Runtime Adaptive Task Inlining on Asynchronous Multitasking

Bibek Wagle* T
Center for Computation &
Technology
Louisiana State University, Baton
Rouge, Louisiana, USA
bwagle3@lsu.edu

Allen D. Malony
Computer and information Science,
Oregon Advanced Computing
Institute for Science and Society
University of Oregon, Eugene,

Runtime Systems

Mohammad Alaul Haque
Monil*

Computer and Information Science
University of Oregon, Eugene,
Oregon, USA
mmonil@cs.uoregon.edu

Adrian Serio™
Center for Computation &
Technology
Louisiana State University, Baton
Rouge, Louisiana, USA
aserio@cct.Isu.edu

Kevin Huck
Oregon Advanced Computing
Institute for Science and Society
University of Oregon, Eugene,
Oregon, USA
khuck@cs.uoregon.edu

Hartmut Kaiser'
Center for Computation &
Technology
Louisiana State University, Baton
Rouge, Louisiana, USA
hkaiser@cct.lsu.edu

Oregon, USA
malony@cs.uoregon.edu

ABSTRACT

As the era of high frequency, single core processors have come to
a close, the new paradigm of many core processors has come to
dominate. In response to these systems, asynchronous multitasking
runtime systems have been developed as a promising solution to
efficiently utilize these newly available hardware. Asynchronous
multitasking runtime systems work by dividing a problem into a
large number of fine grained tasks. However, as the number of tasks
created increase, the overheads associated with task creation and
management cannot be ignored. Task inlining, a method where the
parent thread consumes a child thread, enables the runtime system
to achieve the balance between parallelism and its overhead. As
largely impacted by different processor architectures, the decision
of task inlining is dynamic in nature. In this research, we present
adaptive techniques for deciding, at runtime, whether a particular
task should be inlined or not. We present two policies, a baseline
policy that makes inlining decision based on a fixed threshold and
an adaptive policy which decides the threshold dynamically at
runtime. We also evaluate and justify the performance of these
policies on different processor architectures. To the best of our
knowledge, this is the first study of the impacts of adaptive policy at
runtime for task inlining in an asynchronous multitasking runtime
system on different processor architectures. From experimentation,
we find that the baseline policy improves the execution time from

“Both authors contributed equally to this research.
TThe STE||AR Group, http://stellar-group.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08....$15.00
https://doi.org/10.1145/3337821.3337915

7.61% to 54.09%. Furthermore, the adaptive policy improves over
the baseline policy by up to 74%.

CCS CONCEPTS

+ General and reference — Measurement; Performance.

KEYWORDS

Task inlining, AMTs, Asynchronous Task Based Runtimes

ACM Reference Format:

Bibek Wagle, Mohammad Alaul Haque Monil, Kevin Huck, Allen D. Malony,
Adrian Serio, and Hartmut Kaiser. 2019. Runtime Adaptive Task Inlining
on Asynchronous Multitasking Runtime Systems . In 48th International
Conference on Parallel Processing (ICPP 2019), August 5-8, 2019, Kyoto, Japan.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3337821.3337915

1 INTRODUCTION

As Dennard scaling [3] breaks down and Moore’s Law [17] is near-
ing its end, there is a paradigm shift from single core high frequency
processors to multi-core processors. Asynchronous multitasking
runtime systems have emerged in the recent years in order to take
advantage of the abundance of cores in today’s systems. Asyn-
chronous multitasking runtime systems are founded on the idea of
decomposing the algorithm into fine grained units of work and exe-
cuting them asynchronously. However, the benefits of fine grained
tasking are often overshadowed by the overheads associated with
the creation and management of these tasks.

In order for these runtime systems to effectively utilize the highly
concurrent nature of today’s architectures, effective management
of overheads associated with asynchronous multitasking runtime
systems is of utmost importance. Task inlining [16] is one of the
techniques which can be utilized in order to reduce overheads
of task creation and scheduling. In this technique, a parent task
completes the work assigned for the child task in addition to its
own. In doing so, the child task is never scheduled on a separate
thread which circumvents the overheads associated with creating

https://doi.org/10.1145/3337821.3337915
https://doi.org/10.1145/3337821.3337915

ICPP 2019, August 5-8, 2019, Kyoto, Japan

and managing the child task. As a direct result, inlining naturally
increases the granularity of the tasks.

However, the success of task inlining solely depends on the deci-
sion when to inline a task. If an aggressive task inlining mechanism
is applied, an application may lose the available parallelism which
directly contradicts the objectives of a task-based runtime. On the
other hand, if task inlining is done rarely then the application will
face unnecessary task creation overheads. Therefore, the decision
of when to inline a task can carry severe performance implications.
The proper granularity of a task, or in other words the amount of
work each task should perform to amortize the cost of its overhead,
depends on the processors that the application is running on. Defin-
ing a granularity which is appropriate for a particular processor
architecture will not yield the best results on other machines. This
problem is further complicated in heterogeneous processor environ-
ments where an efficient grainsize of each task will vary drastically
depending on the architecture that the task is executed on. Other
technologies, such as cloud computing, again add complexity as
the architecture where the application will be executed, and the
accelerators available on the node, may not be known until runtime.
For these reasons, utilizing a compile-time constant for defining
task granularity would not be a viable option. The granularity must
be set at runtime so that an appropriate granularity can be tuned
for the type of processor the application is running on.

In this research, we present an adaptive approach to task inlin-
ing on Phylanx [21], an array processing toolkit built on top of
HPX [15], an asynchronous multitasking runtime system. A de-
scription of HPX and Phylanx is presented in section 2. At first,
we design a baseline policy based on fixed granularity that decides
whether a task will be inlined or not. We show that the baseline
policy performs significantly better than simply spawning tasks at
every opportunity. Through experimentation, we show why fixed
granularity is not enough. We also design an adaptive policy which
can select the granularity at runtime to provide better performance.
The reason for using Phylanx for experimentation is two-fold. First,
Phylanx, has the notion of primitives, which are independent opera-
tions that work on provided data. By default, each of these primitives
is scheduled on new threads, thus providing our experiments with
a well-defined set of tasks of varying lengths. Second, Phylanx has
been designed to support machine learning applications which are
often iterative by nature and are well suited for adaptivity. This
feature will provide us with opportunities to take measurements
and adapt our application accordingly.

