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Abstract

This paper presents an e�cient approach for robust topology design optimization (RTO) which is based on polyno-
mial dimensional decomposition (PDD) method. The level-set functions are adopted to facilitate the topology changes
and shape variations. The topological derivatives of the functionals of robustness root in the concept of deterministic
topological derivatives and dimensional decomposition of stochastic responses of multiple random inputs. The PDD
for calculating robust topological derivatives consists of only a number of evaluations of the deterministic topological
derivatives at the speci�ed points in the stochastic space and provides e�ective and e�cient design sensitivity analyses
for RTO. The numerical examples demonstrate the e�ectiveness of the present method.

1 Introduction

Conventional deterministic topology design techniques [1�5] do not consider the impact of uncertainties extensively existing
in the manufacturing process and operational environment. When the system responses driving the design process are
highly sensitive to such uncertainties, large deviations in predictions of responses of engineering structure will be resulted.
Therefore deterministic topology optimization iterations driven by those system responses may lead to pseudo optimal
designs with substantial performance degradation. Especially, when the deterministic design solution found located near
the boundary of the feasible domain, even slight changes caused by uncertainties could produce unknowingly risky designs
violating one or more constraints.
Robust topology optimization (RTO), targeted at minimizing the propagation of input uncertainty, generates insensitive
topology design with the presence of uncertainty. It has been an important methodology in the past decade for topology
design of aerospace, automotive, and civil structures sustaining the plague of uncertainties. The objective or constraint
functions in RTO usually combine the mean and standard deviation of certain stochastic responses, describing the objec-
tive robustness or feasibility robustness of a given topology. Therefore, an RTO solution requires evaluations of statistical
moments and their sensitivity with respect to topology changes. In nature, statistical moment analysis is to calculate
a high-dimensional integral regarding the probability measure fX(x) of X over RN , where N is the number of random
variables. Generally, the analytical evaluation for such an integral is not readily available. As a consequence, it often
resorts to numerical integration. However, direct numerical integration is often computational prohibitive for the cases
that N exceeds three or four, especially when expensive �nite element analyses (FEA) are required for the evaluation
of response functions. To alleviate the computational cost, many approximate methods for statistical moment analysis
were developed, including the point estimate method (PEM) [6], Taylor series expansion or perturbation method [6], ten-
sor product quadrature (TPQ) [7], Neumann expansion method [8], polynomial chaos expansion (PCE) [9], statistically
equivalent solution [10], dimension-reduction method [11, 12], and others [13]. There are two major concerns in those
approaches when applied to large-scale engineering problems. First, the perturbation or Taylor series expansions, PEM,
PCE, TPQ, and dimension-reduction methods often begin to be inapplicable or inadequate when the input uncertainty is
large and/or stochastic responses are highly nonlinear. Second, many of the aforementioned methods are often computa-
tionally expensive for stochastic topology sensitivity analysis since many of them invoke �nite-di�erence techniques which
require repetitive stochastic analysis at both perturbed and nominal design points.
This paper builds a framework for robust topology design optimization of complex engineering structures subject to ran-
dom inputs. The method roots in polynomial dimensional decomposition (PDD) of a multivariate stochastic response
function, deterministic topological sensitivity analysis, and the level-set method. It generates analytical formulations of
the �rst three moments. In addition, it can calculate both the �rst two moments and their topology derivatives in one
stochastic analysis. Section 2 describes the PDD approximation of topological derivatives for robust topology optimiza-
tion, resulting in explicit formulae for the �rst two moments. Section 3 brie�y describes the level-set method for topology
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changes. The calculation of PDD expansion coe�cients, required in sensitivity analyses of moments, is discussed in Section
4. In Section 5, two numerical examples demonstrate the e�ectiveness of the proposed method. Finally, conclusions are
drawn in Section 6.

2 PDD for Topological Derivatives of Robust Topology Optimization

2.1 Robust Topology Design Problems

Both objective and constraint functions of RTO problems may involve the �rst two moment properties for the assessment
of robustness. A generic RTO problem is often formulated as the following mathematical programming problem

min
Ω

c0(Ω) := w1
E [y0(Ω,X)]

µ∗0
+ w2

√
var [y0(Ω,X)]

σ∗0
,

subject to ck(Ω) := αk
√

var [yk(Ω,X)]− E [yk(Ω,X)]≤ 0; k = 1, · · · ,K, (1)

