1	Wetland Vegetation is a Crucial Element in Suppressing Coastal Erosion
2	Brian R. Silliman ^{1, *} , Qiang He ¹ , Christine Angelini ² , Matthew L. Kirwan ³ , Pedro. Daleo ⁴ , Jack
3	Butler ⁵ , James C. Nifong ⁶ , Johan van de Koppel ^{7,8}
4	
5	¹ , Division of Marine Science and Conservation, Nicholas School of the Environment, Duke
6	University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
7	² , Department of Environmental Engineering Sciences, University of Florida, PO Box 116580,
8	Gainesville, FL 32611, USA
9	³ , Virginia Institute of Marine Science, College of William and Mary, PO Box 1346, 1375 Greate
10	Road, Gloucester Point, VA 23062, USA
11	⁴ , Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - UNMDP
12	⁵ , Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
13	⁶ , Department of Fisheries and Aquatic Sciences, School of Forest Resources and Conservation,
14	University of Florida, Gainesville, FL 32611, USA
15	⁷ , Spatial Ecology Department, Royal Netherlands Institute for Sea Research (NIOZ), 4401NT 7,
16	Yerseke, The Netherlands
17	⁸ , Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO
18	Box 11103, 9700 CC Groningen, The Netherlands
19	* To whom correspondence should be addressed. E-mail: brian.silliman@duke.edu
20	
21	

22 (Abstract < 150 words)

Increasing rates of sea-level rise and wave action threaten coastal human populations. Defense of 23 shorelines by protection and restoration of wetlands has been invoked as a win-win strategy for 24 humans and nature, yet evidence from field experiments supporting the wetland protection 25 function are uncommon, as is the understanding of its context-dependency. Here we provide 26 evidence from field manipulations showing the loss of wetland vegetation, regardless of 27 disturbance size, increases the rate of land loss on wave-stressed shorelines. Vegetation removal 28 (simulated disturbance) along the edge of salt marshes reveals that loss of wetland plants elevates 29 the rate of lateral erosion and that extensive root systems rather than aboveground biomass are 30 primarily responsible for protection against erosion. Meta-analysis further shows that 31 disturbances that generate plant die-off on salt marsh edges generally hasten erosion in coastal 32 marshes and that this coastal protection function is positively correlated with the amount of 33 belowground plant biomass. Collectively, our findings substantiate a coastal protection paradigm 34 that incorporates preservation of shoreline vegetation and highlight local disturbances (e.g. oil 35 spills) that kill wetland plants as agents that can accelerate coastal erosion. 36

37

38 (Introduction < 500 words)

Coastal areas will likely experience a relative rise in sea level that may exceed 1m over the next century, potentially displacing tens of millions of people^{1,2}. This looming reality along with increases in the frequency and intensity of coastal disturbance and disasters in recent decades^{3,4} has spurred a global discussion on how best to protect human populations and

43	infrastructure along our coastlines ^{3,5} . Many coastal management strategies now aim to maximize
44	shoreline protection, minimize costs, and increase other benefits to humans (e.g. water quality
45	enhancement, fish habitat provisioning) by strategically integrating both natural and man-made
46	structures ^{3,6,7} . Fundamental to these hybrid designs is the expectation that natural barriers,
47	specifically coastal wetlands, are effective in mitigating damage from disturbance and
48	suppressing land loss from wave-induced erosion ^{4,8} . Experimental evidence from field studies
49	supporting the wetland protection paradigm is uncommon, however, and those that have been
50	conducted have sometimes generated conflicting results9. Furthermore, an in-depth, empirical
51	understanding of the mechanisms that underlie this function is also limited (e.g. the relative
52	importance of roots vs. aboveground plant material in suppressing erosion).
53	Geomorphological theory predicts wetland vegetation should reduce rates of shoreline
54	erosion by dissipating wave energy ¹⁰ , increasing the shear strength of soils ¹¹ , and influencing the
55	elevation and morphology of the marsh edge ¹² . Aboveground plant stems exert drag on incoming
56	waves, leading to reduced wave heights, slower flow velocities, and lower shear stress on the
57	marsh soil surface ¹⁰ . Belowground roots, by promoting cohesion of the soil and increasing its
58	shear strength, are also predicted to reduce the vulnerability of shorelines to erosion ^{11,13} . Over
59	longer time periods, marsh plants may additionally decrease erosion stress by facilitating vertical
60	elevation growth through trapping sediment and contributing organic material.
61	The theory that marsh vegetation protects shoreline edges from erosion has a rich
62	intellectual history and was established mostly based on early flume and numerical modeling
63	studies. Recently, a direct field-based study has shown contrasting results, however. Specifically,

