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Abstract—Security patches in open source software (OSS) not
only provide security fixes to identified vulnerabilities, but also
make the vulnerable code public to the attackers. Therefore,
armored attackers may misuse this information to launch N-day
attacks on unpatched OSS versions. The best practice for prevent-
ing this type of N-day attacks is to keep upgrading the software
to the latest version in no time. However, due to the concerns on
reputation and easy software development management, software
vendors may choose to secretly patch their vulnerabilities in a
new version without reporting them to CVE or even providing
any explicit description in their change logs. When those secretly
patched vulnerabilities are being identified by armored attackers,
they can be turned into powerful “0-day” attacks, which can be
exploited to compromise not only unpatched version of the same
software, but also similar types of OSS (e.g., SSL libraries) that
may contain the same vulnerability due to code clone or similar
design/implementation logic. Therefore, it is critical to identify
secret security patches and downgrade the risk of those “0-day”
attacks to at least “n-day” attacks. In this paper, we develop a
defense system and implement a toolset to automatically identify
secret security patches in open source software. To distinguish
security patches from other patches, we first build a security
patch database that contains more than 4700 security patches
mapping to the records in CVE list. Next, we identify a set of
features to help distinguish security patches from non-security
ones using machine learning approaches. Finally, we use code
clone identification mechanisms to discover similar patches or
vulnerabilities in similar types of OSS. The experimental results
show our approach can achieve good detection performance. A
case study on OpenSSL, LibreSSL, and BoringSSL discovers 12
secret security patches.

Index Terms—security patch, vulnerability detection, open
source software

I. INTRODUCTION

Recent years have witnessed an impressive popularity of
open source software (OSS). As one of the biggest hosting
service providers, GitHub announced that there have been
31 million developers working across 96 million repositories
in 2018 [6]. Meanwhile, the number of vulnerabilities in
OSS continues to grow. A report from Snyk shows there is
a 53.8% increase in the number of published open source
vulnerabilities from 2016 to 2017 [25]. One reason is that the
source code of OSS can be carefully analyzed by attackers to
discover the unknown vulnerability. What’s worse, the security
patch of vulnerability exactly points out the vulnerable code,
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which teaches attackers how to generate exploits for attacking
the unpatched version. For instance, just one day after the
remote code execution vulnerability in Apache Struts 2 (CVE-
2017-5638) was publicly disclosed and fixed, exploit scripts
appeared in the wild. Later, due to its unpatched system,
Equifax got attacked and millions of personal data including
social security number were exposed [1].

Though timely patching the vulnerability is an effective de-
fense against those “N-day” attack, there exist some challenges
in real world. In many cases, security patches are included
in a large software patch or new version with other types
of patches, e.g., bug fixes and new features. Since applying
software patch or updating to new version increases the service
system downtime and introduces extra workload, admins or
users tend to postpone updating their running software until
a stable version is available or the security advisory like
Common Vulnerabilities and Exposures (CVE) shows that
there exists a severe security patch of vulnerability [13].

However, software vendors may secretly patch their vul-
nerabilities without creating CVE entries or even describing
the security issue in its change log. One reason is due to the
concern that too many CVE entries or vulnerability fixes in the
change log may hurt the quality reputation of their software.
In addition, they may intend to block the publication of related
CVE entries until they think it is safe to publicly release
them. However, since the related patch or new version has
already been available, attackers can still carefully analyze the
code changes from the patch directly or from the difference
between two versions and then generate exploits to misuse
these secretly-fixed security vulnerabilities. To defend this,
developers and users need an approach to identify the existence
of secret security patch in open source software so that they
can update their software in time. Moreover, similar type
of software may contain the same vulnerabilities since code
clone is common in open source software and developers
tend to make the same mistakes when solving difficult in-
tellectual problems [11]. In this case, analyzing the security
patch in one software (e.g., OpenSSL) can help identify and
fix the corresponding vulnerabilities in other software (e.g.,
LibreSSL) with the similar functionality. We consider those
vulnerabilities as one type of “0-day” vulnerabilities.

