/onlinedocs/libgomp/

IWOCL’19, May 13-15,2019, Boston, MA, USA

Zhang, et al.

Table 1: Directives implemented in the program layer of hpxMP, see Figure 1. The corresponding functions are the main part

of hpxMP runtime library.

Pragmas Implemented in hpxMP

#pragma omp atomic
#pragma omp critical
#pragma omp master
#pragma omp parallel
#pragma omp single

#pragma omp barrier
#pragma omp for
#pragma omp ordered
#pragma omp section
#pragma omp task depend

Table 2: Runtime library functions in hpxMP’s program layer, see Figure 1. The following functional APIs are provided to

users.

Runtime Library Functions in hpxMP

omp_get_dynamic
omp_get_num_procs
omp_get_thread_num
omp_get_wtime
omp_init_lock
omp_set_dynamic
omp_set_nest_lock
omp_test_lock
omp_unset_lock

omp_get_max_threads
omp_get_num_threads
omp_get_wtick
omp_in_parallel
omp_init_nest_lock
omp_set_lock
omp_set_num_threads
omp_test_nest_lock
omp_unset_nest_lock

Table 3: OMPT callbacks implemented in hpxMP runtime li-
brary, see Figure 1. First party performance analysis toolkit
for users to develop higher level performance analysis pol-

icy.

OMPT callbacks

ompt_callback_thread_begin
ompt_callback_thread_end
ompt_callback_parallel_begin
ompt_callback_parallel_end
ompt_callback_task_create
ompt_callback_task_schedule
ompt_callback_implicit_task

follows HPX scheduling policies, see Section 3, performing its own
work under the structured parallel block.

5.2 Loop Scheduling Construct

Another common OpenMP construct is the loop construct which
runs several iterations of a for loop in parallel where each instance
runs on a different thread in the team. A team is defined as a set of
one or more threads in the execution of a parallel region [de Supin-
ski Michael Klemm 2017]. The loops are divided into chunks, and
the scheduler determines how such chunks are distributed across
the threads in the team. The default schedule type is static where
the chunk size is determined by the threads and number of loops.
Each thread gets approximately the same amount of loops and the
structured block is executed in parallel.

For the static schedule, the directive #pragma omp for with its
associated structured for loop block invoke the following sequence
of function calls: __kmpc_for_static_init,__kmpc_dispatch_next
and __kmpc_dispatch_fini.Chunks are distributed among threads
in a round-robin fashion, see Listing 4.

5.3 Task Construct

Task Construct creates explicit tasks in hpxMP. When a thread sees
this construct, a new HPX thread is created and scheduled based
on HPX thread scheduling policies, see Section 3.

The directive #pragma omp task and its associated structured
block initiate a series of function calls: __kmpc_omp_task_alloc,
__kmpc_fork_call, see Listing 5.

A task object is allocated, initialized, and returned to the com-
piler by the task allocation function __kmpc_omp_task_alloc. A
normal priority HPX thread is then created by the compiler gener-
ated function call __kmpc_omp_task and ready to execute the task
allocated by prior functions.

5.4 OpenMP Performance Toolkit

OpenMP Performance Toolkit (OMPT) is an application program-
ming interface (API) for first-party performance tools. It is inte-
grated into the hpxMP runtime system and enables users to con-
struct powerful and efficient custom performance tools. The imple-
mented callback functions, see Table 3, make it possible for users
to track the behavior of threads, parallel regions, and tasks.

The Implementation of the parallel begin callback is shown in
Listing 6. This piece of code calls the user-defined callbacks and is
hooked into the hpxMP runtime before the parallel region actually
begins.