64	experimental work along the edge of Texas salt marshes found that "salt marsh plants do not
65	significantly mitigate the total amount of erosion along a wetland edge". These results have
66	received attention in recent investigations and reviews on coastal defense ¹⁴⁻¹⁷ and resulted in the
67	formulation of an alternative intellectual framework for coastal defense that holds wetland
68	vegetation should be considered as a secondary, rather than a central, component in coastal
69	defense systems and that coastal managers should think critically about current plans to invest in
70	protecting and enhancing coastal wetlands to help defend our shorelines ⁵ .
71	In contrast to this emerging view, our recent study investigating impacts of the
72	BP-Deepwater Horizon oil spill indicated that oil-induced death of plants along the edge of
73	Louisiana salt marshes accelerated marsh lateral erosion by $\sim 100\%$ (ref. 4). Recent syntheses of
74	observational investigations in the field, in addition, contend that coastal vegetation can be
75	effective in buffering against shoreline edge erosion ^{10,16,17} . This discussion highlights the need to
76	resolve whether or not the loss of coastal wetland plants can increase land erosion at its edge and,
77	if so, the mechanisms involved. The answer to this question has theoretical and practical
78	importance as it is not only at the crux of the emerging academic field of ecogeomorphology, but
79	is also at the center of the current consideration about whether or not significant coastal defense
80	funds should be allocated toward salt marsh protection and augmentation.
81	To experimentally test if wetland vegetation presence reduces edge erosion along
82	shorelines, we conducted a 3-year salt marsh plant removal study at field sites with similar
83	shoreline morphology and wave exposure and examined treatments effects on both lateral and
84	vertical erosion at the salt marsh edge. To differentiate between above versus belowground plant

85	effects on erosion rate, and to test if the effects of wetland plants vary with experimental scale,
86	we manipulated vegetation at three levels of plant presence (control, aboveground removal, and
87	aboveground + belowground removal) (see Fig. 1) and at three plot sizes (2, 4, and 8m ²). We
88	tested the generality of our findings with a meta-analysis by synthesizing results from past
89	studies comparing marsh edge erosion rates under vegetated and vegetation-reduced conditions.
90	

91 **Results**

In the field experiment, we observed a significant effect of the presence of vegetation on 92 lateral erosion at the marsh edge ($F_{2,34} = 4.80$, P = 0.0146; Fig. 2A), and our experimental 93 removal of aboveground and belowground plant material was successful for their corresponding 94 treatments (Fig. 2B and 2C, see text S1). Lateral erosion was highest in aboveground + 95 belowground removal treatments (114.19 \pm 9.42 cm; mean \pm SE, same below), and significantly 96 higher when compared to vegetated control treatments (76.76 ± 8.91 cm; P < 0.05). Lateral 97 erosion rates did not differ between aboveground + belowground removal and aboveground 98 removal treatments, nor between above ground removal and control treatments (P > 0.05). 99 Furthermore, lateral erosion was not affected by plot size ($F_{2,34} = 0.81$, P = 0.45), and no 100 significant interactions between vegetation presence and plot size treatments were found ($F_{4,34}$ = 101 0.70, P = 0.60). Hence, independent of the scale of the disturbance, the presence of live 102 belowground plant structures significantly slowed the lateral erosion of the marsh edge. We also 103 evaluated the effect of vegetation presence on vertical erosion, and found that there were no 104 effects of vegetation presence ($F_{2,34} = 0.52, P > 0.05$), plot size ($F_{2,34} = 0.24, P > 0.05$), nor their 105

106 interaction ($F_{2,34} = 0.30, P > 0.05$; fig. S1).