In this paper, we develop a machine-learning based mech-
anism to help automatically identify secret security patches



from the released software patches and the difference between
two versions of the open source software. First, since there is
no publicly available dataset on security patches, we create
a new security patch dataset that contains 4702 security
patches by crawling all the available reference links in CVE
entries [4] from year 1999 to 2018. Since security patches may
have different patterns when written in different programming
languages, we focus on C/C++ languages and pick out 1636
security patches written in C/C++. Also, we randomly fetch
1636 non-security patches from GitHub repositories [6].

To identify security patches, we face one major challenge of
identifying effective features to model the differences between
security patches and non-security patches. Based on manual
analysis of a majority of the collected security and non-
security patches, we identify a set of 61 features that belong to
three categories, namely, basic feature, syntactic feature, and
semantic feature. Next, we develop a machine learning based
approach to distinguish security patches from non-security
patches using the set of identified features. To increase the
detection accuracy, we adopt a voting algorithm that ensembles
five popular classification algorithms including Random For-
est, Bayes Net, Stochastic Gradient Descent (SGD), Sequential
Minimal Optimization (SMO), and Bagging. We randomly
choose 80% of our dataset as the training dataset and the
remaining 20% as the testing dataset. The experimental results
show that our model can achieve a good performance with
79.6% true positive rate and 41.3% false positive rate.

To further evaluate the effectiveness of our system, we
perform a case study on three open source SSL libraries, i.e.,
OpenSSL, LibreSSL, and BoringSSL, and discover 12 secret
security patches, among which the longest latency between the
secret patch and the public release is over two years.

II. SYSTEM OVERVIEW

Figure 1 shows the overview of our system, which consists
of three major steps. The first step is to construct a security
patch dataset for (i) extracting useful features for the machine
learning model, (ii) training a machine learning based security
model in the training phase, and (iii) evaluating the effective-
ness of the security model in the detection phase. By querying
all CVE entries in 1999-2018, we crawl 4702 security patches
from at least 898 open source projects. Among them, we focus
on the 1636 security patches from projects written in C/C++.
In addition, we randomly fetch 1636 non-security patches
from GitHub repositories. Therefore, our dataset contains 1636
security patches and 1636 non-security patches.

The second step is to derive a set of basic, syntactic, and se-
mantic features for the machine learning based security model.
Some features are collected from previous related work, and
other features are newly identified via manual observation of
our security patch and non-security patch database.

In the third step, we adopt a voting algorithm that ensembles
five popular classification algorithms including Random For-
est, Bayes Net, Stochastic Gradient Descent(SGD), Sequential
Minimal Optimization(SMO), and Bagging, to build the ma-
chine learning based model. We transform the features of each

patch into a vector along with a label marking if the patch is
security patch or non-security patch. To evaluate the system
performance, we randomly choose 80% of our dataset as the
training dataset and the remaining 20% as the testing dataset.

Fig. 1. System Overview

III. PATCH DATABASE COLLECTION

Since there is no public available security patch database,
we construct such as a database by querying CVE entries [4],
whose reference links may contain the URL of the patches.
Figure 2 illustrates an overall process of database collection.

Fig. 2. Overview of Data Collection

To collect security patch dataset, we crawl all the related
reference URLs that contain patches in all CVE entries from
1999 to 2018. To collect non-security patch dataset, we
download open source repositories that appear in the CVE list
and randomly choose the non-security commits as the non-
security patch dataset 1. We describe the methodology of data
collection in the following.

