Computational Mechanics (2019) 63:455-470
https://doi.org/10.1007/s00466-018-1603-8

ORIGINAL PAPER

@ CrossMark

An efficient solution algorithm for space-time finite element method
Rui Zhang'? . Lihua Wen' - Jinyou Xiao' - Dong Qian?

Received: 11 March 2018 / Accepted: 3 July 2018 / Published online: 14 July 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

An efficient solution algorithm has been developed for space—time finite element method that is derived from time discontin-
uous Galerkin (TDG) formulation. The proposed algorithm features an iterative solver accelerated by a novel and efficient
preconditioner. This preconditioner is constructed based on the block structure of coupled space—time system matrix, which
is expressed as addition of Kronecker products of temporal and spatial submatrices. With this unique decomposition, the most
computationally intensive operations in the iterative solver, i.e. matrix operations, are subsequently optimized and accelerated
employing the inverse property of Kronecker product. Theoretical analysis and numerical examples both demonstrate that the
proposed algorithm provides significantly better performance than the already developed implementations for TDG-based
space—time FEM. It reduces the computational cost of solving space—time equations to the same order of solving stiffness
equations associated with regular FEM, thereby enabling practical implementation of the space—time FEM for engineering

applications.

Keywords Time-discontinuous Galerkin formulation - Space—time FEM - Kronecker product - Preconditioner

1 Introduction

In the development of computational approaches for resolv-
ing structural and material dynamical responses, space—time
finite element (STFEM) is a unique method in its approach
to a wide range of temporal scales. Compared with the tra-
ditional FEM based on semi-discrete schemes, the temporal
domain in STFEM is discretized with mesh and approxi-
mated by the FEM shape functions. This concept of temporal
discretization was first introduced in the time finite ele-
ment method [1-3] derived based on Hamilton’s principle
for dynamics during the late 1960s—shortly after the estab-
lishment of regular FEM in the early 1960s. In the initial
developments of STFEM, the entire temporal domain was
discretized and continuous approximations for the unknowns
were introduced. This led to the time-continuous Galerkin
(TCG) formulation [4]. TCG generally yields very large
system of equations due to the simultaneous discretizations
of the spatial and temporal domains, which severely lim-

B Dong Qian
dong.qian@utdallas.edu

School of Astronautics, Northwestern Polytechnical
University, Xi’an 710072, People’s Republic of China

Department of Mechanical Engineering, The University of
Texas at Dallas, Richardson, TX 75080, USA

its its application. As an alternative, a divide-and-conquer
approach was proposed in which the entire spatial-tem-
poral domain was first partitioned into smaller space—time
slabs. A Galerkin formulation was then established within
each space—time slab. The resulting formulation is called a
time-discontinuous Galerkin (TDG) formulation [5, 6] as the
neighboring space—time slabs are coupled through the jump
conditions in the weak form.

TDG method was originally developed for solving first-
order hyperbolic equations [5, 6]. It was then extended to
second-order hyperbolic systems in [7—12]. Based on the
choice of unknown fields, two different formulations, i.e.,
single-field and two-field formulations have been developed
[7, 8]. It was shown that TDG method significantly reduces
artificial oscillations that are associated with semi-discrete
schemes in capturing sharp gradients or discontinuities [9].
In addition, the method is both higher order accurate and
unconditionally stable [6—17]. Based on the key concepts
introduced in generalized FEM [18], extended FEM [19]
and partition of unity FEM [20, 21], the widely adopted
polynomial based approximations in STFEM can be further
enhanced using enrichment functions that represent the prob-
lem physics [22-28]. This enriched formulation is termed
the extended space—time finite element method (XTFEM).
Within the single-field TDG framework, enrichment func-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-018-1603-8&domain=pdf

456

Computational Mechanics (2019) 63:455-470

tions such as harmonic function and Heaviside function
have been introduced for coupled atomistic/continuum sim-
ulations of lattice fracture [23], dynamical responses with
multi-temporal scales [24, 25] and direct numerical sim-
ulations of high-cycle fatigue failure in both metallic [26,
27] and rubbery [28] materials. Both STFEM and XTFEM
provided stable and accurate predictions while employing
time step sizes orders of magnitude greater than that of
semi-discrete methods for solving either linear or nonlinear
problems [26-28].

Although the robustness of the space—time method has
been extensively demonstrated, a critical barrier for the
extensive and practical application has been the large com-
putational cost associated with the additional time dimension
that is introduced [8]. As such, the extended predicative
capability of the method is paid at the price of converting
an n-dimensional spatial problem to an n+1 dimensional
problem. Compared with the regular FEM, TDG method typ-
ically leads to larger system of coupled equations that are
expressed in the form of ICd = F in which K is space—
time stiffness matrix of size N x N and non-symmetric.
Assuming quadratic interpolation in time and ng the num-
ber of spatial degrees of freedom (DOFs), then N =3ny
and 6ny respectively for single-field STFEM and XTFEM.
Obtaining solutions to the space—time stiffness equation
requires O(N 3) operations and O(N 2) storage if direct
solver is employed, which are several orders of magnitude
higher comparing to solving the regular stiffness equation in
FEM.

One approach to accelerate the solution to the space—time
stiffness equation is to introduce a multiplicative form of the
space—time FEM shape function. With this decomposition,
it can be shown that the space—time stiffness matrix /C is
generally expressed as

K=¢3K+¥eM ey

in which @ and ¥ are temporal submatrices, K and M are
spatial stiffness and mass submatrices, and symbol ® denotes
the Kronecker product. It should be noted that K and M have
exactly the same form as their counterparts in the regular
FEM. In the case of two-field formulation, K is weakly cou-
pled, i.e., there is no single block in /C coupled to both K and
M. Based on this feature, a family of iterative predictor/multi-
corrector algorithms have been developed [12, 16, 29]. In
these algorithms, the original equations are first recast into
a partially decoupled form. Subsequently stationary iterative
method, such as Gauss-Jacobi method [12, 29] or Gauss—
Seidel method [16], is applied to the multi-corrector phase.
However, these algorithms are not directly applicable to the
single-field formulation and XTFEM as the corresponding
space—time stiffness matrix is fully coupled. Alternatively,
a general preconditioned iterative solution algorithm was

@ Springer

developed in [27]. It first constructs the preconditioner by
incomplete factorization of space—time stiffness matrix IC,
during which the computational cost is minimized using
matrix reordering algorithms based on Graph theory. The
preconditioned space—time linear system of equations is then
solved by nonstationary iterative method based on Krylov-
subspace approach. It was shown that this algorithm worked
efficiently for both the single-field formulation and XTFEM
on 2D problems. However, the approach did not take into
account of the unique block structure of /C as indicated by
Eq. (1). Further benchmark tests yielded degraded perfor-
mance for 3D problems with this algorithm, which was due
to the fact that the condition number of /C in 3D has signifi-
cantly deteriorated when compared with the 2D cases.