The contributions of this paper are as follows:

e designing a baseline policy that makes task inlining decisions
based on fixed thresholds.

e showing the impact of task granularity on different kinds of
processor architecture and proving the need for an adaptive
policy.

e implementing a dynamic policy that can decide task granu-
larity suited for a particular architecture to provide better
performance.

The rest of the paper is organized as follows: The next section
of the paper provides the background information on the subject
followed by a section on methodology of the research. Experimental
results are discussed in section 4 followed by recent related work
in section 5 and finally the conclusion in section 6.

B. Wagle et al.

)

Phylanx
Python Frontend

Optimizer/Compiler

Task Dependency Tree

HPX Runtime System

Performance Monitoring

C -

APEX (Autonomic Performance Environment for eXascale) Policy Engine

l

Operating System I

Figure 1: The architecture of HPX and Phylanx along with
APEX. HPX consists of a Threading Subsystem responsi-
ble for scheduling HPX threads (lightweight tasks), a Par-
cel Transport Layer for handling message passing and re-
mote method invocations, Local Control Objects (LCOs) for
synchronization among tasks and an Active Global Address
Space (AGAS) for addressing object across nodes. Phylanx,
developed on top of HPX, transforms Python code into a
task dependency tree which is executed by HPX. APEX pro-
vides performance monitoring facilities as well as a policy
engine that enables runtime adaptive capabilities.

2 BACKGROUND
2.1 HPX

HPX is an asynchronous multi tasking runtime system with a C++
standards compliant APIL The architecture of HPX along with its
various subsystems is shown in Figure 1. Detailed information about
HPX in [15]. In this section, we highlight the relevant information
about HPX vital to the comprehension of the paper.

HPX exploits parallelism by executing lightweight tasks which
are scheduled on top of the kernel threads. By default, HPX cre-
ates one kernel thread per core. The HPX scheduler schedules the
lightweight tasks on top of these kernel threads. HPX is capable
of executing a newly created task either as a new thread asyn-
chronously or synchronously in the parent thread, which we will
refer to as inlined execution. Asynchrony in HPX is managed via
futures [1, 15]. A future is a placeholder for the result of some com-
putation that is not yet ready. A task requesting the result of a
future is suspended if the result is unavailable. When the future
becomes ready, wherein the results of the computation is available,
the suspended tasks are resumed.

Runtime Adaptive Task Inlining on Asynchronous Multitasking Runtime Systems

Another important feature of HPX is the dataflow [4, 5] utility.
HPX makes use of dataflow objects for managing data dependencies.
A dataflow waits until a provided set of futures have become ready
before executing a predefined callable which relies on the results
referenced by the futures. In this work, we are able to use the
dataflow objects as an injection point for our threading policies.

Finally, HPX provides a system wide support for gathering perfor-
mance information, known as the performance counter framework.
Users can employ this feature to extract information about the
state of the application and runtime. If the pre-defined performance
counters do not provide the user with needed functionality, one
can easily create a new counter which will report the requested
information. This tool is useful for instrumentation and debugging
purposes. In addition, HPX and the performance counter frame-
work integrate with APEX, described in Section 2.3, which provides
additional measurements and runtime adaptive capabilities.

2.2 PHYLANX

Phylanx is a task based, asynchronous array computing toolkit de-
signed to support machine learning applications. User code, written
in Python, is transformed into a tree of Phylanx primitives known
as an execution tree. A primitive is an object which can take input,
such as the result of a previously executed primitive, and exposes a
method named eval which performs an operation on the object’s
inputs. Instead of returning the value computed by the primitive,
however, the eval function will return a future to the computed
value. An execution tree is a collection of these objects which de-
scribe the dependencies between all the operations in an application.
In this formulation, the nodes of the tree are the primitives while
the edges of the tree represent dependencies between them. The
architecture of Phylanx is shown in Figure 1.

During execution, Phylanx starts to evaluate the execution tree
by calling the eval function on the root node. Each dependency
of this primitive calls the eval function on each of its dependen-
cies. This operation traverses the tree until a leaf node, or a node
with no dependencies, is reached. It is important to note that as
the execution tree is being traversed the actual execution of the
tasks have not yet begun. Rather a task graph of futures is being
created where each future represents a dependency on a previous
operation. Once the leaf nodes have been reached, the task graph
then begins to execute, as the execution of a leaf primitive does
not depend on the results of another calculation. The task graph is
then summarily executed as the results of dependencies are met,
eventually returning the result of the entire tree. As the evaluation
of a child node is completed, the result of its execution is passed to
the parent node. The result of the entire tree is ready after the root
node has finished execution.

Because eval uses HPX dataflow in order to launch a primitive’s
operations, we have a runtime injection point where we can decide
whether to execute a primitive’s children asynchronously in a new
task or synchronously by inlining the execution. We have added
Phylanx specific performance counters that report the amount of
time spent executing each subtree of the execution tree, as well as
a counter which reports the number of times a node was executed.
Using these tools, we can take measurements of executing primitives
and apply this information to future scheduling decisions.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

APEX Introspection

System Info
(/proc, getrusage,
LM Sensors, etc.)

APEX Policy Engine

Figure 2: Interaction of APEX with the HPX runtime

2.2.1 Alternating Least Squares (ALS) Benchmark. In order to an-
alyze the effects of overheads of scheduling and executing tasks
on Phylanx, We used a reference implementations of Alternating
Least Squares [11]. Figure 3 is a while loop taken of the reference
implementation of the Alternating Least Squares in Phylanx. In
Figure 4, this loop is visualized using the Phylanx visualization tool
[22] where every node is a particular instance of a primitive. The
full code for the benchmark can be found in the Phylanx Github
repository [9].