O 0 N N U R W N

_
=

[S)

[S O N N U

O 00 N QN YT R W N

N e
W N = O

An Introduction to hpxMP IWOCL’19, May 13-15,2019, Boston, MA, USA

Listing 2: Implementation of __kmpc_fork_call in hpxMP
void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, ...) {
vector<void*> argv(argc);
va_list ap;
va_start(ap, microtask);

for(int i = 0; i < argc; i++){
argv[i]l = va_arg(ap, void *);

}

va_end(ap);

void ** args = argv.data();

hpx_backend->fork(__kmp_invoke_microtask, microtask, argc, args);
3

Listing 3: Implementation of hpx_runtime::fork in hpxMP

for(int i = 0; i < parent->threads_requested; i++) {

hpx::applier::register_thread_nullary(
std::bind(&thread_setup, kmp_invoke, thread_func, argc, argv, i, &team,
parent,
boost::ref(barrier_mtx), boost::ref(cond), boost::ref(running_threads)),
"omp_implicit_task", hpx::threads::pending,
true, hpx::threads::thread_priority_low, i);

Listing 4: Implementation of __kmpc_for_static_init in hpxMP
void __kmpc_for_static_init(ident_t =*loc, int32_t gtid, int32_t schedtype,
int32_t xp_last_iter, int64_t xp_lower, int64_t xp_upper,
int64_t *p_stride, int64_t incr, int64_t chunk) {
//code to determine each thread's lower and upper bound (xp_lower, #*p_upper)
//with the given thread id, schedule type and stride.
}

Listing 5: Implementation of task scheduling in hpxMP

kmp_task_tx __kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags,

size_t sizeof_kmp_task_t, size_t sizeof_shareds,
kmp_routine_entry_t task_entry){
int task_size = sizeof_kmp_task_t + (-sizeof_kmp_task_t%8);
kmp_task_t *task = (kmp_task_t*)new char[task_size + sizeof_shareds];
task->routine = task_entry;
return task;
3
int __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task)({
//Create a normal priority HPX thread with the allocated task as argument.
hpx::applier::register_thread_nullary(.....)
return 1;

0 N N U R W

IWOCL’19, May 13-15,2019, Boston, MA, USA

Zhang, et al.

Listing 6: Implementation of thread callbacks in hpxMP

if (ompt_enabled.enabled) {

if (ompt_enabled.ompt_callback_parallel_begin) {
ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(

NULL ,

NULL ,&team.parallel_data,

team_size,

__builtin_return_address(0));

3
#tendif

5.5 GCC Support

LLVM OpenMP Runtime Library® provides the gcc compatibility
shims. In order to achieve the GCC support in hpxMP, we exposes
similar shims to map GCC generated entries to Clang. These map-
ping functions preprocess the arguments provided by the compiler
and pass them directly to the hpxMP or call Clang supported entries.
Therefore, programs compiled with GCC or Clang are supported
by hpxMP.

5.6 Start HPX back end

HPX must be initialized before hpxMP can start execution. The HPX
initialization can start both externally or internally. If HPX is started
externally (by applications), hpxMP will initialize HPX internally
before scheduling any work. The function designed to start hpx
back-end properly is written in each function calls generated by
the compiler make sure HPX is properly started before we call any
#pragma omp related functions, see Listing 8.

6 BENCHMARKS

In this paper, four benchmarks are used to compare the performance
between Clang’s implementation of OpenMP and our implemen-
tation of hpxMP, which are daxpy, dense vector addition, dense
matrix addition, and dense matrix multiplication. We tested these
benchmarks are tested on Marvin, a node in the Center of Compu-
tation and Technology (CCT)’s Rostam cluster at Louisiana State
University. The hardware properties of Marvin are shown in Ta-
ble 4 and the libraries and compiler used to build hpxMP and its
dependencies can be found in Table 5.