Based on the prior efforts, the main objective of this
work is to establish an efficient solution algorithm to signif-
icantly scale down the computational cost of TDG methods
for 3D and large-scale problems. This goal is realized by
further exploiting the unique block structure of coupled
space—time matrix equations. The proposed algorithm has
two key components. First, a novel and efficient precondi-
tioner is proposed by utilizing the special block structure
of space—time matrix and properties of temporal and spa-
tial submatrices. Second, matrix—vector multiplications and
preconditioning operations, which are the most computation-
ally intensive operations associated with iterative solvers, are
optimized and accelerated employing the inverse property
of Kronecker product. Computational cost of the resulting
algorithm is analyzed theoretically first and then demon-
strated in both 2D and 3D numerical examples using various
versions of the TDG method. It is shown that performance
of the proposed algorithm is at least 1-2 orders of magni-
tude better than that of either direct sparse solver or the
previously developed iterative approach [27] for problems
with relatively large number of unknowns (e.g., N >10%).
Through this implementation, the computational cost of solv-
ing the space—time stiffness equations is reduced to the
same order as solving the corresponding stiffness equations
in regular FEM, thereby enabling practical application of
STFEM.

The rest of this paper is organized as follows. In Sect. 2, we
review the space—time FEM based on various TDG formula-
tions and the resulting coupled space—time stiffness matrices.
In Sect. 3, we introduce the proposed solution approach and
analyze its computational cost. Numerical examples and dis-
cussions are provided in Sect. 4. Finally, conclusions are
drawn in Sect. 5.

2 Space-time finite element method

We start by briefly reviewing the TDG formulations. More
details can be found in [8, 9, 25, 26].

Computational Mechanics (2019) 63:455-470

2.1 Governing equations

We consider the initial/boundary value problem (IBVP)
defined over a spatial region £2 and the corresponding tem-
poral domain / =]0, T'[. The spatial region §2 is bounded by
I' = I; U I, where I} and I, are the non-overlapping
traction (Neumann) and essential (Dirichlet) boundaries,
respectively. The strong form of governing equations is given
as,

pi=V-o(Vu)+f on 0=02 x]0,T[2)
u=u on V,=1,x1]0,T[3)
n-o(Vu)=t on 1;,=1; x]0,T[“4)
u(x,0) = ug(x) for xe 2 (@)
ux,0) =vo(x) for x € 2 6)

where p = p (X) is the volumetric mass density, u represents
the displacement vector, f is the body force per unit volume,
n is the outward normal vector normal to I', 6(Vu) = C : &
under the assumption of linear elasticity and Cis the constitu-
tive matrix, u and t are the prescribed boundary displacement
and traction, ug and v(denote the initial displacement and
velocity. A superposed dot indicates the partial differentia-
tion with respect to time.

2.2 Space-time discretization

In TDG method, the space—time domain is divided into multi-
ple segments called space—time slabs and the n-th space—time
slab is given as Q, = 2 x I, where I, = |t,_1, t,[. Dis-
placement and traction boundary conditions are defined on
Yu)n = Iy x I, and (13), = I} x I, respectively. Space—
time slab Q, is further discretized into (n.;), space—time
elements. The approximations established will be denoted
with a superscript “A”. The domain (interior) of the eth ele-
ment defined as Q7 C O and its boundary as 7,7. The

n
domain and boundary of the interior of the slab are defined

as Qf U(nel)n Qfl and TnE U("L/)n Te _
tively.

The following inner product notations are defined for
deriving the TDG formulation,

T, respec-

(wh,uh)Q =fgwh w'dQ %)
a(wh,uh>g Z/QVWh%T(Vuh)dQ 8)
(wh,uh)Qn :anh u'do ©)
a(wh,uh)Q” :/Qn vw -6<Vuh)dQ (10)

457
hoh hoh
= . 11
(w,u)Qy)l: /Q,{w u'dQ (11)
(wh,uh) =/ wh . utdr (12)
L Tz

(wh,uh> :/ whuhdr (13)

(Y Y

where an () dQ = f,ﬂ Jo (®)dS2dt and an (0)dY =
/ I, [~ (8)dI"dt. We further introduce the jump operators

Tu(t)1 =u(r) —u(r,) (14)
Tux)] = u(x*) —u(x") (15)
in which

u(rr) = lir(r)li u(t, +¢) (16)
u(xi) = 11151 u(x +éen) a7
n=n'=n" (18)

2.3 Single-field formulation

Displacements are chosen as the basic unknowns in the
single-field formulation. The weak form is derived by intro-
ducing the displacement trial functions u”(x, 7) and test
functions 3uh(x, t)to be CY continuous within each space—
time slab. Trial and test functions can have discontinuities
across the space—time slabs. The spaces of the trial function
and test function are given as

uw'(x,1) eU

U= { ' (x, t)‘u eC0<U Qn) u _uonl"} (19)

sul(x, 1) € Uy

Uo {auh(x t)‘Su ec°< Qn),Suh:OOn Fu}
(20)

With these definitions, the weak form of single-field
formulation is expressed in a bilinear form. For the n-th
space—time slab, it is given as

Bpc (Suh, uh) = Lp (3uh) Q1)

n n

forn=1,2, ..., where

BDg(Buh,uh) = (Sﬁh,pﬁh) +a(8ﬁh,uh>
n On On

+(51'lh(t 1) o (1 1)>_Q+a<5“h(f;—1)7“h(t;—l))9

(22)

@ Springer

458

Computational Mechanics (2019) 63:455-470

Lo (auh) - (aah, f) + (5uh, t)
n Qn (‘rt)n

+(81’1h(” 1), (1 1)>Q+a<5“ (ta—1), uh(tn_—l)>9

(23)

Space—time shape function N(x, ¢) is constructed in a mul-
tiplicative form so that the temporal and spatial domains are
approximated independently, i.e.,
N, 1) =N, ® Ny =[N Nx ... NNy ... NNy | (24
where Nx and N; are the spatial and temporal shape functions
respectively. The spatial shape functions are the same as these
in the regular FEM. A 3-node quadratic shape function is
employed for N; in the single-field formulation:

N, — I:z(tn_t)(tnfl/z_t) 4ty =) (ta1—1) z(tn—l_f)(tn—l/Z_t):I
d A2 At? At?
(25)

in which At is the size of the temporal mesh (time step size).
The three nodes at #,,—1, t,—1/2 and t, are equally spaced
along the time axis for each space—time slab.

Based on Eq. (24), integrations over the spatial domain
can be done independent of the ones over the temporal
domain. Therefore, the 1st and 2nd terms on right-hand side
of Eq. (22) are given as

(auh, pﬁh)Q —sd” (/ N7 ~deQ> d
=sd” [(/ NfN,dt) ® M} d
I, (26)

a (3ﬁh, uh)Q —sd” (/ N CN,de> d

_ T g
= [(fz N N’dt) © K] T

in which 4éd is arbitrary virtual displacement that can be
dropped from both sides of Eq. (21), d is nodal displace-
ment vector, K and M are spatial stiffness and mass matrices,
respectively. Given the quadratic temporal shape functions
[Eg. (25)], integrations over time in Egs. (26) and (27) can
be evaluated analytically and the space—time stiffness matrix
of Eq. (21) is further expressed as

M, K _4AM _ 2K M K
A2 2 Ar? 3 INZE)
C=| _12M _ 2K 16M _4aM _ 2K 28
NN At? 3 (28)
™ _ K _ oM | 2K 5SM |, K
Ar? 6 TAZ T3 AT 2