Ω ⊆ D

whereD ⊂ R3 is a bounded domain in which all admissible topology design Ω are included;X := (X1, · · · , XN )T ∈ RN is an
N -dimensional random input vector completely de�ned by a family of joint probability density functions {fX(x), x ∈ RN}
on the probability triple (ΩX,F , P ), and ΩX is the sample space; F is the σ-�eld on ΩX; P is the probability measure
associated with probability density fX(x); w1 ∈ R+

0 and w2 ∈ R+
0 are two non-negative, real-valued weights, satisfying

w1 + w2 = 1, µ∗0 ∈ R \ {0} and σ∗0 ∈ R+
0 \ {0} are two non-zero, real-valued scaling factors; αk ∈ R+

0 , k = 0, 1, · · · ,K,
are non-negative, real-valued constants associated with the probabilities of constraint satisfaction; E and var are the
expectation operator and variance operator, respectively, with respect to the probability measure P . The evaluation of
both E and var on certain random response demands statistical moment analysis.

2.2 Polynomial Dimensional Decomposition

Let y(Ω,X) be a multivariate stochastic response, representing any of yk in Eq. (1) and depending on the random vector
X = {X1, · · · , XN}T , and L2(ΩX,F , P ) be a Hilbert space of square-integrable functions y with corresponding probability
measure fX(x)dx supported on RN . Assuming independent coordinates, the PDD expansion of function y generates the
following hierarchical decomposition [14,15]

y(Ω,X) = y∅(Ω) +
∑

∅6=u⊆{1,··· ,N}

∑
j|u|∈N|u|

Cuj|u|(Ω)ψuj|u|(Xu; Ω), (2)

where ψuj|u|(Xu; Ω) :=
∏|u|
p=1 ψipjp(Xi; Ω) is a set of multivariate orthonormal polynomials and j|u| = (j1, · · · , j|u|) ∈ N|u|

is a |u|-dimensional multi-index; yφ(Ω) represents the constant term; for |u| = 1, 2, · · · , S, Cuj|u|(Ω)ψuj|u|(Xu; Ω) are the
univariate, bivariate, · · · , and S-variate component functions representing the individual in�uence from a single input
variable, the cooperative e�ect of two, · · · , and S input variables, respectively. Retaining, at most, the interactive e�ects
of 0 < S < N input variables and mth-order polynomials, Eq. (2) can be truncated as follows

ỹS,m(Ω,X) = y∅(Ω) +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N|u|

‖j|u|‖∞≤m

Cuj|u|(Ω)ψuj|u|(Xu; Ω), (3)

where

y∅(Ω) =

∫
RN

y(x,Ω)fX(x)dx (4)

and

Cuj|u|(Ω) : =

∫
RN

y(x,Ω)ψuj|u|(xu; Ω)fX(x)dx, ∅ 6= u ⊆ {1, · · · , N}, j|u| ∈ N|u|, (5)

are various expansion coe�cients. Eq. (3) generates the S-variate,mth-order PDD approximation by containing interactive
e�ects of at most S input variables Xi1 , · · · , XiS , 1 ≤ i1 < · · · < iS ≤ N , and up to mth-order polynomial basis on y. It
converges to y and engenders a sequence of hierarchical and convergent approximations of y when S → N and m → ∞.
Depending on the hierarchical structure and nonlinearity of an engineering problem, the truncation parameters S and m
can be chosen accordingly. The higher the values of S and m permit the higher accuracy, but also demand the higher
computational cost of an Sth-order polynomial computational complexity [14,15]. In the following sections of this paper,
the S-variate, mth-order PDD approximation is simply referred to as truncated PDD approximation.
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2.3 Stochastic Moments and Their Topology Derivatives

Given a random response y on certain topology design Ω, let m(r)(Ω) := E[yr(Ω,X)] denote the raw moment of y of
order r. Let m̃(r)(Ω) := E[ỹrS,m(Ω,X)] denote the raw moment of an S-variate, mth-order PDD approximation ỹS,m(Ω,X)
of y(Ω,X). The explicit formulae of the moments by PDD approximations are listed as follows. The �rst moment or
mean [16]

m̃
(1)
S,m(Ω) := E [ỹS,m(Ω,X)] = y∅(Ω) (6)

is simply the constant term y∅, whereas the second moment [16]

m̃
(2)
S,m(Ω) := E

[
ỹ2
S,m(Ω,X)

]
= y2
∅(Ω) +

∑
∅6=u⊆{1,··· ,N}

1≤|u|≤S

∑
j|u|∈N|u|

‖j|u|‖∞≤m

C2
uj|u|

(Ω) (7)

is just the sum of squares of the PDD expansion coe�cients. It is straightforward that the estimation of the �rst two
moments evaluated by above equations approaches their exact values when S → N and m→∞.