A. Security Patch Dataset

Up to 04/11/2018, the CVE list consists of 126,491
CVE entries [4]. Each CVE entry includes a CVE ID,
brief description of the vulnerability, and pertinent refer-
ence URLs of reports, advisories, and patches (if any).
Based on our observation, the reference URLs can be di-
vided into two categories according to the type of hosting
service providers, namely, projects hosted on GitHub and

1The dataset is available at https://github.com/SecretPatch/Dataset
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projects hosted on other websites. For the project hosted on
GitHub, the reference URL of a security patch is in the form
like: https://github.com/owner/repo/commit/commit hash. The
commit hash is a hash value that is the unique identifier
of a commit. The corresponding patch can be collected by
downloading the commit URL with appendix .patch, i.e.,
https://github.com/owner/repo/commit/commit hash.patch. On
GitHub, one commit is corresponding to one patch. Therefore,
each commit can be downloaded as a patch. We collect 4010
patches that belong to projects hosted on GitHub.

For the project hosted on other websites, e.g., its own
website, there is no uniform form of reference URLs that
can help tell if it contains any security patch. To solve this
problem, we crawl all the reference URLs in CVE entries
and use specific notations, i.e., diff, @@, +++, and ---
as indicators of existence of the patch. Once our crawler
recognizes such notations, it removes the HTML/CSS labels
and other unrelated contents in the web page (e.g., title,
description, and etc.) and then downloads the remaining part
as a security patch. Since many reference links before 2010
are no longer available, we only collect 692 security patches
in this way.

Our model aims to identify the security patch through the
syntactic and semantic patterns of the code. Since different
programming languages have different patterns, we focus on
patches of C/C++ projects that are very common in open
source ecosystem. Our database contains 1636 security patches
on projects written in C/C++.

Fig. 3. Patch Sample of CVE-2014-3158

B. Non-Security Patch Dataset

To train our model, we also need to collect a non-security
patch dataset. Theoretically, a patch is corresponding to a
vulnerability fix, bug fix, or feature update. However, due to

different version control philosophies, some software vendors
may release a big patch that mingles multiple patches. Also,
for projects that do not host in control version system like
GitHub, we may only generate a unified .diff file between an
original and a modified source tree as a big patch that contains
multiple patches. To avoid this problem, we collect the non-
security patches from projects that appear in the CVE list and
are hosted on GitHub, so that each commit is exactly one
patch. After we download all 898 related GitHub repositories
(about 1T size), for each project, we use the command git
log to get all the commits with its hash value. To reduce the
biases of specific projects, we randomly choose 1636 commits
as the non-security patch dataset. Since the hash value is
the unique identifier of a commit, we can filter out commits
already included in the security patch dataset by comparing
their commit hash values. Therefore, we obtain a security
patch and non-security patch dataset of the same size.

IV. SECURITY PATCH IDENTIFICATION

From previous work and our observation, we collect a set
of features that could distinguish between security patches and
non-security patches in a machine learning model. Based on
these features, each patch in our database can be represented
as a vector with a label of security patch or non-security
patch. After training a machine learning based model using
the supervised dataset, when given a new unlabeled patch,
our system can transform it into the corresponding vector and
then identify if it is a security patch.

A. Feature Extraction

A patch [7] contains differences between old and new
version files. Figure 3 shows an example of the patch for
CVE-2014-3158. Each difference shown in a patch starts with
a diff a/folder name/file name b/folder name/file name (e.g.,
line 1), and each difference may contain multiple change hunks
that are continuous deleted and added lines marked with - and
+, respectively. For instance, lines 9 and 10 is a change hunk.

Table 1 presents the features we collect in this work. We
borrow Feature 1-22 from Tian et al.’s work [26], which shows
that those features are effective on distinguishing vulnerability
and bug fixing patches from new feature patches. They con-
sider the changes in files, hunks, conditional statements, loops,
lines, characters, and function calls. Total refers to the sum of
removed and added number of these basic program features,
and Net is the number of the added minus that of the deleted.
In addition, our work aims to distinguish security patches from
non-security patches, which requires more features to represent
the difference between security patches (i.e., vulnerability
fix) and non-security patches (i.e., bug fix and newly added
feature). By manually comparing security and non-security
patches in our database, we have the following observations:

• Security patches are more likely to modify less code than
non-security patches.