107	The effect of aboveground + belowground removal on marsh edge lateral erosion
108	measured in the above experiment was comparable to the effect found in 15 previous
109	comparisons of marsh edge erosion between vegetated and vegetated-reduced conditions (Fig.
110	3), which had a significantly positive mean effect size of 1.22 (95% confidence intervals,
111	0.65-1.80) ($P < 0.0001$), revealing a generally positive effect of vegetation on marsh edge
112	erosion reduction. Consistent with our field experiment, the effect sizes of vegetation on erosion
113	were significantly related to changes in belowground biomass ($R^2 = 0.48$, $P = 0.054$). Greater
114	losses in belowground biomass led to stronger increases in erosion (fig. S2).
115	
116	Discussion
117	Our field experiment provides clear evidence that the loss of vegetation can increase
117 118	Our field experiment provides clear evidence that the loss of vegetation can increase wave-induced erosion of shoreline edges. The finding that vegetation mortality increased lateral
118	wave-induced erosion of shoreline edges. The finding that vegetation mortality increased lateral
118 119	wave-induced erosion of shoreline edges. The finding that vegetation mortality increased lateral erosion rate only when belowground biomass was killed suggests that the impact of plant roots
118 119 120	wave-induced erosion of shoreline edges. The finding that vegetation mortality increased lateral erosion rate only when belowground biomass was killed suggests that the impact of plant roots on soil strength is more important than the impact of aboveground plant stems on baffling wave
 118 119 120 121 	wave-induced erosion of shoreline edges. The finding that vegetation mortality increased lateral erosion rate only when belowground biomass was killed suggests that the impact of plant roots on soil strength is more important than the impact of aboveground plant stems on baffling wave energy on shoreline edges. This result highlights live belowground plant structure as a primary
 118 119 120 121 122 	wave-induced erosion of shoreline edges. The finding that vegetation mortality increased lateral erosion rate only when belowground biomass was killed suggests that the impact of plant roots on soil strength is more important than the impact of aboveground plant stems on baffling wave energy on shoreline edges. This result highlights live belowground plant structure as a primary factor generating shoreline protection services on salt marsh edges and emphasizes the relevance
 118 119 120 121 122 123 	wave-induced erosion of shoreline edges. The finding that vegetation mortality increased lateral erosion rate only when belowground biomass was killed suggests that the impact of plant roots on soil strength is more important than the impact of aboveground plant stems on baffling wave energy on shoreline edges. This result highlights live belowground plant structure as a primary factor generating shoreline protection services on salt marsh edges and emphasizes the relevance of understanding factors that influence resource allocation between above and belowground

127	presence of live plants was associated with lower rates of marsh edge erosion in both lab flume ¹⁹
128	and field studies ^{4,21} (Fig. 3). This erosion reduction effect was consistently observed in studies of
129	different causes of vegetation loss (Fig. 3): studies using experimental removal of re-growing
130	vegetation ¹⁹ and those on vegetation losses due to grazing ²² , oiling ⁴ and eutrophication ¹³ all
131	observed such an effect. Consistent with our experimental findings, the presence of live
132	belowground plant structures appears to be a primary mechanism by which marsh plants
133	suppress lateral erosion, as increases in erosion are positively related with reduction in
134	belowground biomass (fig. S2). The complementary findings of our experiment and
135	meta-analyses validate the long-held perception that wetland plants protect shorelines from
136	lateral erosion and thus act to suppress loss of land on its seaward edge.
137	These results contrast with the Texas study ⁹ that suggests that vegetation does not
138	enhance marsh stability. Although our field experimental approaches were similar (vegetation
139	removal), we suggest two differences explain contrasting results. First, we measured erosion as
140	both the lateral retreat of the escarped marsh edge and as vertical erosion of the marsh surface. In
141	our experiment, we found large impacts of plant presence on lateral erosion, but not vertical
142	erosion. By contrast, Feagin et al. assessed impacts of plant presence on erosion in the field only
143	by measuring vertical erosion of the marsh surface ³ , and thus likely missed what we observed as
144	the primary erosional response. Second, our experiment ran for more than twice as long (36
145	versus 15 months). This ensured that there was near complete mortality of belowground roots in
146	our experiment, and may have allowed ecogeomorphic feedbacks ^{23,24} to become reinforced,
147	processes that may not have be captured in the Texas study.