@ Springer

Equation (28) shows that the space—time stiffness matrix
of single-field formulation is fully coupled, i.e., all the terms
are featured by the combinations of K and M with the excep-
tion of /C». It can also be expressed in the form of Kronecker
products as shown below

3 41 5 —4 —1
K=c|4 0 —4|@K+ | -1216 —4 oM
—14 3 17 —125

(29)
2.4 Two-field formulation

Both displacement and velocity are taken as unknown fields
in the two-field formulation. The weak form is derived by
introducing the trial functions U"(x, 1) = {u", v} and test
functions §U"(x, 1) = {su”, v/} to be C? continuous within
each space—time slab. Similarly, trial and test functions can
have discontinuities across the space—time slabs. The spaces
of the trial functions are given as

u'x, 1) eU
U_{ ' (x, t)‘u eC0<U Q,,) u" =i on n,} (30)
v (x,t)eV

V:{vh(x,t)’vheC()(ngn>,vh=ﬁon Fu} (31)

and the spaces of the test functions are
su(x, 1) € Uy
Uy = {Su (x, t)‘c?u € Co(n lQn>, su” =0 on Fu}
i (32)
sV(x,1) € Vp
_ {6vh(x, t)’(Svh c c0< @] Q,,), sv" =0 on FM}
. (33)

With these definitions, the weak form of two-field formu-
lation for the n-th space—time slab can be expressed as

Bpe (3Uh, Uh)n = Lpc (5Uh)n (34)

forn =1, 2, ..., where

Bpg ((SUh, Uh)n = (5vh, p\‘/h)Qn +a(6vh, uh)

On

+a(su®, (@ = V), + OV (5). oV (6) g
+a(dul(4). u'(1-1)) (35)

Lpg(3U"), = (0v". £) o + (08"))+ (8¥" (51). 2¥" (1,1))
+a(sul (57 ,). (5)) g (36)

Computational Mechanics (2019) 63:455-470

459

The same decomposition of space—time shape function
[Eqg. (24)] is employed in the two-field formulation. Linear
temporal shape functions are defined for both the displace-
ment and velocity fields, i.e. the P1-P1 element in [8, 9] is
adopted. The corresponding space—time stiffness matrix is
obtained as

1 1 At At
ZK’ EK; —7TK;—7;K
1 1 At A

K= 37)
At At 1 1
FK TK;M ;M
At At 1 1
<K K -3M ;M
Similarly, Eq. (37) can be rewritten as
3 3 2At —At 000 O
1| =3 3 —Ar —2A¢ 11000 O
K=%l2arar 0 o ®K+31001 1|®M
At 2At 0 0 00-11
(38)

As shown in Eq. (37), the space—time stiffness matrix
of the two-field formulation is weakly coupled, i.e., each
term involves either K or M but not both. Hence, the cor-
responding matrix equation can be recast into a partially
decoupled form, which can be solved by a family of iter-
ative predictor/multi-corrector solution algorithms [12, 16,
29].

2.5 Enriched formulation

The enriched space—time approximation established in
XTFEM is given as

ux, 1) = ZN[(X, nd; + Y Ny(x,tay (39)
I=1 J=1

where a represents the enriched DOFs, ng and n, are the
numbers of standard and enriched DOFs respectively. For
the J-th node the enriched shape function is

N;(x,1) = Nyj(x,)@ (x, 1) (40)
in which
Dy(x,1) = DX, 1) — P(Xy, 1)) (41)

With prior knowledge about problem physics, proper
enrichment functions can be selected. For example, in fatigue
life prediction problems, the oscillating components in struc-
tural response cannot be efficiently captured by conventional
polynomials-based shape functions. Considering the cyclic
nature of fatigue loading, a time-dependent harmonic enrich-
ment function can be introduced. Similarly, discontinuous

enrichment functions, e.g. Heaviside function, are suitable
for dynamic responses with discontinuities or sharp gradi-
ents, such as shock wave propagation and fracture problems.

With the introduction of enrichment function, the space—
time stiffness matrix can be generally expressed as

K Kea
Ke = 42
¢ |:’Ceb Kee i| “2)

where IC is the same space-time matrix as in Eq. (28) of
the single-field formulation, /Ceq and KCep reflect the cou-
pling between enriched and regular DOFs, ICee reflects the
coupling between enriched DOFs. Equation (42) can also
be written in the form of Kronecker product as shown in
Eq. (29). The temporal submatrices are more complex due
to the enrichment functions. In the current implementation,
these submatrices are evaluated analytically.

2.6 Numerical implementation

Table 1 illustrates the numerical implementation of space—
time FEM. Computational cost analysis in previous study
[27] showed that solving the space—time linear system of
equations (line 9 in Table 1) is the most expensive part. It
requires O(N2) in memory for full storage of the space—time
matrix and O(N3) in CPU time for solving the equations
using direct solver, where N is the total number of space—
time DOFs.

Figure 1a—d illustrate sparsity patterns from the stiffness
matrices that are obtained from regular FEM, single-field
and two-field STFEM and XTFEM for the same number of
spatial nodes. These patterns are generated based on a thin
plate problem that will be described in Sect. 4.1. For spa-
tial discretization, a 3D structured mesh (2880 8-node brick
elements, 3965 nodes) is generated and leads to the banded
pattern of stiffness matrix for regular FEM as shown Fig. 1a.
The number of spatial DOFs in regular FEM is ng = 11,895.

Table 1 Implementation of space-time FEM

1 Discretize the spatial domain

2 Integrate and assemble spatial matrices K and M
3 DO (time loop over space-time slabs)

4 Discretize the temporal domain
5 Integrate temporal matrices

6 Assemble space-time matrix &
7 Calculate force vector ¥

8 Apply boundary conditions

9 Solve Hd=F

0

1

Update and output solutions
END DO

@ Springer

460

Computational Mechanics (2019) 63:455-470

@

2000
4000

6000

Regular FEM

8000

10000

0 5000
nz = 769803

10000

=

Two-field STFEM
w N

BN

0 1 2 3 -
nz = 10270824

x10%

0 1 2 3
nz = 6416721

0 2 = 6
nz = 25666884

x 104

Fig. 1 Comparison among the sparse pattern of the stiffness matrices formed by a regular FEM, b single-field STFEM, ¢ two-field STFEM and d
XTFEM, dashed box indicates the size of the regular FEM stiffness matrix and nz represents the number of non-zero elements in the sparse matrix

The numbers of space-time DOFs are N =3n; =35,685,
N =4ny =47,680 and N =6ny =71,370 for single-field and
two-field STFEM and XTFEM, respectively. As can be seen,
direct solution of space—time FEM stiffness equation leads to
computational cost that is several orders of magnitude higher
comparing to solving the regular stiffness equation in FEM,
which becomes a critical barrier for its extensive and practical
application.

3 Proposed solution algorithm

For each space—time slab, the general linear system of equa-
tions derived from TDG methods is given as

Kd=F 43)

@ Springer

where IC € RV >V is anon-symmetric sparse matrix,d € RV
and F € RY are unknowns and force vectors respectively.
Considering the special block structure of space—time matrix,
Eq. (43) can be rewritten as

(PRK+W¥ @M)d=F (44)

In this work, we employ the nonstationary iterative
approach to solve Eq. (44). It is well known that the effi-
ciency and robustness of iterative methods largely depend
on the quality of preconditioner. Therefore, a preconditioner
is constructed and the original system is modified as

[P—1(<1>®K+\1:®M)]d=1>‘17-‘ (45)

in which matrix P is the preconditioner and Eq. (45) is the
left preconditioned system.