2.3 APEX

APEX [12] (Autonomic Performance Environment for Exascale) is
a performance measurement library for distributed, asynchronous
mutlitasking runtime systems such as HPX. It provides lightweight
measurement (task < 1ms) and high concurrency. To support perfor-
mance measurement in systems that employ user level threading,
APEX uses a dependency chain rather than the call stack to pro-
duce traces. APEX supports both synchronous and asynchronous
introspection. As depicted in Figure 2, APEX collects data through
inspectors. The synchronous module of APEX uses an event API
and event listeners. Whenever an event occurs, APEX, using this
aforementioned API, makes a decision to start, stop, yield or resume
timers for correct measurements. The asynchronous module, how-
ever, does not rely on events, rather it executes desired functionality
periodically.

The policy engine of APEX provides a lightweight API to engi-
neer policies that can improve the performance of the application,
execute a desired functionality on the runtime or select important
runtime and application parameters. There are two ways to register
a policy: 1. Triggered and 2. Periodic. A triggered policy can be
initiated by a specific event within the HPX runtime. Several of
these events are available by default to the user. Additionally, it is
also possible to provide a user defined event, known as a custom
trigger. The second class of policies, the periodic policy, operates
without any event. Rather, this policy uses a defined timer which
is specified during the policy’s registration. All policies are stored
in a policy queue and executed as instructed. The policy engine
is integrated with Active Harmony [19], an online tuning library.
Defined policies can use this library to converge on a set of opti-
mum parameters by observing the wall time of the application or
by looking at the introspection data gathered by APEX.

In this research, we use the policy engine to design and develop
the inlined execution policy by observing execution time to find

ICPP 2019, August 5-8, 2019, Kyoto, Japan

out optimal threshold that decides whether a task will be executed
synchronously or asynchronously.

3 METHODOLOGY

In order to adaptively decide which tasks we want to inline, we
outline two techniques. The first is semi-automated wherein user
input regarding inlining threshold is required before execution
whereas the second one is fully automated wherein all decisions
are handled automatically by the runtime system.

3.1 Baseline Policy

As described earlier in section 2.2, each primitive in Phylanx has
a method called eval which evaluates the work defined by that
primitive. HPX can decide whether to execute the eval method
asynchronously as a new task or synchronously by inlining the
work in the parent task.

The baseline policy for task inlining is shown in Algorithm 1.
Given an iterative application, the execution time for each primitive
instance is evaluated count_threshold times in order to obtain the av-
erage execution time of the primitive instance. If during the lifetime
of the application, count_threshold measurements are not obtained
for a primitive, no decision will be made regarding the inlining of
the task. If the previous primitive was executed asynchronously
the next execution will be executed asynchronously. Conversely,
the execution will be synchronous if the previous execution was
synchronous. On the other hand, if measurements are obtained
and the average execution time is below the lower_threshold, any
future tasks created for that primitive instance will be executed
synchronously and if the average execution time is above the up-
per_threshold, any future tasks created for that primitive instance
will be executed asynchronously. In case where the average exe-
cution time of the primitive instance lies between the thresholds,
the task will be executed with its previous mode of execution until
more measurements for the execution time is gathered.

A drawback of the baseline policy lies in the fact that the optimal
threshold values varies with different architectures and the number
of threads used. We will discuss this in more detail in section 4.2.
This warrants the use of runtime adaptive policies for inlined exe-
cution. The default values for thresholds were initially chosen by
benchmarking overheads associated with HPX futures. The default
values for count_threshold is set to 5, lower_threshold is set to 350
ps and the default for upper_threshold is set to 500 ys.

3.2 Adaptive Policy

3.2.1 Motivation behind the adaptive policy. Adaptive policies are
proven techniques used to tune parameters that depend on archi-
tecture, the amount of parallelism and the communication pattern
that the application exhibits. Runtime adaptivity can be applied to
runtime systems (like HPX) or on the framework (Phylanx) itself.
The motivation for using adaptive policies emerges from the limi-
tations exhibited by the baseline policy. These are described in the
previous section and are supported by experimental data in the sec-
tion 4.2. A fixed threshold might work for a given architecture and
known application characteristics but for a truly heterogeneous
system, where different nodes are participating in a distributed
environment, setting a generic threshold for all the nodes is not

B. Wagle et al.

Algorithm 1 Baseline Policy

exec_count < 0
exec_time < 0
count_threshold < 5
lower_threshold < 350000
upper_threshold < 500000
for <For Every Primitive Instance in Parallel>do
if exec_count > count_threshold then
average_exec_time < %
end if N
if average_exec_time > upper_threshold then
inline_task = false
else if average_exec_time < lower_thredhold then
inline_task = true
else
inline_task = undecided
end if
end for

while(i < num_items,
block(
store(conf i, slice column(conf, 1i)),
store(c_i, diag(conf 1)),
store(p_i, _ ne(conf_i, 0.0, true)),
store(A, dot(dot(transpose(X),c i), X) + XtX),
store(b, dot(dot(transpose(X),(c_i + I u}), transpose(p_i)}),
store(slice(Y, list(i, i + 1, 1),nil), dot(inverse(A), b)),
store(i, i + 1)
)
),

Figure 3: Partial code for the while loop in the Alternating
Least Squares algorithm

practical. One way to solve this problem would be to determine the
threshold at compile time. However, in many workflows applica-
tions are compiled on a login node and then executed on different
machines. Therefore, it is sensible to determine the threshold for
task inlining at runtime instead.

3.2.2 What to tune and which metrics indicate better performance.
In the baseline policy, the decision regarding task inlining is made
based on a fixed threshold. However, if we observe closely, the two
thresholds (the upper and the lower) are providing a gap which acts
as a hysteresis so that the decision does not fluctuate when there is
a small change in the execution time. So, tuning one threshold with
a fixed hysteresis is logical and helps to reduce the search space
and overhead of the policy. The threshold can be tuned based on
observed average execution time for the primitive instances for a
defined window.