• Security patches are more likely to introduce modi-
fications on operators and operands. For instance, in
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TABLE I
LIST OF FEATURES

No. Description Type
1 # of changed files

basic feature2 # of hunks
3 - 6 # of removed/added/total/net lines
7 - 10 # of removed/added/total/net characters
11 - 14 # of removed/added/total/net conditional statements

syntactic feature

15 - 18 # of removed/added/total/net loops
19 - 22 # of removed/added/total/net function calls
23 - 24 # of total/net modified functions
25 - 28 # of removed/added/total/net arithmetic operators
29 - 32 # of removed/added/total/net relation operators
33 - 36 # of removed/added/total/net logical operators
37 - 40 # of removed/added/total/net bitwise operators
41 - 44 # of removed/added/total/net memory operators
45 - 48 # of removed/added/total/net variables
49 - 51 AVE/MIN/MAX Levenshtein distance within hunks (before abstraction)
52 - 54 AVE/MIN/MAX Levenshtein distance within hunks (after abstraction)
55 # of same hunk (before abstraction)
56 # of same hunk (after abstraction)
57 - 58 # and % of affected files

Semantic features59 - 60 # and % of affected functions
61 Any data dependency changes (True or False)

vulnerability caused by boundary problem, change > into
>= or change n to n-1.

• Security patches are more likely to move a piece of code
to another place with no other changes. For instance, it
is common to move a conditional statement inside a loop
outside for security patch.

• In security patches, the same or similar change hunk may
appear multiple times in different functions or files.

Therefore, we conclude 34 more syntactic features:

• # of total/net modified functions. Different from previ-
ous function calls which are represented by the function
name or pointer in change hunks, the number of mod-
ified functions represents how many functions contain
the change hunks. This number helps assess the direct
affected range of a patch. For instance, for a patch which
contains 3 change hunks within a function, this number
is counted as 3 in total and 1 in net.

• # of total/net/removed/added basic operators. We count
the total and net number of basic operators including
arithmetic, relation, logical, and bitwise operators which
occur in each patch. Also, we count these numbers in
removed part and added part, respectively,

• # of total/net/removed/added memory operators. We
count the corresponding number of C/C++ memory re-
lated operators which occur in each patch, e.g., malloc,
calloc, realloc, free, sizeof, and etc.

• AVE/MIN/MAX Levenshtein distance within hunks
(before abstraction). Levenshtein distance is a measure
of the similarity [20]. In our work, Levenshtein distance
within a change hunk is the number of deletions, inser-
tions, and substitutions required to transform the removed
hunk into added hunk. Since there are always many hunks
within one patch, the average, minimum, and maximum
Levenshtein distance among them are used to represent

such characteristics of a patch.
• AVE/MIN/MAX Levenshtein distance within hunks

(after abstraction). To further measure the similarity
of each pair of removed and added hunks, we abstract
the code. After removing the space and comment, we
replace all the identifiers with $. Then, we calculate the
corresponding Levenshtein distance on these abstracted
code.

• # of same hunks (before abstraction). We consider
every two exact same change hunks as a pair of same
hunks.

• # of same hunks (after abstraction). To count the pair
of similar hunks, we first remove the exact same hunk.
Then, after abstracting the code, we regard every two
same abstracted change hunks as a pair of similar hunks.

Moreover, we propose 5 semantic features:

• # and % of affected files. The number of affected files
is computed by counting the number of files that call the
modified functions in the given patch. The percentage is
calculated by dividing the number of affected files with
the total file number.

• # and % of affected functions. We compute the number
and the range of affected functions from code property
graph which combines control flow graph and data depen-
dency graph generated by Joern [28]. We combine several
nodes of a hunk as a node and then count the number of
connected node in the function level to get the number
of affected functions. The percentage is calculated by
dividing the number of affected functions with the total
function number.