The benchmark suite of Blazel” is used to analyze the perfor-
mance. For each benchmark, a heat-map demonstrates the ratio,
r, of the Mega Floating Point Operations Per Second (MFLOP/s)
between hpxMP and OpenMP. To make the heat map plots easier
to analyze, only a portion of the larger input sizes n is visualized.
For the overall overview, three scaling graphs with thread number
4, 8, and 16 are plotted associated with each benchmark, showing
the relation between MFLOP/s and size n. The size of the vectors
and matrix in the benchmarks increases arithmetically from 1 to
10 million. We picked these three thread numbers as an example
since the behavior looks similar for all other candidates. Blaze uses
a set of thresholds for different operations to be executed in parallel.
For each of the following benchmarks if the number of elements
in the vector or matrix (depending on the benchmark) is smaller

“https://openmp.llvm.org/Reference.pdf
Ohttps://bitbucket.org/blaze-lib/blaze/wiki/Benchmarks

Table 4: System configuration of the marvin node. All bench-
marks are run on this node.

Category Property
Server Name Rostam
CPU 2 x Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz
RAM 48 GB
Number of Cores 16

Table 5: Overview of the compilers, software, and operating
system used to build hpxMP, HPX, Blaze and its dependen-
cies.

Category Property
(O] CentOS Linux release 7.6.1810 (Core)

Kernel 3.10.0-957.1.3.el7.x86_64
Compiler clang 6.0.1
gperftools 2.7

boost 1.68.0

OpenMP 3.1

HpPX! 140b878

Blaze!? 3.4

than the specified threshold for that operation, it would be executed
single-threaded.

6.1 Dense Vector Addition

Dense Vector Addition(dvecdvecadd) is a benchmark that adds two
dense vectors a and b and stores the result in vector ¢, where a,b €
R™. The addition operation is c[i] = a[i] + b[i]. The parallelization
threshold for daxpy benchmark is set to 38000. So we expect to see
the effect of parallelization only when the vector size gets greater
than or equal to 38000.

The ratio of performance r is shown in Figure2. For small vec-
tors < 103, 258 hpxMP scales less than OpenMP especially when
the thread number is large, but gets closer OpenMP as the vector
size is increasing. Compared to OpenMP, the best performance of
hpxMP is achieved between vector size 431,318 to 2, 180, 065 and
the threads number between 1 to 7. Except for some outliers, hpxMP
is between 0% and 30% slower than the optimized OpenMP version
for larger vector sizes . The scaling plots are shown in Figure6.

QN U R W

An Introduction to hpxMP

IWOCL’19, May 13-15,2019, Boston, MA, USA

Listing 7: Implementation of gcc entry fork call in hpxMP

void

xexpand (KMP_API_NAME_GOMP_PARALLEL) (void (xtask) (void x),

unsigned int flags) {

void *data, unsigned num_threads,

omp_task_data * my_data = hpx_backend->get_task_data();
my_data->set_threads_requested(num_threads);

__kmp_GOMP_fork_call (task,(microtask_t)__kmp_GOMP_microtask_wrapper, 2,

task, data);

Listing 8: Implementation of starting HPX in hpxMP

hpx::start(f, desc_cmdline,
startup_mtx),

argc, argv, cfg,

boost::ref(cond),

For all different number of threads, we see that both implementa-
tions behave similar until the parallelization starts. For vector sizes
between 10° and 10® hpxMP is slower. For larger input sizes the
implementations are comparable again.

43794 40.50.50.30.30.20.20.20.20.10.10.10.10.10.00.00.1

77580 0.40.40.30.30.30.30.20.20.20.10.10.10.10.1 0.8
103258 0.50.50.40.40.30.30.30.20.20.20.10.10.10.1
431318 0.50.40.40.30.30.3
S 764102 0-63
% 1017019 °
2180065 .
4248326 0.
7526167
10000000 0.2
12 3 456 7 8 910111213141516
number of threads
0.0

Figure 2: Performance Ratio using dvecdvecadd Benchmark
(hpxMP/OpenMP)

6.2 Daxpy

Daxpy is a benchmark to multiply a number f with a dense vector
a, add the result with a dense vector b, and store the result in same
vector b, where f € R, and a,b € R". The operation used for
this benchmark is b[i] = b[i] + 3.0 * a[i]. Same as dvecdvecadd
benchmark, the parallelization threshold for daxpy benchmark is
set to 38,000. So we expect to see the effect of parallelization only
when the vector size gets > 38, 000.