3.2.3 Granularity of the adaptive Policy. An important question
arises about the granularity of the adaptive policy. Should there be
one threshold for each type of primitive for the entire application or
is a more granular control of the threshold desired? To answer this
question we look at the structure of the Phylanx framework. As
described in the previous sections, Phylanx translates Python-like
user code into an execution tree made up of Phylanx primitives.
Each instance of each type of primitive exhibits its own behavior as

Runtime Adaptive Task Inlining on Asynchronous Multitasking Runtime Systems

ICPP 2019, August 5-8, 2019, Kyoto, Japan

a(tgssg—uar\ab\e,imnf(ﬁ1. 56)
+ access-variable/i{61, 62)
»!

2 access-variable/conf_i(62, 45)

..,
Kal3 E_.; access-variablefi(59, 27)
"ras® . ‘: access-variablefnum_items(59, 31)
L] a,
:"*. 5.." access—uaﬂablefc&"“.i(sl
PR - L]
av L
‘ar '.
Ty .
e E‘," access-variable/c_j{§2. 35)
0 while(59, 21) Teas® . 2 :.
(L] v

LY
. 5‘,‘: access-variable/p jgg3. 35)

' - 3 s 2 access-variablejconf_i(63, 45)
*at s A o,
LY LLFY e . = -
~.... » o access—var\able,‘f\-‘"*‘35) » o », .. - . . access-variable/X(64, 56)
;2 o . ») (4 N ss-\rariableffq ,&s{ess—vanablek_ﬂﬁd—. 59)
KL as e . = access-var\ab\e,’fe..ﬂ:l.cfﬂe) .
"eas” L Ll L
e s & = = access-variablefX(65, 56)
ST *as® st
l T - » R
- “ s access-variable/bta. o :..: access-variablefc_i(65, 60)
‘as” - s * 2 access-variable/l_u(65, 66)
at A REA LTS
- . = o access-variable/p_i{65, 83)
v, 0 tar -
" v, w s access-variable » 41 s
S are ”g:; ! = 2 access-variable/A(66, 80)
LA Tenr” .. access-variable/bld8, 84)
v, at
."’_ 5‘.; access-uar\ablef\(ﬁ}.ﬁS)
Teas” . - :‘.‘: access-variablefi{67, 38)

Figure 4: Visualization of the while loop in the Alternating Least Squares algorithm

the inputs to each primitive may be different. For this reason, tuning
a class of primitives to a common threshold does not make much
sense and adapting the threshold for each instance of a primitive is
expedient.

As mentioned in the description of the Alternating Least Squares
benchmark in section 2.2.1, the Phylanx framework will create a
different number of HPX tasks depending on the inputs to the algo-
rithm. We define the threshold for each of the instances and tune
the threshold based on its average execution time for an observed
period to decide on a threshold that improves performance (reduce
execution time) for that instance only. There are couple of chal-
lenges that come with this approach. The first challenge is to create
an APEX policy instance for each primitive we need to tune and the
second challenge is to manage the overhead that would be incurred
from creating these policies. The first challenge is addressed by
APEX itself as it can handle more than thousand policies to tune
parameters. For the second challenge, an overhead study is given
on the experimental result section.

3.24 How the adaptive Policy works. The pseudo code of adaptive
APEX policy is shown in Algorithm 2. In the beginning, all primitive
instances are set to use a default threshold and hysteresis value. It
is important to note that a policy is not required for every primitive
instance. A policy should only be created when the instance will be
executed many times, such as when the primitive is within a for loop.
Only then will the policy have the opportunity to converge. In order
to launch a policy, it has to be registered to APEX policy engine. We
defined a custom policy which is triggered when eval or exec_count
is called more than a count_threshold_1 (at least 5 times). During
registration, several properties of the policy are defined including
the search space, the search strategy and the tuning parameter.
The search space is the number of values which are needed to be
tested in order to find an optimum value. The search strategy refers
to the algorithms used to determine the optimum values. APEX
uses search strategies provided by Active Harmony to find these
values in a given search space. Active Harmony provides strategies

such as EXHAUSTIVE which tests every possible combination and
determines the most efficient one and PARALLEL_RANK_ORDER
which attempts to find a local minima in the search space which
is suboptimal. Each of these strategies work best when combined
with an appropriately sized search space.

Finally, the tuning parameter is the metric that determines the
effectiveness of different parameter settings. In our case we use the
average execution time of the primitive to tune our policy. Due to
the overheads associated with measuring tuning parameters and
executing policies it is important to be able to cease triggering
the policy. We do this by monitoring convergence of our policy
parameter. Once we have determined that a policy is converged,
the policy is de-registered and it will no longer be triggered.

When a primitive instance reaches the defined number of exe-
cutions, the custom policy is called and APEX launches the policy.
APEX grabs the metric and a threshold from the search space and
sends them to Active Harmony. Active Harmony stores the metric
and the threshold and uses the defined search strategy to propose
the next threshold to APEX. APEX sets this threshold in HPX and
observes the impact of the decision at the next policy invocation.
After the policy is successfully invoked the counters are reset to
start a fresh observation window. Every time the policy is exe-
cuted the search for optimal threshold progresses. Based on the
search strategy, when the impact of all (or a subset of) possible
thresholds are tried Active Harmony sends a signal to APEX about
convergence and the policy is deregistered after setting the optimal
threshold in HPX. From this point, this threshold is used to make
the task inlining decision for the rest of the application’s execution.