Computational Mechanics (2019) 63:455-470

461

3.1 Preconditioned iterative method

Due to the asymmetry of space—time stiffness matrix, we
employ the generalized minimum residual method (GMRES)
as the iterative solver. GMRES is developed by Saad and
Schultz [30] and widely used for asymmetric systems of lin-
ear equations. It starts from an initial guess do. Then, initial
residual is calculated by ry = P~ (F—Kdg). The exact
solution is approximated by

dD =do+y v+ 4 @ (46)

in which v\¥) are orthonormal bases of the left preconditioned
Krylov subspace of order m,

K (PIIC, 10)
:”mn{mgp1K}m(P1szm“.”(P‘KQm4r4

47

and y; is solved from a linear least-squares problem that min-
imizes the residual. The bases are generated by modified
Gram-Schmidt orthogonalization procedure in the Arnoldi
iteration. The iterative procedure is stopped once residual sat-
isfies a given error criterion. To save storage and computing
resources, GMRES is restarted every m iterations. The left
preconditioned GMRES algorithm is summarized in Table 2.

Computational cost of GMRES depends on two factors.
The first is the number of iterations that is required to sat-
isfy the convergence criterion. The second is the cost of
each iteration. Total cost is the product of these two factors.
Therefore, a good preconditioner needs to be constructed
to minimize both the number of iterations and the most
computing-intensive operations, i.e. the matrix operations as
outlined in lines 3 and 6 in Table 2.

3.2 Proposed preconditioner

The preconditioner is built by approximating the system
matrix (the space—time stiffness matrix). A good precon-
ditioner makes the modified linear system easier to solve
and the computational saving gained far outweighs the extra
cost of preconditioning. In previous study [27], a general
method of preconditioning is established by the incomplete
lower/upper (ILU) factorization of the space—time stiffness
matrix JC. Since the choice and the quality of precondi-
tioner greatly depend on the specific linear system, further
improvements can be made by taking advantage of the special
features of the space—time stiffness matrix. Several observa-
tions are made from the space—time stiffness matrices shown
in Sect. 2:

Table 2 Left preconditioned GMRES algorithm
1 Given2, X, ¥ and d,

2 DOk=1,2,...
3 Solve r, from Pr, = - 5d,
4 Calculate =|r[, and v =1,/
5 DOj=1,2, ... m
6 Solve w from w = Fv"”
7 DOi=1,2,..,j
Calculate 7, :(w,v(")) and
8 . ‘
w:w—h[ﬁ/.v(‘)
9 END DO
0 Calculate h,,, , =|w|,and
VU = W/h‘,“,j
1 END DO
Define

m

12 V., = |:V(l)’ V(Z)" t V(m) :| ’ﬁ’" = {hivj }1§i£j+1;1£jSm

13 Solve y,, from argmin, ||ﬁel —ITImy”2
14 Calculate d,, =d, +V,y,,

15 IF d, is satisfied THEN

16 STOP

17 ELSE

18 Set d,=d,,

19 END IF

20 END DO

1. The determinant of the matrix W as defined in Eq. (1),
i.e., the temporal matrix corresponding to spatial mass
matrix M, is always zero. Since the determinant of Kro-
necker product of two matrices of A and B is given as
A xn ® Bixm| = |[A|"™ B, the contribution from M to
the space—time stiffness matrix /C, i.e. the matrix ¥ ® M,
is always singular;

2. The spatial stiffness matrix K is also singular. However,
this singularity is eliminated by introducing the essential
boundary conditions. Thus, the component derived from
K matrix, i.e. the matrix ® ® K, is non-singular;

3. The matrix ® ® K is dominant in the space—time stiffness
matrix for most computational mechanics applications
since the elements in K are usually several orders of mag-
nitude larger than those of M.

According to the above observations, a block-structured
preconditioner is constructed by approximating the dominant
component in space—time matrix /C, i.e. the matrix ® ® K.

It is defined as

P=0o3P (48)

@ Springer

462

Computational Mechanics (2019) 63:455-470

in which matrix P is derived by incomplete factorization of
matrix K. Since K is symmetric positive definite (SPD), sev-
eral well-established incomplete factorization methods, such
as the ILU method for general matrices and the incomplete
Cholesky factorization (ICHOL) method, can be directly
used. Matrix P can be then expressed as

P=LU=K-R for ILU (49)
or
P=LL" =K—-R for ICHOL (50)

where R is the residual matrix.

The advantages of using the preconditioner as proposed
by Eq. (48) are twofold. First, the preconditioner is obtained
by incomplete factorization of spatial stiffness matrix K
which is sparse, symmetric and better conditioned. There-
fore, the computational cost is far less than the general
approach of obtaining the preconditioner by incomplete fac-
torization of the larger, coupled space—time matrix /C that
is also non-symmetric. Second, the preconditioning opera-
tion, i.e., P~ly with v a vector involved in the iteration, can
be greatly simplified and accelerated by using properties of
Kronecker product as shown later in Sect. 3.3.2.

3.3 Acceleration of matrix operations

As mentioned in Sect. 3.1, the most computationally inten-
sive part in GMRES iterations is the following matrix
operation,

w="P ' (Kv) 51)

This operation can be further decomposed into two matrix
operations. The first is the matrix—vector multiplication of
JCv. The second is the preconditioning operation. Direct eval-
uations of these matrix operations are less efficient. They can
be optimized and accelerated by using the block structure of
space—time matrix and inverse property of Kronecker prod-
uct as follows.

3.3.1 Matrix-vector multiplication
The general form of matrix—vector multiplication is
y =Kx (52)

in which x and y are vectors of size N =n; X ngs, where n,
and ng are the dimensions of temporal and spatial matrices
respectively. Note that »; is usually much smaller than ng.

@ Springer

By using the block structure of space—time matrix, Eq. (52)
is rewritten as

y=(@®K+V¥®M)Xx (53)

The first step to simplify Eq. (53) is dividing vectors x and
y into smaller segments,

x y(l)
x@ y(z)
x=1. and y={. (54)

x () y(ﬂt)

in which the size of x® or y® is n.
Second, we define two intermediate vectors
u? =Kx® and v =Mx", i=1,2,....n, (55

Finally, the desired vector y is computed as

ny n

t
YO =Y "giu 4> v i=1,2,.. 0 (56)
j=1 j=1

where ¢;; and v;; are the corresponding elements in ® and
W matrices.

3.3.2 Preconditioning operation

The preconditioning operation is generally expressed as

y="P 'x (57)
By using the preconditioner defined in Eq. (48), we have

y=(®P) 'x (58)

Due to the inverse property of Kronecker product, the pre-
conditioning operation is rewritten as

y=(2"@P")x (59)
Similarly, we introduce an intermediate vector
2D =P xD i=12 ..., n (60)

From the solution of Eq. (60), the desired vector y is cal-
culated by

ny
y(l) :Zg)l]z(’), I = 1,2,...,1’1((61)
j=1

in which ¢;; is the corresponding element of matrix o,
which can be obtained analytically.