148 Our results, combined with past studies, reveal important processes underlying vegetation-geomorphology interactions: loss of plant root structures on the edge of coastal 149 wetlands can trigger a powerful ecogeomorphic response of elevated erosion rate. Enhanced 150 erosion can, in turn, negatively affect the survival and growth of plants ahead of the erosive 151 front⁴ and even create or enhance a persistent positive geomorphic feedback^{4,14}, where erosion 152 leads to permanent wetland habitat loss. When erosive fronts form, the remaining protective 153 effect of the vegetation on top of the escarpment can be overwhelmed as continued wave action 154 leads to undercutting and eventual collapse of the escarped wetland edge. Such runaway erosion 155 of wetland edges can persist for decades and lead to extensive marsh loss, as is observed along 156 many European²⁵ and North American salt marshes²³. 157

This new theoretical synthesis highlights the need for wetland science and management 158 to more fully incorporate lateral erosion, fueled by vegetation die-off on the wetland edge, as a 159 primary agent of wetland loss. This is a crucial element to coastal wetland conservation, as 160 wetland vegetation itself is typically highly resilient to disturbances that impose mortality 161 without the potential for elevated erosion, even when these occur at dramatic, ecosystem-wide 162 163 scales^{26,27}. However, processes that cause vegetation loss on the edge of wetlands, such as food-web interactions (e.g. trophic cascades, runaway grazing), increased physical or chemical 164 stress (e.g., pollution, eutrophication), or human activities (e.g. having), can accelerate erosion 165 and subsequent land loss, reducing the potential for wetland recovery. Hence, wetland vegetation 166 on the ecosystem edge acts as a nexus for strong, indirect interactions between species 167 interaction networks, biogeochemistry, anthropogenic impacts and geomorphology. Not 168

169	accounting for the potential for this powerful ecogeomorphic feedback can lead to incorrect
170	predictions of the impact of large-scale vegetation loss on wetland coverage (e.g. from massive
171	oiling events) and underestimating the destructive impacts of grazing that is now common
172	throughout many Western Atlantic salt marshes ²⁶ .
173	Given these findings, it is imperative that we continue integrating preservation and
174	enhancement of coastal wetlands into our shoreline defense strategies to protect against
175	wave-induced erosion ⁵ . This should involve both conservation of existing wetlands and active
176	restoration of coastal wetlands on degraded shorelines. Key for effectively integrating wetland
177	vegetation into coastal defense strategies will be unraveling the functional relationship of this
178	now confirmed coastal-wetland-shoreline protection paradigm (i.e. when and where wetlands
179	provide protection and when they do not). This will require integration of observations,
180	large-scale experimental studies, and mathematical approaches that can scale-up non-linearities
181	in wave protection functions and geomorphological dynamics to provide a thorough
182	understanding of the stability and persistent effectiveness of coastal wetlands as an integrated
183	line of defense against the rising and ever more energetic seas.
184	
185	Methods (< 3000 words)
186	Field experiment
187	We conducted our experiment from August 2010 to October 2013 in Spartina
188	alterniflora-dominated salt marshes fringing the intercoastal waterway (ICW) in Marineland,

189 Florida (29°40'52.56"N, 81°13'26.85"W). We selected this location for our study for the

190	following reasons. First, many of the salt marshes along the ICW in this area display the defining
191	characteristic of an eroding coastal wetland ²⁰ : an escarped, ~ 90° edge (40-60cm in height) with
192	exposed rhizomes (Fig 1). This ecosystem edge profile is similar to that of eroding Gulf Coast
193	marshes both in the Feagin et al. experimental study ³ and in the BP-DWH oil impact
194	investigation ⁴ and the vertical angle of the edges in this study did not vary among treatments
195	(mean = 82° +/- 4.5°, P = 0.43). Second, we found replicate sites with statistically similar slopes
196	over the first 3m from the edge; fetch also did not vary between treatments, as the width of the
197	ICW is relatively constant and the directionality is nearly straight with no significant bends in
198	this area (fig. S4). Specifically, the mean slope and fetch were 0.093 (\pm 0.021, standard
199	deviation) and 174 (\pm 9) m, respectively, and did not differ among treatments ($P = 0.54$ and 0.81,
200	respectively). These data (edge angle, slope, and fetch) suggest that the erosion potential for our
201	sites did not vary among treatments. Third, because of the relatively close proximity of all sites
202	(all replicates were located along a 2,000m stretch of marsh edge), all replicates were exposed to
203	a very similar frequency and amplitude of both wind- and boat-generated waves (R. Gleeson,
204	<i>personal communication</i>). The average tidal range in this area of the ICW is ~ 0.76 m, the marsh
205	surface is ~ 10 cm above the mean water level, and boats are the primary generator of waves in
206	this system.
207	To investigate the impact of vegetation presence on marsh edge erosion rate, we set up a