After the policy is invoked or checked for convergence, the aver-
age execution time is calculated. Similar to the baseline policy, if the
average execution time is bigger than the threshold plus hysteresis
then a new task is created. If the average execution is smaller, the
work will be attached as a continuation to the current task. The
section below provides preliminary results from our investigation
of measuring task scheduling and execution overheads.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Algorithm 2 Adaptive APEX Policy

for <For Every Primitive Instances in Parallel>do
Threshold < 425000
Hysteresis < 75000
if exec_count > count_threshold_1 then
Register APEX Policy
end if
if exec_count > count_threshold_2 && PolicyNotConverged
then
LaunchAPEXPolicy
SendCounterValuesToActiveHarmony
RecieveNewThreshold FromAPEX
ConfigureThresholdToHPX
ResetCounter
end if
if exec_count > count_threshold_1 then
avg_exec_time & %
if avg_exec_time > Threshold + Hysteresis then
inline_task = false
else if avg_exec_time < Threshold — Hysteresis then
inline_task = true
else
inline_task = undecided
end if
end if
end for

Table 1: Specifications of Nodes used

Node Marvin Bahram Trillian
Microarchitecture | Sandy Bridge | Haswell Bulldozer
Processor Number | E5-2450 E5-2660v3 | 6272
Number of CPUs 2 2 4

Cores per CPU 8 10 16

Total Cores 16 20 64
Frequency 2.1GHz 2.60GHz 2.1GHZ
Memory 48 GB 128GB 128GB

4 EXPERIMENTAL RESULTS
4.1 Experimental Testbed

For the preliminary experiments, we used the Marvin, Bahram and
Trillian nodes of the ROSTAM [8] cluster located at LSU running the
64 bit Centos GNU/Linux kernel version 3.10.0. The specifications
for the nodes are listed in Table 1

4.2 Inlining Threshold

The results of executing the Alternating Least Squares benchmark
for an input of size 400 x 400 elements and 10 iterations on Sandy
Bridge, Haswell and Bulldozer nodes are shown in Figure 5, Figure 6
and Figure 7 respectively. We observed that for different values of
the lower and upper thresholds there was a marked difference in
execution time of the application on all three architectures. Since
a task is executed asynchronously only if the execution time of a

B. Wagle et al.
Lower Threshold Values
32 N 10 us Em 400 pus 800 us
mem 100us W 500us mmm 900 us

. Bl 200 us w600 us Emm 1000 us
v 30 EEm 300pus mmm 700 us
[J]
£
=28
c
o
.g
0 26
(7]
X
L

24

22

1 2 4
Number of Threads

Figure 5: Variation in execution time of the Alternating
Least Squares benchmark for different threshold values on
Intel Xeon (Sandy Bridge) node with upper threshold being
set at 100 is above lower threshold. The size of the input for
the benchmark was 400 x 400 elements and the application
was run for 10 iterations.

task is greater than the upper threshold, smaller threshold values
results in more short lived tasks being executed asynchronously.

In our experiments, upper threshold was set at 100 us above
lower threshold. Our experiments showed that the optimal value
for the threshold varies with the number of threads used. On the
Sandy Bridge nodes, the optimal value for the lower threshold was
800 s for 1 thread and 8 thread case, whereas it was 900 ys and
1000 ps for 2 threads and 4 threads respectively. Similar trends were
noted for the Haswell nodes wherein the optimal threshold varied
depending upon the number of threads used.

We noted that for higher thread counts, the overall runtime of
the application does not vary much by changing the threshold
after a certain point. As an example, setting the threshold at 800
ps for 8 thread case on the Sandy Bridge nodes resulted in an
improvement of the overall runtime by less than 5% compared to
the a suboptimal threshold of 300 ys. Similar results were noted for
the Bulldozer nodes as well as the Haswell architecture. Moreover,
it was observed that on the Bulldozer node, the improvements
starts diminishing after a much higher threshold value of 900 ps.
This trend clearly demonstrates that the inlining threshold varies
between architectures and is a variable that we can adapt at runtime
in order to improve application performance.

4.3 Baseline Policy

The improvement in execution time obtained by executing the Al-
ternating Least Squares benchmark for a various matrix sizes on the
Sandy Bridge and Bulldozer nodes is shown in Figure 8 and Figure 9.
Results from Haswell nodes are not shown as they were similar to
Sandy Bridge results. We executed the Alternating Least Squares
benchmark with four different problem sizes on varying number of
threads under two conditions. In the first case, the full problem was
run with completely asynchronous execution. This was achieved

Runtime Adaptive Task Inlining on Asynchronous Multitasking Runtime Systems

Lower Threshold Values
B 10 pus 400 us e 800 us

24 e 100us mmm 500 s mmm 900 us
. B 200 us 600 us B 1000 us
n B 300 pus mmm 700 us
22
£
|_
5
=20
o]
[v]
Q
X
w18

16

2 4
Number of Threads

Figure 6: Variation in execution time of the Alternating
Least Squares benchmark for different threshold values on
Intel Xeon (Haswell) node with upper threshold being set at
100 ps above lower threshold. The size of the input for the
benchmark was 400 x 400 elements and the application was
run for 10 iterations.

72 Lower Threshold Values
B 10 pus 400 us e 800 s
70 mem 100 us mmm 500 us w900 us
200 us w600 us Emm 1000 us
8 = 300us mmm 700 us

@]

Execution Time (s)
ul [e)} [e)} o)} [e)} [0)}
o O N N

w
(o)}

2 4
Number of Threads

Figure 7: Variation in execution time of the Alternating
Least Squares benchmark for different threshold values on
AMD Opteron (Bulldozer) node with upper threshold being
set at 100 us above lower threshold. The size of the input for
the benchmark was 400 x 400 elements and the application
was run for 10 iterations.

by setting the upper_threshold and lower_threshold to zero. In the
second case, no values were selected for the upper_threshold and
lower_threshold parameters. This resulted in the program being
run with the baseline policy set with the default values for the
thresholds.

We observed that on both architectures, the baseline policy had
the most benefit on smaller problem sizes. Smaller problem sizes

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Problem Sizes
s 100 x 100 s 400 x 400
s 200 x 200 s 700 x700

60

Improvement (%)
N w H ul
o o o o

=
o

2 4 8 16
Number of Threads

Figure 8: Percentage improvement in execution time ob-
tained from using the Baseline Policy on Intel Xeon (Sandy
Bridge) node with respect to fully asynchronous execution
for various problem sizes for the Alternating Least Squares
Benchmark.