Computational Mechanics (2019) 63:455-470

463

3.4 Computational cost analysis

Computational cost of the proposed solution algorithm is
mainly attributed to two major implementations: (1) gen-
erating the preconditioner and (2) the GMRES iterations.
The cost of generating the preconditioner mostly comes
from incomplete factorization of the K matrix. This imple-
mentation depends not only on the choice of incomplete
factorization method but also on the system matrix to be
factorized. However, this operation is the same as the corre-
sponding in solving the static problems in the regular FEM
assuming that the same type of preconditioned iterative solver
is used. Therefore, the computational cost of generating the
preconditioner is the same as the corresponding operation in
the regular FEM.

As discussed in Sect. 3.3, GMRES iteration involves
two main implementations: matrix—vector multiplication and
preconditioning operation. Direct evaluation of matrix—vec-
tor product as shown in Eq. (52) requires ning(nng — 1)
additions and (nn5)> multiplications. The proposed method
as shown in Egs. (§4)—(56) reduces the numbers of operations
to ning(2ny + 2ng — 3) and nng(2ng + 2) respectively. For
N / ny > 1, cost of the proposed method is only 2 / n; of the
direct evaluation method. Since explicit assembly of space—
time matrix is no longer necessary in the present method, the
memory cost reduces to 2 / n% of the full storage of space—
time matrix. While the above discussions are based on the
assumption of dense matrices, the order of the computational
efficiency remains the same when sparse matrix format and
operations are employed. Finally, from Eq. (60) it can be seen
that the cost of preconditioning operation is 7 times the same
operation in solving the corresponding static problems.

As a brief summary, we have demonstrated theoretically
that the proposed solution algorithm reduces the cost of solv-
ing space—time linear system of equations to the same order
of solving the corresponding static problems in regular FEM.
Furthermore, numerous operations in the present method as
shown in Eqgs. (55), (56), (60) and (61) are well-suited and
convenient for parallel computing.

4 Numerical examples
4.1 Problem statement

To demonstrate computational performance of the proposed
solution algorithm, we study the problem of a rectangular
thin plate with one end fixed and the other end subjected to
a uniformly distributed load p(t). Detailed geometric dimen-
sions and boundary conditions of the problem are illustrated
in Fig. 2. Material of the plate is assumed to be isotropic
elastic with Young’s modulus £ =200 GPa, Poisson’s ratio
v =0.3 and mass density p=7860 kg/m>.

4.2 Accuracy and robustness of TDG methods

The spatial domain of the plate is discretized by 8-node linear
brick element with uniform element size of 0.5 mm, which
leads to 2880 elements and 3965 nodes. To demonstrate the
accuracy and robustness of the TDG methods, we compare
the displacement and velocity solutions at the right end of
the plate with that obtained from the semi-discrete schemes
such as the explicit center difference method and the implicit
Newmark-g (y =0.5, =0.25) method [31]. The TDG for-
mulations described in Sect. 2, i.e., the single-field, two-field
and enriched formulations are denoted as TDG-1, TDG-2 and
TDG-e, respectively. All those methods are implemented in
MATLAB.

First, we consider the loading condition of a constant pres-
sure, i.e. p(t) = 100H (t) MPa, where H(¢) is the Heaviside
function. The time steps for center difference, Newmark-4,
TDG-1 and TDG-2 are 1.2x 107, 6.0 x 1078, 1.2 x 1076
and 1.2 x 1079 s, respectively. Figure 3 shows the displace-
ment solutions at the right end of the plate. Despite the large
time steps that are used by the TDG methods, their dis-
placement solutions show good agreement with that of the
semi-discrete methods. The velocity solutions at the right
end of the plate are shown in Fig. 4. It can be seen that TDG
methods significantly reduce the artificial oscillations near
the discontinuities. Also, the TDG solutions are more sta-
ble than that of the semi-discrete schemes as the stress wave
propagates in the plate.

Next, a fully-reversed cyclic load is considered, i.e. p(¢) =
100sin(407t¢)H (t) MPa. The time steps for center difference,
Newmark-8, TDG-1, TDG-2 and TDG-e methods are 7.2 x
107%,5.0x1075,6.3x 1073, 6.3 x 1072 and 5.0 x 1072 s,
respectively. For the TDG-e method, a shifted sinusoidal
function is employed to enrich the space-time shape func-
tion, 1.€.,

@ (1) = sin(wt) — sin(wty) (62)

in which the frequency w =407 is same with the loading
frequency. The displacement solutions are shown in Fig. 5.
Although TDG methods use very large time steps compared
with semi-discrete methods, they accurately captured the
oscillating structural response. More extensive demonstra-
tion of the robustness of TDG methods can be found in
Bhamare et al. [26].

4.3 Configurations for performance study

As the accuracy and robustness of TDG methods has been
extensively demonstrated, we now focus on evaluating the
computational performance of the proposed solution algo-
rithm by using the configurations that are described as
follows.

@ Springer

464 Computational Mechanics (2019) 63:455-470
Fig.2 The geometric I A-A
dimensions and boundary . A)
conditions of the thin plate 1 » 7
1
problem I — p(0) / 6 mm
1
; —> A
'—> A 2 mm
< > —>
30 mm
Fig. 3 Comparison of the 0.04 T T T T T
displacement solutions at the Center diff. Newmark-3 TDG-1 TDG-2
right end of the plate ~ dt=12e9s dt=6.0e-8 5 dt=12e6s dt=12e6s
€ 0.03 b
E
<
)
€ 0.02 - -
©
o
®
2
g 0.01r -
0 | 1 | 1 |
0 0.2 0.4 0.6 0.8 1 1.2
Time (s) %107
Fig. 4 Comparison of the 8000 T T \ T T
velocity solutions at the right Center diff. Newmark-3 TDG-1 TDG-2
end of the plate 6000 dt=1.2e-9s dt=6.0e-8's dt=1.2e-6's dt=12e-65s |
@ 4000 i
E 2000 fHHH
=
8 o
S
-2000
-4000 HR ,-
1 1 [1 I
0 0.2 0.4 0.6 0.8 1 1.2
Time (s) %107
Fig.5 Comparison of the 0.03 \ \ \ T
displacement solutions under | Centerdiff. Newmark-4 TDG-1 TDG-2 _ _ _TDG-e
cyclic load 0.02 - dt=7.2e-8s dt=5.0e-5s dt=6.3e-3s dt=6.3e-3s dt=5.0e-2s |
€
£ 5 4 A
£ 001 fﬁﬁ B £ R $ 8 Qﬁﬁﬁ & A 1
R U R S U S
s o0 a2 4 & 4 K 4 & £ X
S A A AR Y.
-0.01 N A)N A & k& A A
Bl i L5 i bl
-0.02 :
0 0.05 0.1 0.15 0.2 0.25
Time (s)

Both 2D and 3D discretizations are established for the
spatial domain of the thin plate for comparison purposes. For
2D discretizations, bilinear quadrilateral (Q4) elements with
plane stress formulation are employed. Eight-node hexahe-

@ Springer

dral elements are used for 3D cases. Two sets of structured
mesh grids are created by refining element size. All the TDG
formulations, i.e., TDG-1, TDG-2 and TDG-e, are employed
to discretize the temporal domain.