The ratio of performance r is shown in Figure3. For small vectors
< 103, 258 hpxMP scales less than OpenMP especially when the
thread size is large but gets closer OpenMP as the vector size is in-
creasing. Compared to OpenMP, the best performance of hpxMP is
achieved between vector size 431,318 to 1,017, 019 and the threads
number between 1 to 8. Except for some exceptions, hpxMP is be-
tween 0% and 40% slower than the optimized OpenMP version for

std::bind(&wait_for_startup,
boost::ref(running)));

boost::ref(

larger vector sizes The scaling plot is shown in Figure7 shows that
for all different number of threads, we see that both implementa-
tions behave similarly until the parallelization starts. For vector
sizes between 10° and 10° hpxMP is slower but for larger input
sizes the implementations are comparable again.

1.0
43794 J9750.40.30.30.20.20.20.20.10.10.10.10.10.10.10.1
77580 0.40.40.30.30.30.30.20.20.10.10.10.10.10.1
103258 0.40.50.40.40.40.30.30.20.10.10.10.10.10.1 08
431318 0.40.40.30.40.30.3
S 764102 3
8 062
N 1017019 °
2180065
4248326
7526167 0.4
10000000
12345678 9101112131415 16 05

number of threads

Figure 3: Performance Ratio using daxpy Benchmark
(hpxMP/OpenMP)

6.3 Dense Matrix Addition

Dense Matrix Addition(dmatdmatadd) is a benchmark to add two
dense matrixA and B and stores the result in matrix C, where A, B €
R™" The matrix addition operation is C[i, j] = A[i, j] + B[, j]. The
ratio of performance r is shown in Figure4. The scaling plot is shown
in Figure4. For the dmatdmatadd benchmark, the parllelization
threshold set by Blaze is 36, 100. Whenever the target matrix has
more than or equal to 36, 100 elements (corresponding to matrix
size 190 by 190), this operation is executed in parallel.

Figure4 shows that OpenMP performs better especially when the
matrix size is small and the number of thread is large. For a larger
number of threads, hpxMP gets closer to OpenMP for larger matrix
sizes. Except for some exceptions, hpxMP is between 0% and 40%
slower than the optimized OpenMP version. Figure8 shows that for
all different number of threads, we see that both implementations

IWOCL’19, May 13-15,2019, Boston, MA, USA

behave similar until the parallelization starts. For matrix sizes be-
tween 230 and 455 hpxMP is slower but the implementations are
comparable again as the input size is increasing.

12

300
455
523 0. 0.40.40.30.30.40.3 08
S 600 0.40.50.40.40.40.4 3
@ 793 0.6 2
1048 0.6
3193 0.4
123 456 7 8 9101112131415 16 02

number of threads

Figure 4: Performance Ratio using dmatdmatadd Bench-
mark (hpxMP/OpenMP)

6.4 Dense Matrix Multiplication

Dense Matrix Multiplication(dmatdmatmult) is a benchmark that
multiplies two dense matrix A and B and stores the result in matrix
C, where A, B € R™", The matrix addition operation is C = A B.
The ratio of performance r is shown in Fig.5. The scaling plot is
shown in Fig.9. For the dmatdmatmult benchmark, the paralleliza-
tion threshold set by Blaze is 3,025. Whenever the target matrix has
more than or equal to 36, 100 elements (corresponding to matrix
size 55 by 55), this operation is executed in parallel.

Fig.5 shows that OpenMP outperforms hpxMP only when the
matrix size is between 230 and 300 and the number of thread is
between 12 to 16. hpxMP gets as fast as OpenMP for other vector
sizes. Fig.9 shows that for all different number of threads, we see
that both implementations behave similar until the parallelization
starts. For matrix sizes between 74 and 113 hpxMP is slower. For
larger input sizes, the implementations are comparable again.