Problem Sizes
s 100 x 100 s 400 x 400
s 200 x 200 s 700 x700

60

Improvement (%)
w H ul
o o o

N
o

=
o

1 2 4 8 16
Number of Threads

Figure 9: Percentage improvement in execution time ob-
tained from using the Baseline Policy on AMD Opteron
(Bulldozer) node with respect to fully asynchronous exe-
cution for various problem sizes for the Alternating Least
Squares Benchmark.

decrease the amount of work contained in each task. Thus the over-
heads associated with creating and managing these tasks overshad-
ows the gains of concurrency provided by asynchronous execution.
Nevertheless, as the problem size is increased, the benefits of task
inlining gradually decreases, as expected, because larger problem
sizes result in larger tasks that have runtimes significantly longer
than the overheads required to create them, thereby amortizing
their cost.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

4.4 The Adaptive APEX Policy

From the previous sections, it is evident that the baseline policy
provides better results when compared to a default asynchronous
execution. In this section, we compare the APEX policy with the
baseline policy on different kinds of processors.

4.4.1 AMD processors. In order to observe the impact of the APEX
policy, we ran the Alternating Least Squares benchmark on an AMD
processor (Bulldozer) with different number of threads and varying
number of iterations. Each experiment was run 5 times and then
the results were averaged to ensure that the result is invariant with
respect to other interferences the node might have. At first, we ran
the application using the baseline policy and then, we ran the same
experiments with the APEX policy turned on. The result is depicted
in Figure 10.

We observed a considerable amount of improvement while using
the APEX policy for each experiment. The APEX policy improved
upon the baseline policy up to 74%. It is clear that for various
numbers of threads the APEX policy provides a consistent behav-
ior whereas the baseline policy was unable to keep the execution
time from increasing with the number of threads. The experiment
demonstrates that the APEX policy is successfully able to set the
threshold to a value which reduces the tasking overhead by elimi-
nating unnecessary task creation and scheduling. Additionally, our
experiments do not exhibit any scaling. This tells us that there is
not enough parallelism in the application itself and suggests that
we should run the policy with larger problem sizes. Nevertheless,
it is clear that the APEX policy is not impacted by the available
parallelism of the application and it enables Phylanx users to run
applications without worrying about the number of threads they
are going to use.

In order to create enough parallelism in the application, we use
the Phylanx ALS algorithm with a bigger data set. This application
takes the data set from a CSV file instead of using a default dataset.
For these experiments, we keep varying the data size (in row and
columns) and number of threads. The result is portrayed in Figure 11.
We observe that the baseline policy does scale as we use more
threads. This supports our previous conjecture that our previous
experiments would benefit from more parallelism. However, even
these larger data sets provide the algorithm with a limited amount of
parallelism. After several threads have been added to the execution,
the execution time increases. For example, if we select the data set
with 500 rows and 5000 columns, the benchmark will take 1119
seconds to execute using the baseline policy, as we increase the
number of threads to 8 and 16 we see the execution time decrease
to 831 seconds and to 805 seconds respectively. However, when the
number of threads goes higher than 16, we can see the execution
time begins to increase.

Now, we observe the benefit of APEX policy from the same
Figure 11. For 18 cases that we depicted in this figure, we can find
improvement in 16 cases while two cases show that the baseline
policy performs better with a margin of ~1%. However, for the 16
cases where APEX policy shows improvement varies in a range
of 0.4% - 16%. The average improvement for all the improving
case is 5% (standard deviation is 4 %). So we can expect 1% - 9%
improvement for most cases. Even though large improvements in
the execution time of the application was not seen as opposed to

B. Wagle et al.

the previous case with small data sizes, APEX policy still provides
a considerable improvement margin for an application with a large
data set and enough parallelism.

4.4.2 Intel Xeon processors. Section 4.2 demonstrated the impor-
tance of task inlining on various architectures. In this section, we
conduct similar experiments as the previous one but on an Intel
Xeon processors. We ran our experiments on the Marvin nodes of
the ROSTAM [8] cluster. The results are depicted in Figure 12. A
similar trend as Figure 10 is found in this experiment. However,
there is not much improvement visible from the APEX policy. We
observe almost identical execution time with the baseline and APEX
policy. Out of 20 experiments, we found improvement in 7 cases
and performance degradation for the remaining cases. The average
improvement for the 7 cases is 1.8% while for the 13 cases where
the baseline policy performed better the average stands on 2%. On
average there is no improvement found from using the APEX policy.

The APEX policy determines the optimal threshold for each prim-
itive instance and the baseline policy defines the static threshold. If
the baseline policy defined threshold is already optimal or close to
the optimal, then we will not find a visible difference between the
baseline and APEX policy. As described earlier, the baseline policy
sets the upper and the lower threshold to 350 and 500 ps respec-
tively. Looking back at the result presented in Figure 5, we find
that as long as the lower threshold is more than 300 ps almost all
the threshold configurations provide similar results. Furthermore,
the lower threshold of the baseline policy is 350 us the baseline
policy is providing a close to the optimal result. For this reason, we
are not observing any visible improvement from the APEX policy.
Moreover, APEX policy contributes a small amount of overhead
which in turn negates whatever small improvement would have
been observed.

4.4.3 Overhead of the APEX policy. Theoretically, the overhead of
the APEX policy is constant for an algorithm and does not change
with the data size. Every algorithm has a fixed number of primitive
instances that call an APEX policy a fixed number of times. In
order to measure the overhead, we have compared 100 runs of
the Alternating Least Squares benchmark each using different data
sizes. We found that for this algorithm the APEX policy introduces
a total of 5 seconds, on average, to the execution time. For a larger
data set, where the Alternating Least Squares benchmark takes 30
minutes to execute, 5 seconds is a negligible amount of overhead.