Computational Mechanics (2019) 63:455-470

465

Besides the proposed iterative solution algorithm, direct
sparse solver (UMFPACK, a multi-frontal method [32]) and
preconditioned iterative solver developed previously [27] are
also employed for the purpose of comparison. We denote the
proposed method as the Kronecker solver, while the other two
are denoted simply as the Direct and Iterative solvers. Note
that reversed Cuthill-McKee (RCM) reordering algorithm
[33] and ILUTP—a more accurate variant of ILU algorithm
are used in both the Kronecker and Iterative solvers. Same
parameters associated with these two iterative solvers are
used, see [27] for details.

For comparison purpose, the same problems are also simu-
lated in semi-discrete FEM, in which the Newmark-8 method
is also employed. Since Newmark-8 method is an implicit
time integration method, it formulates linear systems of equa-
tions with the spatial-only effective stiffness matrix, which
is given as

1
Keff == K + WM (63)

The previously developed Iterative algorithm [27] is
employed to solve the linear systems of equations with the
stiffness matrix Eq. (63). Therefore, the result of theoretical
cost analysis in Sect. 3.4 can be verified by comparing the
computational performance of TDG methods with that of the
implicit Newmark-8 method.

The hardware platform for performance testing is a desk-
top workstation featured with the Intel Xeon E5-2623 v3
(3 GHz) CPU and 32 GB RAM. It was found that MATLAB
(version R2015b) automatically accelerates some operations,
e.g. those associated the direct sparse solver, by using multi-
ple CPU threads. To avoid the automatic parallelization and
ensure the same computing environment, the single thread
mode was run by starting MATLAB with the command line
option—singleCompThread.

Both time and storage costs and complexities are pre-
sented in following sections. The total CPU time of obtaining
solutions to the first space—time slab (or equivalently the
first time-step for Newmark-f# method) is reported as the
performance metric for time usage since preconditioner is
generated at this stage only. The memories used by system
matrix factorization, i.e. the symbolic and numerical factor-
izations in the Direct solver and the incomplete factorizations
in the Iterative and Kronecker solvers, are reported as the per-
formance metric for storage cost.

4.4 2D spatial discretization

We first evaluate the computational performance for the 2D
cases. A summary of the mesh grids and the corresponding
numbers of DOFs are presented in Table 3.

4.4.1 Single-field formulation

Computational performances of different solvers for the
single-field formulation are plotted in Fig. 6. It shows that the
previous proposed general Iterative solver achieves a similar
efficiency as the multi-frontal Direct solver. The time com-
plexities of these two solvers are both O(N!9). The present
Kronecker solver demonstrates a significantly better perfor-
mance. The time complexity is reduced to O(N'-3). For N
>10%, the Kronecker solver is at least one order of magni-
tude faster and requires at least one order of magnitude less
memory than the other solvers.

4.4.2 Two-field formulation

Figure 7 demonstrates the computational performances of
different solvers for the two-field formulation. It shows that
the Kronecker solver works more efficiently than the other
solvers. The time complexity is reduced from O(N'7) to
O(N'-2). Although storage complexities of the Iterative and
Kronecker solvers are the same, the actual memory cost of
the former is almost an order of magnitude higher than the
latter.

4.4.3 Enriched formulation

For the enriched formulation of XTFEM, the computa-
tional performances of different solvers are illustrated in
Fig. 8. The Direct solver shows time complexity of O(N!9),
which is slightly better than O(N'-7) of the Iterative solver.
The Kronecker solver further reduces the time complex-
ity to O(N'?). The memory cost of the Kronecker solver
is close to two orders of magnitude lower than the oth-
ers.

To further demonstrate the efficiency of the Kronecker
solver, we compare its computational cost with the Newmark-
B method. Note that the [Iferative solver is used for
Newmark-8 method. The results are shown in Fig. 9.
When accelerated by the Kronecker solver, all TDG for-
mulations achieve the same computational complexity with
Newmark-8 method. The time costs of TDG methods are
only slightly higher while the memory costs are almost the
same.

4.5 3D spatial discretization
Next, we evaluate the computational performance of the
proposed solution algorithm for 3D cases. A summary of

the 3D mesh grids and corresponding numbers of DOFs are
presented in Table 4.

@ Springer

466

Computational Mechanics (2019) 63:455-470

Table 3 2D meshes of the thin plate

No. Element size # Elements # Nodes # Spatial DOFs # Space—time DOFs
(mm) (Newmark-p)
TDG-1 TDG-2 TDG-e
1 3.0 20 33 66 198 264 396
2 1.5 80 105 210 630 840 1260
3 0.75 320 369 738 2214 2952 4428
4 0.375 1280 1377 2754 8262 11,016 16,524
5 0.1875 5120 5313 10,626 31,878 42,504 63,756
6 0.09375 20,480 20,865 41,730 125,190 166,920 250,380
7 0.046875 81,920 82,689 165,378 496,134 661,512 992,268
(@) (b)
102 104
@ 10°f @ 102}
o =3
£ >
5 g
o R
G 102 2 10%]
—O— Direct, O(N"6) —O— Direct, O(N"6)
—&— Iterative, O(N ') —&— Iterative, O(N ")
—A— Kronecker, O(N1'3) —A— Kronecker, O(N1'3)
10_4 * : . 10'2 . N T
102 10° 10* 10° 108 102 102 104 10° 108
N N

Fig. 6 Comparison of computational performance between different solvers for TDG-1 method: a CPU time and b memory usages

(a)

CPU time (s)

102_

100_

—©— Direct, O(N"7)
—&— |terative, O(N')

—A— Kronecker, O(N1'2)

104 10°
N

108

(b)
10*
m 102t
s 10
>
o
5
L 100
—6— Direct, O(N'®)
—&— |terative, O(N'-%)
10_2 ‘ —A— Kronecker, O(N1'3)
102 103 10% 10° 10°
N

Fig.7 Comparison of computational performances between different solvers for TDG-2 method: a CPU time and b memory usages

4.5.1 Single-field formulation

Computational performances of different solvers for the
single-field formulations are shown in Fig. 10. The time

@ Springer

efficiencies of the Direct solver and the Iterative solver are
O(N?%3) and O(N %) respectively. Although the performance
of the Iterative solver is better than the Direct solver, the
numerical efficiencies of these two solvers both deteriorated

Computational Mechanics (2019) 63:455-470

467

C))

CPU time (s)

N
S
N

102

—6— Direct, O(N'®)

—E— Iterative, O(N ')
—A— Kronecker, O(N'?)

-
o
o

107

102

108

10*
N

10° 108

(b)

-—
o
I

—6— Direct, O(N')
—E— Iterative, O(N'*)
—A— Kronecker, O(N'?)