• Any changes of data dependency. After combining
several nodes within a hunk as a coarse-grained node,
if any nodes connected or the variables in the connected
edge change, this value is true. Otherwise, it is false.
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TABLE II
PERFORMANCE ON COLLECTED DATASET

Training
Dataset

Testing
Dataset TP (%) FP (%) Precision Recall

2618 654 266 (79.6%) 132 (41.3%) 66.8% 79.6%

B. Machine Learning Model

We use a number of popular classification algorithms in-
cluding Random Forest [8], Bayes Net [5], Stochastic Gradient
Descent (SGD) [2], Sequential Minimal Optimization(SMO)
[21], and Bagging [3], in our machine learning model. How-
ever, each individual classifier cannot perform well. To im-
prove the performance, we adopt a voting algorithm that
ensembles the above five classifiers to do the majority vote.

We randomly choose 80% security and non-security patch
dataset and transform each of them into a vector of values
on above 61 features with its label “1” (i.e., security patch)
or “0” (i.e., non-security patch) as the input training data. In
the detection phase, we transform the remaining 20% patches
in our datasets into vectors and then apply our model. If a
vector is assigned “1”, the corresponding patch is detected as a
security patch. Otherwise, the corresponding patch is detected
as a non-security patch.

V. SYSTEM EVALUATION

To evaluate the effectiveness of our system, we conduct
experiments in three ways. First, we split our database into
training and testing dataset to evaluate the detection accuracy
of our model. Second, we apply our model on patches of 20
minor versions of OpenSSL 1.0.1 and compare our results
with previous work. Third, we extend our experiments to
several popular SSL libraries (i.e., OpenSSL, LibreSSL, and
BoringSSL) to discover a number of secret security patches.

A. Performance on Collected Dataset

We randomly choose 80% of our dataset as the training
dataset and the remaining 20% as the testing dataset (334
positive samples and 320 negative samples). We adopt a 10-
fold cross-validation to choose the best parameter configu-
ration. Our experiments are conducted on a machine with
3.1 GHZ Intel Core i7 CPU and 16GB RAM. The training
phase (including 2618 patches) takes 42s and the testing phase
(including 654 patches) takes 9s. Table II shows the true
positive (TP), false positive (FP), precision, and recall of our
testing results, respectively. Our model can achieve 79.6% true
positive rate and 41.3% false positive rate.

B. Performance on OpenSSL

We compare the effectiveness of our system with other
security patch identification system. To the best of our knowl-
edge, SPAIN [27] is the only work for this kind of research.
Though SPAIN focuses on binary level patch analysis, it can
be used to identify open source patches and it also conducts
experiments on an open source project - OpenSSL to evaluate
its accuracy. To compare with SPAIN, we apply our model on

all the patches between 20 minor versions of OpenSSL 1.0.1
series (i.e., all the commits from OpenSSL 1.0.1 to 1.0.1s).

Table III presents the comparison between SPAIN and
our work. The second and third columns show the number
of security and non-security patches that SPAIN and we
manually identify as the ground truth. The reason for the
different identified numbers is that SPAIN can only identify
the patches within one function with control flow changes,
but our work extends it to inter-function patches. Actually,
a patch may involve modifications across multiple functions
that have impacts on each other. SPAIN may regard a patch
of multiple function fixes as multiple patches whereas such
patch is regarded as one patch in our work. In addition, our
approach takes patches of header files into consideration while
SPAIN does not.

The percentage of security patches we can identify is 8%
higher than SPAIN. On the other side, our approach has a
higher number of false positive (e.g., 190) than SPAIN (e.g.,
47). We argue that our approach shows competitive results
when comparing with previous work such as SPAIN. Our
approach is able to cover inter-function patches, header file
patches, and patches without control flow changes whereas
SPAIN cannot. Besides, our approach has shown good per-
formance and scalability on a larger number of vulnerabilities
from various types of software in NVD, as shown in Table II. It
is difficult for SPAIN to provide a similar performance result,
due to the huge demanded efforts on obtaining the ground
truth for various binary code.