5 RELATED WORK

Lazy task creation strategy was proposed in [16] where task creation
was avoided until processing resources were free. With regards to
OpenMP tasks, Duran [7] proposed cut-off technique in order to im-
prove performance. The cutoff was based on either the max number
of tasks in the system or max task recursion level. ATC (Adaptive
Task Cutoff) was proposed in [6], where the cutoff decision was
based on the profiling data obtained from the application at runtime
and assumes that all tasks at a given level will have same similar
behavior. Adaptive Task granularity(ATG) was proposed in [2] for
irregular task parallel programs. ATG switches between help first
and serialization policy depending upon the number of tasks cre-
ated in the system. However effects of processor architectures were

Runtime Adaptive Task Inlining on Asynchronous Multitasking Runtime Systems

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Adaptive Policy vs Baseline Policy for various number of threads

300 Adaptive Policy = Baseline Policy
1 Thread 1 Thread
250 B 8 Threads 8 Threads
BN 16 Threads B 16 Threads
- BN 32 Threads W 32 Threads
3200 BN 48 Threads EEE 48 Threads
g BN 64 Threads EEE 64 Threads
=
.S 150
=]
>
3
X 100
50
O,
100 500

2000

Number of Iterations

Figure 10: Comparison of the Adaptive APEX and Baseline policies on AMD Opteron (Bulldozer) node for the Alternating
Least Squares benchmark for an input size of 10 x 5 elements running for various iterations and number of threads.

Adaptive Policy vs Baseline Policy for various number of threads and problem size

16001 Problem size: 100 x 5000 Problem size: 500 x 2000 Problem size: 500 x 5000
I Baseline Policy
mmm Adaptive Policy

I Baseline Policy
1400 mm Adaptive Policy

I Baseline Policy
mmm Adaptive Policy

= =
o N
o o
S o

800

600

Execution Time (s)

400

200

1 8 16

32
Number of Threads

Figure 11: Comparison of the Adaptive APEX and Baseline policies on AMD Opteron (Bulldozer) node for the Alternating
Least Squares benchmark for an input size of 100 x 5000, 500 x 2000 and 500 x 5000 elements and various number of threads.

not considered. With regards to compiler based approaches, a mul-
tiversioning approach was proposed in [20], where a combination
of compiler and runtime approach was used. Here, multiple ver-
sions of tasks with varying granularity was generated at compile
time and one was then selected at runtime by tracking task de-
mand. A compiler based static cutoff along with two optimizations
namely code-bloat-free inlining and loopification was proposed
in [14]. An auto-tuning framework for divide and conquer task
parallel programs was proposed in [13] which was implemented
as an optimization pass in LLVM. In the context of asynchronous
multitasking runtime systems, Sun [18] developed the ParSSSE
(Parallel State Space Search Engine) Framework for Charm++ and
looked at adaptive grain size control in the context of parallel state
search methods. Grubel [10], used performance counters in HPX
for dynamically tuning grain size of 1d-stencil application. Our pro-
posed method is application agnostic and no change in application

source code is required. Furthermore, our proposed method relies
on the actual execution time of the tasks in order to make decisions
regarding task inlining for future executions of the tasks.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented runtime adaptive techniques for task
inlining using HPX and APEX. We applied our methods on the
Alternating Least Squares benchmarks in Phylanx. We are able to
show that our method of task inlining does not add any substantial
overhead in the test applications. Furthermore, we were able to
show that our method provided an improvement over completely
asynchronous execution of iterative machine learning applications
via baseline policy and an advanced policy using APEX. One of
the limitations of the method outlined in this paper is the fact that
we could not conduct experiments and analyze the impact of the
policy in a heterogeneous environment. We are currently working

Execution Time (s)

ICPP 2019, August 5-8, 2019, Kyoto, Japan B. Wagle et al.
Adaptive Policy vs Baseline Policy for various number of threads on Intel Xeon node
1 Thread 4 Threads 8 Threads 12 Threads 16 Threads

g({ MMM Baseline Policy MEM Baseline Policy MM Baseline Policy MW Baseline Policy W Baseline Policy

I Adaptive Policy W Adaptive Policy WM Adaptive Policy WW Adaptive Policy WM Adaptive Policy
60
40
20
0,

2000 3000 4000 5000

Number of Iterations

Figure 12: Comparison of the Adaptive APEX and Baseline policies on Intel Xeon (Sandy Bridge) node for the Alternating
Least Squares benchmark for an input size of 10 x 5 elements running for 2000, 3000, 4000 and 5000 iterations.

on the GPU version of Phylanx and in the future, we plan to study
the impact of dynamic policies in heterogeneous environments.

ACKNOWLEDGMENTS

This work was funded by the NSF Phylanx project award #1737785
and the Department of Defense (DoD) through DTIC Contract
FA8075-14-D-0002/0007.

REFERENCES

[1] Henry C. Baker, Jr. and Carl Hewitt. 1977. The Incremental Garbage Collection

[2

]

of Processes. In Proceedings of the 1977 Symposium on Artificial Intelligence and
Programming Languages. ACM, New York, NY, USA, 55-59. https://doi.org/10.
1145/800228.806932

Jianmin Bi, Xiaofei Liao, Yu Zhang, Chencheng Ye, Hai Jin, and Laurence T. Yang.
2014. An Adaptive Task Granularity Based Scheduling for Task-centric Paral-
lelism. In Proceedings of the 2014 IEEE Intl Conf on High Performance Computing
and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Secu-
rity, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS)
(HPCC ’14). IEEE Computer Society, Washington, DC, USA, 165-172. https:
//doi.org/10.1109/HPCC.2014.32

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. 1974.
Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits 9, 5 (Oct 1974), 256-268. https://doi.org/10.1109/
JSSC.1974.1050511

[4] J.B. Dennis. 1974. First Version of a Data Flow Procedure Language. In Program-

ming Symposium, Proceedings Colloque Sur La Programmation. Springer-Verlag,
Berlin, Heidelberg, 362-376. http://dl.acm.org/citation.cfm?id=647323.721501

[5] Jack B. Dennis and David P. Misunas. 1975. A Preliminary Architecture for

(6

[9

[10

=

=

a Basic Data-flow Processor. In Proceedings of the 2Nd Annual Symposium on
Computer Architecture (ISCA °75). ACM, New York, NY, USA, 126-132. https:
//doi.org/10.1145/642089.642111

Alejandro Duran, Julita Corbalan, and Eduard Ayguadé. 2008. An Adaptive
Cut-off for Task Parallelism. In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (SC °08). IEEE Press, Piscataway, NJ, USA, Article 36, 11 pages.
http://dl.acm.org/citation.cfm?id=1413370.1413407

Alejandro Duran, Julita Corbalan, and Eduard Ayguadé. 2008. Evaluation of
OpenMP Task Scheduling Strategies. In OpenMP in a New Era of Parallelism,
Rudolf Eigenmann and Bronis R. de Supinski (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 100-110.