The proposed method for topology derivatives of those moments exploits the deterministic the topology derivative
concept. When the total compliance of the structure is selected as the response function y, aided by the adjoint method,
the deterministic topological derivative DT y(Ω, ξ0) at a point ξ0 reads [17]

DT y(Ω, ξ0) = σ̃(ξ0) : A : σ(ξ0). (8)

For the case that the three-dimensional domain consist of isotropic linear elastic material, A is a fourth order tensor related
to Young's modulus E and Poisson's ratio ν as follows

A =
2π (1− ν)

E(7− 5ν)
[10(1 + ν)I− (5ν + 1) I⊗ I] (9)

where I = 1
2 (δikδjl + δilδjk) ei ⊗ ej ⊗ ek ⊗ el is the symmetric fourth order identity tensor and I =δijei ⊗ ej is the second

order identity tensor. In addition, σ is the stress solution of the original problem and σ̃ is the stress solution of the
associated adjoint problem.

For a point ξ0 ∈ Ω, taking topology derivative of rth moments of the response function y(Ω,X) and applying the Lebesgue
dominated convergence theorem, which permits interchange of the di�erential and integral operators, yields

DTm
(r)(Ω, ξ0) := DTE [yr(Ω,X)]|ξ0

=

∫
RN

ryr−1(Ω,X)DT y(Ω,X, ξ0)fX(x)dx = E
[
ryr−1(Ω,X)DT y(Ω,X, ξ0)

]
, (10)

that is, the stochastic topology derivative of a response function is obtained from the expectation on the product of the
response function and its deterministic topology derivative.

For simplicity, we use a multi-variate function z(Ω,X, ξ0) to denote DT y(Ω,X, ξ0), and it can be approximated by

z̃S,m(Ω,X, ξ0) := z∅(Ω, ξ0) +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N|u|

‖j|u|‖∞≤m

Duj|u|(Ω, ξ0)ψuj|u|(Xu; Ω). (11)

Plugged in Eq. (10) and employing the zero mean property and orthonormal property of the PDD basis ψuj|u|(Xu; Ω)
yield the semi-analytical formulation for topology sensitivity of the �rst three moments

DT m̃
(1)
S,m(Ω, ξ0) = z∅(Ω, ξ0), (12)

DT m̃
(2)
S,m(Ω, ξ0) = 2×

y∅(Ω)z∅(Ω, ξ0) +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N|u|

||j|u|||∞≤m

Cuj|u|(Ω)Duj|u|(Ω, ξ0)

 , (13)

DT m̃
(3)
S,m(Ω, ξ0) = 3×

z∅(Ω, ξ0)m̃
(2)
S,m(Ω) + 2y∅(Ω)

∑
∅6=u⊆{1,··· ,N}

1≤|u|≤S

∑
j|u|∈N|u|

||j|u|||∞≤m

Cuj|u|(Ω)Duj|u|(Ω, ξ0) + Tk

 , (14)
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Tk =
∑

∅6=u,v,w⊆{1,··· ,N}
1≤|u|,|v|,|w|≤S

∑
j|u|,j|v|,j|w|∈N|u|

||j|u|||∞,||j|v|||∞,||j|w|||∞≤m

Cuj|u|(Ω)Cvj|v|(Ω)Dwj|w|(Ω, ξ0)×

Ed
[
ψuj|u|(Xu; Ω)ψvj|v|(Xv; Ω)ψwj|w|(Xw; Ω)

]
. (15)

which requires expectations of various products of three random orthonormal polynomials. However, if X follows classical
distributions such as Gaussian, Exponential, and Uniform distribution, then the expectations are easily determined from
the properties of univariate Hermite, Laguerre, and Legendre polynomials [18�20]. For general distributions, numerical
integration methods will apply.

3 Level-set method for topology and shape changes

This paper employs level-set function for the topology representation. The structural domain is described by the positive
values of the level-set function. The domain topology and boundaries are implicitly represented by its zero iso-surface. In
addition, the evolution of level-set function thus the domain topology is updated by solving a reaction-di�usion equation
[21], in which the reaction term is driven by the topology derivative of the stochastic moments. Therefore, it permits
nucleation of new holes and new boundaries during the optimization iterations and does not need to preset an initial
topology from guessing the proper number and con�guration of initial holes.