C. Case Study: SSL Libraries

To identify secret security patches in wild, we extend our
experiments to three open source SSL libraries, including
OpenSSL, LibreSSL, and BoringSSL. First, we apply our
toolset to identify the security patches from the commits of
above three projects from GitHub. Once a security patch is
identified, we use code clone algorithms [23], [24] to detect
if this vulnerability has been patched in other projects.

Table IV summarizes 12 secret security patches and the
fix information in these three SSL libraries. The first column
shows the CVE ID of each security patch in one project. The
Fix Date column of each project is obtained from the date
in the patch (commit) of each vulnerability that represents
the fix date. The grey background cell denotes the earliest fix
date of each vulnerability. The dash means such vulnerability
does not apply to this project. Each project’s Lag Day is the
date difference between the first fixed date of other projects
and its fixed date, during which attackers can launch “0-day”
attack on these similar type of software. “Not yet” means
the project contains such vulnerability and it has not been
fixed until now. We get the second to the last column by
manually checking the advisory in CVE entry or its official
hosted website and then the Secret Day can be computed as
date difference between the CVE ID belonging project’s first
fix date and the advisory release date, which can be utilized
by attackers to attack unpatched versions.
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TABLE III
COMPARISON WITH A PREVIOUS WORK ON OPENSSL ANALYSIS

Technique Ground Truth Detection Result
# Security Patch # Non-Security Patch # TP # FP Precision Recall

SPAIN [27] 323 217 229 47 0.83 0.71
This work 294 365 231 190 0.55 0.79

TABLE IV
SECRET SECURITY PATCHES AMONG THREE SSL LIBRARIES

OpenSSL LibreSSL BoringSSLCVE ID Fix Date Lag Day Fix Date Lag Day Fix Date Lag Day
Public

Disclosure Date Secret Day

CVE-2018-5407 (OpenSSL) 04/19/2018 - Not yet 232+ - - 11/02/2018 197
CVE-2018-0734 (OpenSSL) 10/23/2018 - Not yet 45+ Not yet 45+ 10/30/2018 7
CVE-2018-0732 (OpenSSL) 06/11/2018 974 06/13/2018 972 10/11/15 - 06/12/2018 973
CVE-2018-0739 (OpenSSL) 03/22/2018 - 08/06/2018 137 03/27/2018 5 03/27/2018 5
CVE-2017-3731 (OpenSSL) 01/18/2017 - 02/01/2017 14 - - 01/26/2017 8
CVE-2016-7053 (OpenSSL) 10/16/2016 828 07/11/2014 849 06/20/2014 - 11/10/2016 874
CVE-2016-7052 (OpenSSL) 08/22/2016 - - - 09/26/2016 35 09/26/2017 35
CVE-2016-6305 (OpenSSL) 09/10/2016 - Not yet 818+ - - 09/22/2016 12
CVE-2016-6304 (OpenSSL) 09/09/2016 - 09/27/2016 18 - - 09/22/2016 13
CVE-2016-6308 (OpenSSL) 09/10/2016 822 06/11/2014 - - - 09/22/2016 834
CVE-2018-8970 (LibreSSL) 01/22/2014 - 03/22/2018 1520 - - 03/24/2018 2

CVE-2018-12434 (LibreSSL) 06/19/2018 6 06/13/2018 - 06/14/2018 1 06/14/2018 1

Below are several interesting phenomena we observe. First,
though each vulnerability listed in the table IV existed in at
least two projects, only one CVE ID was created for one of
them, and all others just secretly patched those vulnerabilities.