Ste|lar Group. 2017. Running HPX on ROSTAM. https://github.com/
STEIIAR-GROUP/hpx/wiki/Running-HPX-on-Rostam. (2017).

Ste|lar Group. 2018. ALS algorithm code in PHYSL. https://github.com/
STEIIAR-GROUP/phylanx/blob/master/examples/algorithms/als/als.physl.
(2018).

Patricia A Grubel. 2016. DYNAMIC ADAPTATION IN HPX - A TASK-BASED
PARALLEL RUNTIME SYSTEM. Ph.D. Dissertation.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. leee, 263-272.

Kevin A Huck, Allan Porterfield, Nick Chaimov, Hartmut Kaiser, Allen D Malony,
Thomas Sterling, and Rob Fowler. 2015. An autonomic performance environment
for exascale. Supercomputing frontiers and innovations 2, 3 (2015), 49-66.

S. Iwasaki and K. Taura. 2016. Autotuning of a Cut-Off for Task Parallel Programs.
In 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC). IEEE Computer Society, Los Alamitos, CA, USA, 353
360. https://doi.org/10.1109/MCSoC.2016.51

S. Iwasaki and K. Taura. 2016. A static cut-off for task parallel programs. In
2016 International Conference on Parallel Architecture and Compilation Techniques
(PACT). 139-150. https://doi.org/10.1145/2967938.2967968

Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and
Dietmar Fey. 2014. HPX: A Task Based Programming Model in a Global Address
Space. In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (PGAS '14). ACM, New York, NY, USA, Article
6, 11 pages. https://doi.org/10.1145/2676870.2676883

Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. 1990. Lazy Task Creation:
A Technique for Increasing the Granularity of Parallel Programs. In Proceedings
of the 1990 ACM Conference on LISP and Functional Programming (LFP *90). ACM,
New York, NY, USA, 185-197. https://doi.org/10.1145/91556.91631

Gordon E Moore et al. 1965. Cramming more components onto integrated circuits.
(1965).

Yanhua Sun, Gengbin Zheng, Pritish Jetley, and Laxmikant V. Kalé. 2011. Parssse:
an Adaptive Parallel State Space Search Engine. Parallel Processing Letters 21, 3
(2011), 319-338. https://doi.org/10.1142/S0129626411000242

Cristian Tapus, I-Hsin Chung, Jeffrey K Hollingsworth, et al. 2002. Active
harmony: Towards automated performance tuning. In Proceedings of the 2002
ACM/IEEE conference on Supercomputing. IEEE Computer Society Press, 1-11.
Peter Thoman, Herbert Jordan, and Thomas Fahringer. 2013. Adaptive Granular-
ity Control in Task Parallel Programs Using Multiversioning. In Euro-Par 2013
Parallel Processing, Felix Wolf, Bernd Mohr, and Dieter an Mey (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 164-177.

R. Tohid, B. Wagle, S. Shirzad, P. Diehl, A. Serio, A. Kheirkhahan, P. Amini, K.
Williams, K. Isaacs, K. Huck, S. Brandt, and H. Kaiser. 2018. Asynchronous
Execution of Python Code on Task-Based Runtime Systems. In 2018 IEEE/ACM
4th International Workshop on Extreme Scale Programming Models and Middleware
(ESPM2). 37-45. https://doi.org/10.1109/ESPM2.2018.00009

Katy Williams, Alex Bigelow, and Kate Isaacs. 2019. Visualizing a Moving
Target: A Design Study on Task Parallel Programs in the Presence of Evolv-
ing Data and Concerns. arXiv e-prints, Article arXiv:1905.13135 (May 2019),
arXiv:1905.13135 pages. arXiv:cs.HC/1905.13135

https://doi.org/10.1145/800228.806932
https://doi.org/10.1145/800228.806932
https://doi.org/10.1109/HPCC.2014.32
https://doi.org/10.1109/HPCC.2014.32
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
http://dl.acm.org/citation.cfm?id=647323.721501
https://doi.org/10.1145/642089.642111
https://doi.org/10.1145/642089.642111
http://dl.acm.org/citation.cfm?id=1413370.1413407
https://github.com/STEllAR-GROUP/hpx/wiki/Running-HPX-on-Rostam
https://github.com/STEllAR-GROUP/hpx/wiki/Running-HPX-on-Rostam
https://github.com/STEllAR-GROUP/phylanx/blob/master/examples/algorithms/als/als.physl
https://github.com/STEllAR-GROUP/phylanx/blob/master/examples/algorithms/als/als.physl
https://doi.org/10.1109/MCSoC.2016.51
https://doi.org/10.1145/2967938.2967968
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/91556.91631
https://doi.org/10.1142/S0129626411000242
https://doi.org/10.1109/ESPM2.2018.00009
http://arxiv.org/abs/cs.HC/1905.13135

	Abstract
	1 Introduction
	2 Background
	2.1 HPX
	2.2 PHYLANX
	2.3 APEX

	3 Methodology
	3.1 Baseline Policy
	3.2 Adaptive Policy

	4 Experimental Results
	4.1 Experimental Testbed
	4.2 Inlining Threshold
	4.3 Baseline Policy
	4.4 The Adaptive APEX Policy

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