-
o
N

Memory (MB)
80

1072

102 104 10° 108

N

108

Fig. 8 Comparison of computational performances between different solvers for TDG-e method: a CPU time and b memory usages

C))

CPU time (s)

10

N
o
o

N
<
N

10

10"

-©-Newmark-43
—&-TDG-1
-A-TDG-2
—*—TDG-e

102
Number of nodes

103

10* 10°

-©-Newmark-43
—8-TDG-1
-A-TDG-2
—*—TDG-e

1072

10" 102 108 10* 10°

Number of nodes

Fig. 9 Comparison of computational performances between Newmark-8 method and TDG-based methods: a CPU time and b memory usages

Table 4 3D meshes of the thin plate

No. Element size # Elements # Nodes # Spatial DOFs # Space—time DOFs
(mm) (Newmark-g)
TDG-1 TDG-2 TDG-e

1 2.0 45 128 384 1152 1536 2304
2 1.5 80 210 630 1890 2520 3780
3 1.0 360 651 1953 5859 7812 11,718
4 0.75 960 1476 4428 13,284 17,712 26,568
5 0.5 2880 3965 11,895 35,685 47,580 71,370
6 0.4 5625 7296 21,888 65,664 87,552 131,328
7 0.3 14,000 16,968 50,904 152,712 203,616 305,424
8 0.25 23,040 27,225 81,675 245,025 326,700 490,050

greatly when comparing with the 2D cases. However, the
Kronecker solver remains a high efficiency with a time com-
plexity of O(N'!-7) and a storage complexity of O(N %), For N

> 10%, the performance of the Kronecker solver is an order of
magnitude better than the Iferative solver and two orders of
magnitude better than the Direct solver as shown in Fig. 10.

@ Springer

468 Computational Mechanics (2019) 63:455-470

(a) (b)

10% -
103,
102.
101 L

- -
o o
N w

-
o
N

CPU time (s)
80
Memory (MB)

107 —O— Direct, O(N*%) —6— Direct, O(N*")
10°2f —&— Iterative, ON'®) | | 100 ¢ —H&— Iterative, O(N'?)
—A— Kronecker, O(N”) —A— Kronecker, O(N1'6)
1073 : : 107" : :
103 10* 10° 10° 103 10* 10° 108
N N

Fig. 10 Comparison of computational performances between different solvers for TDG-1 method: a CPU time and b memory usages

(a) (b)
10* ‘ ‘ 10°
3l]
10 105+
2 = 4 —~~
3 10 B 10¢)
[0 101 L J <
£ g 10%
ol] o
o 10 IS
S 2 10%}
1077 —O— Direct, O(N2%) | —O— Direct, O(N2°)
1021 —&— lterative, O(N2%) | 10"t —E— Iterative, O(N %)
—A— Kronecker, O(N1‘7) 1 —A— Kronecker, O(N1'6)
‘ 10" .
103 10* 10° 108 103 10* 10° 108
N N

Fig. 11 Comparison of computational performances between different solvers for TDG-2 method: a CPU time and b memory usages

@, (b)
—6— Direct, O(N?7) —6— Direct, O(N*?)
—&— lterative, O(N"®) —E— |terative, O(N ")
—A— Kronecker, O(N”) 4| —A— Kronecker, O(N1'6)
— 2 = 10
w L
0 S
£ 2
) E 101
& 100 o
o =
100 L
107 : : : :
103 10* 10° 108 103 10* 10° 108
N N

Fig. 12 Comparison of computational performances between different solvers for TDG-e method: a CPU time and b memory usages

@ Springer

Computational Mechanics (2019) 63:455-470

(@)
10*
102}
@
£
= 100}
-)
o —O— Newmark-43
O
10'2 —E—TDG-1
—A—TDG-2
—%—TDG-e
107 : :
102 103 10* 10°

Number of nodes

469
(b)
10*
o an2l
g 10
>
(@]
IS
% 10° —6— Newmark-3|
—8—TDG-1
—A—TDG-2
—%—TDG-e
1072 : :
102 10° 10* 10°

Number of nodes

Fig. 13 Comparison of computational performances between Newmark-8 method and TDG-based methods: a CPU time and b memory usages

4.5.2 Two-field formulation

For the two-field formulation in 3D cases, the Kronecker
solver works significantly better than the other solvers as
shown in Fig. 11. Itreduces the time complexity from O(N>)
to O(N17). The computational cost of the Kronecker solver
is at least two orders of magnitude lower than the others for
larger N.

4.5.3 Enriched formulation

Figure 12 demonstrates the computational performances of
different solvers for the enriched formulation in 3D cases.
The time complexity of the Direct solver is further increased
to O(N%7). The Iterative solver performs slightly better than
the Direct solver. The Kronecker solver remains the same
high efficiency of O(N!7) and its cost is almost 1-2 orders
of magnitude lower than the other two for N > 10%.

The results presented so far showed that the Kronecker
solver achieved significantly better performance for all
TDG formulations in 3D cases. To further demonstrate its
efficiency, we compare its performance with Newmark-8
method. Figure 13 shows that the computational efficiency
of all TDG formulations accelerated by the Kronecker solver
are on the same level of Newmark- 8 method. While memory
costs are very close, time costs of the TDG methods are con-
stant times higher than Newmark-8 method, which agrees
well with the theoretical analysis in Sect. 3.4. As we have
shown in Sect. 4.2 that the TDG methods generally employ a
much larger time step than the semi-discrete schemes due to
the higher-order accuracy and unconditional stability. Thus,
with the acceleration of the proposed Kronecker solver, the
overall computational performance of TDG methods is much
better than that of the traditional semi-discrete schemes such
as the Newmark-g or center difference method.

With all the results shown above, it is concluded that the
proposed solution algorithm is highly efficient for numerous
TDG formulations in both 2D and 3D cases.

5 Conclusions

An efficient iterative solution algorithm has been developed
in this work that enables the practical applications of TDG-
based space—time FEM. The proposed algorithm features a
novel preconditioner by utilizing the special block struc-
ture of the coupled space—time stiffness matrices that are
expressed in the forms of Kronecker product. The most com-
putationally intensive parts of the iterative solver are then
accelerated by using the inverse property of Kronecker prod-
uct. Based on the results of theoretical analysis and numerical
examples, the following conclusions are made:

1. Theproposed solution algorithm significantly accelerates
the solution to the space—time linear systems of equa-
tions. Its numerical efficiency is at least 1-2 orders of
magnitude better than the direct sparse solver and general
preconditioned iterative solver for relatively large num-
bers of DOFs (e.g., N >10%). The computational cost
of TDG methods is reduced to the same as the implicit
algorithm implementation in the semi-discrete method,
however, TDG method performs better since it is capa-
ble of larger time step size than the implicit algorithm for
accomplishing comparable accuracy.

2. The proposed solution algorithm has been shown to work
well for single-field, two-field and enriched TDG formu-
lations in both 2D and 3D cases. Unlike the iterative
predictor/multi-corrector algorithms developed in [12,
16, 29], this algorithm does not require partially decou-
pling of the space—time stiffness matrix. It is applicable

@ Springer

470

Computational Mechanics (2019) 63:455-470

to both weakly and strongly coupled space—time linear
systems of equations. Therefore, the proposed algorithm
is generally applicable to all the TDG formulations.

With significant improvement in the computational effi-
ciency that is enabled by the solution algorithm presented
in this work, space-time FEM is ideal and efficient for
simulating 3D and large-scale elastodynamics problems that
are featured by multi-temporal scales, sharp gradients and
discontinuities in time. This implementation also paves the
way for solving nonlinear problems as most of them can be
treated by Newton’s method that leads to linear system of
equations, similar to the ones being treated here. In terms of
computational efficiency, future efforts are directed towards
integrating with massively parallel computing techniques.