7 CONCLUSION AND OUTLOOK

This paper presents the design and architecture of an OpenMP run-
time library built on top of HPX that supports most of the OpenMP
V3 specification. We have demonstrated its full functionality by
running various linear algebra benchmarks of the Blaze C++ li-
brary that for the tested functionalities relies on OpenMP for its
parallelization needs. By replacing the compiler-supplied OpenMP
runtime with our own, we were able to compare the performance of
the two implementations. In general, our implementation is not able
to reach the same performance compared to the native OpenMP
solution yet. This is in part caused by Blaze being optimized for
the compiler-supplied OpenMP implementations. We will work
on optimizing the performance of hpxMP in the future. We have
however demonstrated the viability of our solution for providing a
smooth migration for applications that either directly or indirectly

Zhang, et al.
1.1
1.0
230 0.7 0.6 0.6 0.50.5 0.4
300 0.7 0.7 0.7 0.7 0.6
0.9
455
523
< 0.8
° 600 g
N o
w793
’ L0.7
1048
2100
0.6
3193
7000
0.5
1 2 3 45 6 7 8 910111213 141516
number of threads
—L04

Figure 5: Performance Ratio using dmatdmatmult Bench-
mark (hpxMP/OpenMP)

depend on OpenMP but have to be extended to benefit from a more
general task based programming model.

ACKNOWLEDGMENTS

We thank Jeremy Kemp for providing the initial implementation of
hpxMP'? which was extended by the authors. The work on hpxMP
is funded by the National Science Foundation (award 1737785).

A SOURCE CODE

The source code of hpxMP is available on github!* released under
the BSL 1.0.

REFERENCES

Robert A. Alfieri. 1994. An efficient kernel-based implementation of POSIX threads. In
Proceedings of the USENIX Summer 1994 Technical Conference on USENIX Summer
1994 Technical Conference - Volume 1 (USTC’94). USENIX Association, Berkeley, CA,
USA, 5-5. http://portal.acm.org/citation.cfm?id=1267257.1267262

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK Users’
Guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia,
PA.

David A. Bader. 2016. Evolving MPI+X Toward Exascale. Computer 49, 8 (2016), 10.
https://doi.org/doi.ieeecomputersociety.org/10.1109/MC.2016.232

Richard F Barrett, Dylan T Stark, Courtenay T Vaughan, Ryan E Grant, Stephen L
Olivier, and Kevin T Pedretti. 2015. Toward an evolutionary task parallel integrated
MPI+ X programming model. In Proceedings of the Sixth International Workshop on
Programming Models and Applications for Multicores and Manycores. ACM, 30-39.

John Biddiscombe, Anton Bikineev, Thomas Heller, and Hartmut Kaiser. 2017. ZERO
COPY SERIALIZATION USING RMA IN THE HPX DISTRIBUTED TASK-BASED
RUNTIME. (2017).

L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley,
James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al.
2002. An updated set of basic linear algebra subprograms (BLAS). ACM Trans.
Math. Software 28, 2 (2002), 135-151.

C++ Standards Committee. 2011. ISO/IEC 14882:2011, Standard for Programming Lan-
guage C++ (C++11). Technical Report. ISO/IEC JTC1/SC22/WG21 (the C++ Stan-
dards Committee). https://wg21.link/N3337, last publicly available draft.

C++ Standards Committee. 2017. ISO/IEC DIS 14882, Standard for Programming Lan-
guage C++ (C++17). Technical Report. ISO/IEC JTC1/SC22/WG21 (the C++ Stan-
dards Committee). https://wg21.link/N4659, last publicly available draft.

Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel Pro-
grammability and the Chapel Language. International Journal of High Performance

Bhttps://github.com/kempj/hpxMP
Yhttps://github.com/STEIIAR-GROUP/hpxMP

An Introduction to hpxMP

IWOCL’19, May 13-15,2019, Boston, MA, USA

50004 —— openmp 4 threads 5000 4 —— openmp 8 threads 5000 —— openmp 16 threads
== hpxmp 4 threads == hpxmp 8 threads == hpxmp 16 threads
4000 4000 4000
\
8 3000 1 2 3000 '| 4 3000
o = 1 =
g g ! g
= =) =
2000 1 2000 + " 2000
ki
1000 A 1000 4 1000
04 04 0
10° 10t 10? 10° 10% 10° 10° 107 10° 10t 102 10° 10 10° 10° 107 10° 10t 102 103 10* 10° 10° 107
size n size n size n
(a) (b) ()
Figure 6: Scaling plots for dvecdvecadd Benchmarks for different number of threads: (a) 4, (b) 8, and (c) 16
. —— openmp 4 threads —— openmp 8 threads —— openmp 16 threads
—=~ hpxmp 4 threads -=- hpxmp 8 threads —=- hpxmp 16 threads
80004 8000 S 8000 5
Pl
HiIl(E
6000 6000 Al 6000
v I 1 1 9
2 2 A1 2
) K3 1 1 o
H H 7L H
4000 4 4000 4 / ' 4000
II 1
\
2000 4 2000 4 o 2000
i
04 T T T T T T T T T T T T T T T T
10° 10t 102 103 104 10° 108 107 10° 10t 102 103 10% 10° 108 107
size n size n
(a) (b) ()
Figure 7: Scaling plots for daxpy Benchmarks for different number of threads: (a) 4, (b) 8, and (c) 16
2500 91" penmp 4 threads 35001 ypenmp 8 threads 25004 —— openmp 16 threads
== hpxmp 4 threads 3000 | === hpxmp 8 threads 1 == hpxmp 16 threads
1 v
2000] ‘| 2000 1 I~
25004 i .
' !
!
g 1500 @ 2000 4 9 1500
s s ' s X/
g g g
= = 15004 =
1000 1000 1
1000 1
S0t T 1 e~a MU LA L L v] M=t 4
5004 500
o T T T T T 01 T T T T T 01 T T T T T
10° 10t 102 10° 104 10° 10t 10? 10% 104 10° 10t 10? 10% 104
sizen size n size n
(a) (b) (0
Figure 8: Scaling plots for dmatdmatadd Benchmarks for different number of threads: (a) 4, (b) 8, and (c) 16
60000 J
—— openmp 4 threads —— openmp 8 threads 2000001/~ oenmp 16 threads
=== hpxmp 4 threads SR EENES 1000004 === hpxmp 8 threads I]/ === hpxmp 16 threads g d
50000 Ner=sesagn o 175000 /
150000
40000 80000
125000
g g 60000 + g
2 30000 1 o © 100000
uw o o
= = =
20000 400001 750007
50000 1
10000 4 20000 1
25000 +
01 04 01
10° 10t 10? 10° 104 10° 10! 10? 10® 10¢ 10° 10! 10? 10° 10*
size n size n size n

Figure 9: Scaling plots for dmatdmatmult Benchmarks for different number of threads: (a) 4, (b) 8, and (c) 16

IWOCL’19, May 13-15,2019, Boston, MA, USA

Computing Applications (IJHPCA) 21, 3 (2007), 291-312. https://doi.org/10.1177/
1094342007078442 https://dx.doi.org/10.1177/1094342007078442.

Marcin Copik and Hartmut Kaiser. 2017. Using SYCL as an Implementation Framework
for HPX. Compute. In Proceedings of the 5th International Workshop on OpenCL.
ACM, 30.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science and Engineering 5, 1
(1998), 46-55. https://doi.org/10.1109/99.660313

Bronis R. de Supinski Michael Klemm. 2017. OpenMP Technical Report 6:Version 5.0
Preview 2. Technical Report. OpenMP Architecture Review Board.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns.
7. Parallel and Distrib. Comput. 74, 12 (2014), 3202 - 3216. https://doi.org/10.1016/
j-jpdc.2014.07.003 Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing.