Second, the .../crypto/dsa/dsa ossl.c file in LibreSSL allows
a memory-cache side-channel attack on ECDSA signatures.
NVD published date of this vulnerability (CVE-2018-12434)
was 06/14/2018 while the new version that contains the
corresponding patch was released on LibreSSL’s website one
day early. Since only two changes were made in this new
version, it is not hard for attackers to analyze and utilize it to
attack unpatched version in one day. What’s worse, OpenSSL
contained the same vulnerability and it only released a patch
on the GitHub one week later (06/19/2018) without reporting
to CVE. And a new version that contains the patch was
released 30 days later on its website.

When we tried to request a CVE ID, CVE website asked
us to contact the corresponding participating CVE Numbering
Authority (CNA), i.e., OpenSSL Software Foundation. How-
ever, they replied us that this vulnerability could only cause
a local-host side channel attack, so no CVE was needed. In
contrast, there is no participating CNAs for LibreSSL, anyone
can request a CVE ID for LibreSSL by contacting MITRE
Corporation directly. We can see that the CNA mechanism
provides software vendors an opportunity to secretly patch
their vulnerability without creating a CVE ID. In this case,
when comparing OpenSSL with LibreSSL, users may draw
a biased conclusion that OpenSSL is more secure since the
number of its recent CVE is smaller.

Third, it may take long time for other projects to realize
those secretly patched vulnerabilities and take actions. CVE-
2018-0732, CVE-2016-7053, CVE-2016-6308, and CVE-

2018-8970 show that the date difference between the first fix
and a CVE entry assignment for another project is more than
two years. Since these software vendors do not have a good
channel to share the newly discovered vulnerabilities, attackers
may misuse those “0-day” vulnerabilities for a long time.

Lastly, the software version control process should an-
nounce security fixes more clearly and accurately. In
CVE-2018-8970, the int x509 param set hosts function in
x509 vpm.c file does not support a certain special case of a
zero name length, which causes silent omission of host name
verification. This can be exploited to launch man-in-the-middle
attack to spoof servers and obtain sensitive information via
a crafted certificate. Though there was a CVE ID assigned
to LibreSSL for this issue, LibreSSL described this as a bug
fix in its change log without mentioning any security related
issues. However, LibreSSL usually explicitly classifies all the
patches into security fix, bug fix, and new feature in its change
log. In this case, when a user only focuses on its change log,
it may bypass one patch since there is no vulnerability fix and
other small bugs are tolerable in the system.

VI. DISCUSSION AND LIMITATIONS

There may exist a long distance from identifying a sus-
picious vulnerability to truly triggering it as a real attack.
It has been reported that not all the vulnerabilities reported
in CVE have known approaches to trigger them [18]. In
addition, since a number of vulnerabilities without CVE IDs
have been triggered, it indicates the not all the security patches
have corresponding CVE IDs. We collect our security patch
database from all the available patch source in CVE list, which
may be biased towards some types of severe vulnerabilities.
For instance, we mention that OpenSSL refuses to assign a
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CVE ID for a local-host side channel vulnerability due to the
low exploitability in their opinion. Since the manual triggering
of suspicious vulnerabilities and evaluating their severity may
demand huge efforts and domain experts, we consider how to
identify exploitable vulnerabilities as a future work.

It is possible that our approach may be leveraged by
attackers. Actually, we wonder attackers might have already
misused secret patches to some extend. The goal of our work
is to promote software vendors to maintain their products
more normatively, increase the collaboration between software
vendors on information sharing, and finally eliminate this type
of “0-day” attacks.

The non-security patch dataset may still contain some
security patches due to the unknown secret security patches,
and it may introduce impacts to our experimental results. We
manually check 536 out of 1636 patches randomly chosen
from non-security patch dataset and identify 7% of them as
security fixes based on our domain knowledge. Similar to
previous work [14] [19], we argue this rate is acceptable since
machine learning is capable of dealing with noisy datasets. In
the future, we will further clean the dataset by removing those
security patches from the non-security patch dataset.