In this research, the reaction-di�usion equation

∂φ

∂t
= τ∇2φ+DT (16)

with introducing a �ctitious time parameter t ∈ R+ which corresponding to descent stepping in optimization iterations,
will be used.

4 PDD expansion coe�cients

The dimension-reduction integration (DRI) scheme [11], is employed to evaluate the PDD coe�cients. Let c be a reference
point, which is commonly taken as the mean of X, and y(Ω,xv, c−v) be an |v|-variate RDD component function [11] of
y(Ω,x), where v ⊆ {1, · · · , N}. Given a positive integer S ≤ R ≤ N , the coe�cients y∅(Ω) and Cuj|u|(Ω) are estimated
from [11]

y∅(Ω) ∼=
R∑
i=0

(−1)i
(
N −R+ i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∫
R|v|

y(Ω,xv, c−v)fXv
(xv)dxv (17)

and

Cuj|u|(Ω) ∼=
R∑
i=0

(−1)i
(
N −R+ i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v

∫
R|v|

y(Ω,xv, c−v)ψuj|u|(xu,Ω)fXv
(xv)dxv, (18)

respectively, which need the evaluation of at most R-dimensional integrals. The DRI is signi�cantly more e�cient than
performing one N -dimensional integration, particularly when R � N . For instance, when R = 1 or 2, Eqs. (17) and
(18) involve one-, or at most, two-dimensional integration, respectively. Hence, the computational e�ort is signi�cantly
lowered.

5 Numerical Examples

To examine the e�ciency of the PDD methods developed for RTO, two examples are solved in this section, which are a
cantilever beam and a three-point bending beam, respectively. For both examples, the PDD expansion coe�cients were
estimated by DRI with the mean input as the reference point, R = S, and the number of Gauss points ng = m + 1,
where S = 1 and m = 2 . In both examples, orthonormal polynomials and their consistent Gauss quadrature rules were
employed for evaluating coe�cients. No unit for length, force, and Young's modulus is speci�ed in both examples for
simplicity, while permitting any consistent unit system for the results. The response function y0 in Eq. (1) is taken as the
structure compliance y0(Ω) =

∫
Ω

1
2σ : εdΩ of the structure for both examples. The two weights w1 = w2 = 0.5 in both

examples.
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Figure 1: Topologies in selected iterations for the cantilever beam example (the number underneath each sub�gure is the
corresponding iteration number)

5.1 A Cantilever Beam

Consider a cantilever beam, of length L = 200 and height H = 100, subject to a distributed shear traction F along the
downward direction on the segment of length H

16 located in the center of the right edge, where F ∼ N (16, 0.16) is a Gaussian
random variable with the mean value of 16 and standard deviation of 0.16. The beam consists of isotropic linear elastic
material, of random Young's modulus E and random Poisson's ratio ν, where E ∼ N (106, 105) and ν ∼ N (0.25, 0.0025).
The RTO problem is also subject to a deterministic volume constraint which limits the maximal volume of the feasible
design to be less than 35% of the initial one. The topology updates of selected design iterations are shown in Fig. 1. The
total number of FEA for 130 iterations is only 910 attributing to the 2nd order univariate PDD approximation.

5.2 A Three-Point Bending Beam

The second example is an RTO of a three-point bending beam. Its length L = 200 and height H = 100, subject to a
distributed normal traction F , pointing to the downward direction, on the segment of length L

32 located in the center
of the bottom edge. The random normal traction F , random Young's modulus E, and random Poisson's ratio ν follow
the same distribution of the corresponding variable in the cantilever beam example, respectively. In addition, the same
deterministic volume constraint is applied in this example. The topology updates of selected design iterations are shown
in Fig. 2. Only 980 FEA are required for 140 iterations by the 2nd order univariate PDD approximation.

6 Conclusions

The novel computational method proposed in this paper for robust topology optimization integrates truncated polyno-
mial decomposition approximations, deterministic topology derivatives, and level-set functions, providing semi-analytical
expressions of approximate topology sensitivities of the �rst three moments that are mean-square convergent. In addition,
only a single stochastic analysis is required for both statistical moment analysis and their topology sensitivity analysis in
each design iteration. The RTO driven by the proposed method requires no initial layout of holes, facilitating the design
process. Two numerical examples indicate that the new method developed provides computationally e�cient solutions.
Although only three random variables are considered in both examples, the solution for RTO problems with 50-100 random
variables can be envisioned according to authors' experience.
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Figure 2: Topologies in selected iterations for the three-point bending example (the number underneath each sub�gure is
the corresponding iteration number)
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