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken,
Michael Booth, and Fabrice Rossi. 2002. GNU scientific library. Network Theory Ltd
3(2002).

Patricia Grubel, Hartmut Kaiser, Jeanine Cook, and Adrian Serio. 2015. The perfor-
mance implication of task size for applications on the hpx runtime system. In Cluster
Computing (CLUSTER), 2015 IEEE International Conference on. IEEE, 682-689.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Thomas Heller, Patrick Diehl, Zachary Byerly, John Biddiscombe, and Hartmut Kaiser.
2017. HPX-An open source C++ Standard Library for Parallelism and Concurrency.

Thomas Heller, Bryce Lelbach, Kevin Huck, John Biddiscombe, Patricia Grubel, Alice
Koniges, Matthias Kretz, Dominic Marcello, David Pfander, Adrian Serio, Juhan
Frank, Geoffrey Clayton, Dirk PflAijger, David Eder, and Hartmut Kaiser. 2018.
Harnessing Billions of Tasks for a Scalable Portable Hydrodynamic Simulation of
the Merger of Two Stars. International Journal of High Performance Computing
Applications (IJHPCA) (2018).

Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Riide. 2012. High performance
smart expression template math libraries. In High Performance Computing and
Simulation (HPCS), 2012 International Conference on. IEEE, 367-373.

Intel. 2019. Intel Thread Building Blocks. http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org.

Zahra Khatami, Hartmut Kaiser, Patricia Grubel, Adrian Serio, and] Ramanujam. 2016.
A massively parallel distributed n-body application implemented with hpx. In 2016
7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA). IEEE, 57-64.

Zahra Khatami, Hartmut Kaiser, and] Ramanujam. 2017. Redesigning op2 compiler to
use hpx runtime asynchronous techniques. arXiv preprint arXiv:1703.09264 (2017).

Charles E. Leiserson. 2009. The Cilk++ concurrency platform. In DAC ’09: Proceedings of
the 46th Annual Design Automation Conference. ACM, New York, NY, USA, 522-527.
https://doi.org/10.1145/1629911.1630048

Tim Mattson. 2013. A "Hands-on” Introduction to OpenMP.

Microsoft. 2010. Microsoft Parallel Pattern Library. http://msdn.microsoft.com/en-us/
library/dd492418.aspx http://msdn.microsoft.com/en-us/library/dd492418.aspx.
OpenMP Consortium. 2018. OpenMP Specification Version 5.0. Technical Re-
port. OpenMP Consortium. https://www.openmp.org/wp-content/uploads/

OpenMP- API-Specification-5.0.pdf.

PPL. 2011. PPL - Parallel Programming Laboratory. http://charm.cs.uiuc.edu/
http://charm.cs.uiuc.edu/.

Karl Rupp, Philippe Tillet, Florian Rudolf, Josef Weinbub, Andreas Morhammer, Tibor
Grasser, Ansgar Jingel, and Siegfried Selberherr. 2016. ViennaCL—Linear Alge-
bra Library for Multi-and Many-Core Architectures. SIAM Journal on Scientific
Computing 38, 5 (2016), S412-5439.

Conrad Sanderson and Ryan Curtin. 2016. Armadillo: a template-based C++ library
for linear algebra. Journal of Open Source Software (2016).

Bibek Wagle, Samuel Kellar, Adrian Serio, and Hartmut Kaiser. 2018. Methodology for
Adaptive Active Message Coalescing in Task Based Runtime Systems. In 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 1133-1140.

Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: automatically
generate high performance dense linear algebra kernels on x86 CPUs. In High
Performance Computing, Networking, Storage and Analysis (SC), 2013 International
Conference for. IEEE, 1-12.

Zhang, et al.