Acknowledgements The work of R. Zhang is supported by the State
Scholarship Fund (China) under Grant # 201406290125 and the Eugene
McDermott Graduate Fellowship at The University of Texas at Dal-
las, which are gratefully acknowledged. The authors also would like
to thank the National Science Foundation (Grant # CMMI-1727960)
for financial support of this research. Any opinions, findings, conclu-
sions, or recommendations expressed are those of the authors and do
not necessarily reflect the views of the funding agencies.

References

1. Oden JT (1969) A general theory of finite elements. II. Applica-
tions. Int J Numer Methods Eng 1(3):247-259
2. Fried I (1969) Finite-element analysis of time-dependent phenom-
ena. AIAA J 7(6):1170-1173
3. Argyris JH, Scharpf DW (1969) Finite elements in time and space.
Nucl Eng Des 10(4):456-464
4. Hughes TJR, Franca LP, Mallet M (1987) A new finite element
formulation for computational fluid dynamics: VI. Convergence
analysis of the generalized SUPG formulation for linear time-
dependent multidimensional advective-diffusive systems. Comput
Methods Appl Mech Eng 63(1):97-112
5. Reed WH, Hill TR (1973) Triangular mesh methods for the neutron
transport equation. Los Alamos Scientific Laboratory, Los Alamos
6. Lesaint P, Raviart PA (1974) On a finite element method for solving
the neutron transport equation. In: de Boor C (ed) Mathematical
aspects of finite elements in partial differential equations. Aca-
demic Press, New York, pp 89-123
7. Hughes TIR, Hulbert GM (1988) Space-time finite element meth-
ods for elastodynamics: formulations and error estimates. Comput
Methods Appl Mech Eng 66(3):339-363
8. Hulbert GM (1992) Time finite element methods for structural
dynamics. Int J Numer Methods Eng 33(2):307-331
9. Hulbert GM, Hughes TJR (1990) Space—time finite element meth-
ods for second-order hyperbolic equations. Comput Methods Appl
Mech Eng 84(3):327-348
10. Hughes TJR, Stewart JR (1996) A space—time formulation for mul-
tiscale phenomena. J Comput Appl Math 74(1-2):217-229
11. Li XD, Wiberg NE (1998) Implementation and adaptivity of a
space—time finite element method for structural dynamics. Comput
Methods Appl Mech Eng 156(1-4):211-229
12. Li XD, Wiberg NE (1996) Structural dynamic analysis by a
time-discontinuous Galerkin finite element method. Int J Numer
Methods Eng 39(12):2131-2152

@ Springer

13. Delfour M, Hager W, Trochu F (1981) Discontinuous Galerkin
methods for ordinary differential equations. Math Comput
36(154):455-473

14. Johnson C (1988) Error estimates and adaptive time-step control
for a class of one-step methods for Stiff Ordinary Differential Equa-
tions. SIAM J Numer Anal 25(4):908-926

15. Wiberg N-E, Li X (1999) Adaptive finite element procedures
for linear and non-linear dynamics. Int J Numer Methods Eng
46(10):1781-1802

16. Chien CC, Wu TY (2000) An improved predictor/multi-corrector
algorithm for a time-discontinuous Galerkin finite element method
in structural dynamics. Comput Mech 25(5):430—437

17. Chien CC, Yang CS, Tang JH (2003) Three-dimensional transient
elastodynamic analysis by a space and time-discontinuous Galerkin
finite element method. Finite Elem Anal Des 39(7):561-580

18. Strouboulis T, Babuska I, Copps K (2000) The design and analysis
of the generalized finite element method. Comput Methods Appl
Mech Eng 181(1-3):43-69

19. Moés N, Dolbow J, Belytschko T (1999) A finite element method
for crack growth without remeshing. Int J Numer Methods Eng
46(1):131-150

20. Melenk JM, Babuska I (1996) The partition of unity finite ele-
ment method: basic theory and applications. Comput Methods Appl
Mech Eng 139(1-4):289-314

21. Babuska I, Melenk JM (1997) The partition of unity method. Int J
Numer Methods Eng 40(4):727-758

22. Chessal, Belytschko T (2004) Arbitrary discontinuities in space—
time finite elements by level sets and X-FEM. Int] Numer Methods
Eng 61(61):2595-2614

23. Qian D, Chirputkar S (2014) Bridging scale simulation of lattice
fracture using enriched space—time Finite Element Method. Int J
Numer Methods Eng 97(11):819-850

24. Chirputkar S, Qian D (2008) Coupled atomistic/continuum simu-
lation based on extended space—time finite element method. CMES
Comput Model Eng Sci 24(2-3):185-202

25. Yang Y et al (2012) Enriched space-time finite element method: a
new paradigm for multiscaling from elastodynamics to molecular
dynamics. Int] Numer Methods Eng 92(2):115-140

26. Bhamare S et al (2014) A multi-temporal scale approach to high
cycle fatigue simulation. Comput Mech 53(2):387-400

27. Zhang R et al (2016) Accelerated multiscale space—time finite
element simulation and application to high cycle fatigue life pre-
diction. Comput Mech 58(2):329-349

28. Wada S et al (2018) Simulation-based prediction of cyclic fail-
ure in rubbery materials using nonlinear space—time finite element
method coupled with continuum damage mechanics. Finite Elem
Anal Des 138:21-30

29. Kunthong P, Thompson LL (2005) An efficient solver for the
high-order accurate time-discontinuous Galerkin (TDG) method
for second-order hyperbolic systems. Finite Elem Anal Des
41(7-8):729-762

30. Saad Y, Schultz MH (1986) GMRES: a generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM J
Sci Stat Comput 7(3):856-869

31. Newmark NM (1959) A method of computation for structural
dynamics. Proc Am Soc Civ Eng 85:67-94

32. Davis TA (2004) Algorithm 832: UMFPACK V4.3—an
unsymmetric-pattern multifrontal method. ACM Trans Math Softw
30(2):196-199

33. Chan WM, George A (1980) A linear time implementation of the
reverse Cuthill-McKee algorithm. BIT Numer Math 20(1):8-14

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	An efficient solution algorithm for space–time finite element method
	Abstract
	1 Introduction
	2 Space–time finite element method
	2.1 Governing equations
	2.2 Space–time discretization
	2.3 Single-field formulation
	2.4 Two-field formulation
	2.5 Enriched formulation
	2.6 Numerical implementation

	3 Proposed solution algorithm
	3.1 Preconditioned iterative method
	3.2 Proposed preconditioner
	3.3 Acceleration of matrix operations
	3.3.1 Matrix–vector multiplication
	3.3.2 Preconditioning operation

	3.4 Computational cost analysis

	4 Numerical examples
	4.1 Problem statement
	4.2 Accuracy and robustness of TDG methods
	4.3 Configurations for performance study
	4.4 2D spatial discretization
	4.4.1 Single-field formulation
	4.4.2 Two-field formulation
	4.4.3 Enriched formulation

	4.5 3D spatial discretization
	4.5.1 Single-field formulation
	4.5.2 Two-field formulation
	4.5.3 Enriched formulation

	5 Conclusions
	Acknowledgements
	References