The present design of our system uses commits on GitHub
as the smallest unit of the patch. In practice, although GitHub
is one of the most popular open source software hosting
service provider, not all of the open source software is hosted
on GitHub. For open source software hosted on other websites,
patches can only be acquired from a diff file of the source code
of neighboring versions. However, the diff file may consist of
a number of change hunks belongs to multiple patches. For
a small diff file, we can simply separate it through keyword
matching. However, when this file is large, for instance, a main
version introduces many modifications, it is hard to separate
hunks into individual patches. We leave it as our future work.

Currently, our system only supports to identify security
patch in open source projects written in C/C++. Our system
can be adapted to other programming languages by modifying
features, e.g., syntax parsing related features 11-56. In our
future work, we plan to extend it to OSS projects written
in other types of programming languages and even multiple
programming languages.

VII. RELATED WORK

OSS vulnerability detection has become an active research
area. There are two main research directions: vulnerable code
similarity comparison and vulnerability pattern recognition.
For vulnerable code similarity detection, the traditional token-
based techniques remove all the whitespace and comments and
replace variable and function names with a specific character
to detect Type-1 and Type-2 code clone [22] that only makes
few modifications of identifiers, comments, and whitespace.
The tree-based techniques [9], [29] mainly transform the
program into Abstract Syntax Tree (AST) and then compare
the longest common sequence (LST). Graph-based techniques
[12], [17] use control and data dependence graph to detect
code clones as isomorphic subgraphs. For vulnerability pattern

recognition, machine learning or deep learning approaches
are proposed by extracting the patterns from the vulnerable
code and then searching the code with the same pattern.
VulPecker [15] uses different sets of features to detect different
types of software vulnerabilities. VulDeepecker [16] trained
a neutral network to detect buffer overflow and resource
management errors caused by library/API call.

Several work has attempted to create a database of security
patches. Seulbae et al. [10] collected data from eight well-
known Git repositories, and Zhen et al. [15] built a Vulnera-
bility Patch Database (VPD) from 19 products. However, the
size of these datasets are not sufficient to perform a machine
learning based study, when comparing to the thousands of
CVE entries on open source projects. Though Li et al. [14]
built a large-scale security patch database based on the Git
related records in NVD [4], they have not made their database
available to the public yet.

Certain secret security patches have been reported ad hoc in
different studies. Zhen et al. [16] found Xen silently patches
the vulnerability after the disclosure of CVE-2016-9104 in
Qemu. Their results also revealed the secret security patches
between Seamonkey and Firefox (CVE-2015-4517) as well as
between Libav and FFmeng (CVE-2014-2263). It motivates us
to perform a study on the secret security patches.

Some researchers have paid attention to patch analysis.
Zame et al. [30] made a case study on the difference between
security and performance patches in Mozilla Firefox. Perl et
al. [19] showed many statistic difference between vulnerability
contributing commits and other commits. However, they can-
not distinguish vulnerability fixes from non-security bug fixes.
Frank et al. [14] conducted the first large-scale empirical study
between security patches and non-security bug fixes, and it
provides analysis on the basic characteristics of security patch.
Xu et al. [27] presented a scalable approach to identify security
patches through the semantic analysis of execution traces.
However, it cannot handle cross-function security patches and
does not perform well on identifying non-security patches that
are similar to security patches.

VIII. CONCLUSION

In this paper, we develop a machine learning based security
patch identification system. Developers and users can use our
system to help identify secret security patches and decide if it
is the time to update to the new version or apply the patches.
We point out that once a security patch is identified, its
corresponding vulnerability should be detected in other similar
types of software and if identified, this patch can be utilized
to patch similar vulnerabilities. To evaluate the effectiveness
of our model, we build a database that is composed of the
security patches in the CVE list. We make it open-source to
promote public research on improving the security of OSS.
We discover a set of syntactic and semantic code features to
profile security patches. The experimental results show that
our system can achieve a good detection performance. We also
apply our system to three open source SSL library projects and
discover 12 secret security patches.
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