To investigate the impact of vegetation presence on marsh edge erosion rate, we set up a factorial experiment with plot size and plant presence as factors. There were three levels of plot size (2, 4 and $8m^2$: 1, 2, and 4m parallel to marsh edge × 2m perpendicular to marsh edge) and three levels of plant presence (control, aboveground removal, and aboveground + belowground

211	removal). We chose these plot sizes as they encompass the sizes of die-off patches that naturally
212	occur along marsh edges due to disturbance by mats of vegetation, algae, or oil. Plots (43 in
213	total) were positioned 2-4m apart and haphazardly assigned to each plot size and plant presence
214	treatment combination (replicated 4-5 times). Aboveground removal treatments were maintained
215	by trimming all stems within plots down to the substrate and repeating this treatment each month
216	to ensure treatment integrity. The presence of emergent shoots from rhizomes indicated
217	belowground plant structures remained alive through the duration of the experiment.
218	Aboveground + belowground removal treatments were maintained by trimming stems, as above,
219	and dripping Rodeo® herbicide into the exposed, cut stems bi-monthly. Herbicide was applied in
220	this fashion to ensure it only contacted plants and thus would not interact directly with the
221	sediment or infauna. As a procedural control, control plots received a similar amount of walking
222	activity as plant removal treatments. To assess the effect of experimental treatments, we
223	measured live plant cover (in 50×50cm quadrats) and ratio of dead:live rhizomes in marsh cores
224	in each plot using established methods ⁴ after one year.
225	To quantify the effect of experimental treatments on shoreline erosion, we demarcated
226	the marsh edge at the beginning of the study by pushing 0.5cm diameter PVC stakes 50cm into
227	the substrate at 0.25m increments along the marsh edge in each plot. To ensure proper
228	orientation of subsequent erosion measurements, we installed 3cm diameter PVC pipes along the
229	medial line of each plot, perpendicular to the shoreline, at three positions: the leading edge of the
230	marsh, 1m from the leading edge, and 2m from the leading edge. After three years, we quantified
231	lateral erosion by measuring the distance between the initial edge and new edge every 25cm of

232	shoreline within each plot and averaged all measurements collected per plot. We used this spatial
233	interval for measurements and averaging approach because the erosion of escarped edges occurs
234	via the slumping off and washing away of clumps of marsh and is therefore variable over short
235	distances (see photo of aboveground + belowground removal plot in fig. S3) (refs. 4,28).
236	Consequently, multiple measurements along the edge are needed to avoid place-based sampling
237	biases that can occur from having designated measurement points that occur on areas with either
238	slumping or not. We estimated changes in vertical erosion by pushing 0.5cm diameter PVC
239	stakes 50cm into the substrate 10 cm from the marsh edge, notching the marsh surface soil
240	interface and then measured vertical change after 1 year. Each plot had 2 vertical PVC pipes for
241	measuring vertical erosion. The amount of vertical erosion did not differ between year 1 and 3,
242	so we reported vertical erosion after 1 year.
243	We used a two-way ANOVA to examine the effects of plot size and plant presence
244	treatments on lateral and vertical marsh erosion rates. Post hoc Tukey HSD multiple comparisons
245	were conducted to examine if marsh erosion rate differs between each pair of treatments.
246	Differences were considered significant at the level of $P < 0.05$. All statistical analysis was
247	performed using R 3.04 (ref. 29).
248	

249 Meta-analysis

To examine whether vegetation generally suppresses marsh lateral erosion, we conducted a synthesis of relevant studies. We focused on marsh edge erosion because it provides a direct measure of the capacity of a wetland to withstand the stress of small to intermediate waves that

253	impact the marsh on its edge. Vegetation effects on sedimentation and elevation changes in
254	marsh interiors or on wave attenuation have been well established in previous syntheses ^{16,17,30} , so
255	were not considered here.

To compile a list of relevant studies on vegetation's effect on marsh edge erosion, we 256 first searched Web of Science for articles using the search query TS = marsh* AND TS =257 (erosion OR retreat OR loss). This search resulted in 1243 articles between 2010 and 2017. Then, 258 for studies prior to 2010, we considered those included in a previous meta-analysis (16), which 259 examined the protective role of marsh vegetation but did not specifically investigate the effect of 260 vegetation on marsh edge erosion, the focal question of our study. Studies from these two 261 sources that compared erosion rates in vegetated and vegetation-reduced conditions were 262 retained for data extraction. Studies could be observational or experimental, and vegetation 263 reduction could have been caused by experimental removal or other factors that depressed 264 above- and/or below-ground vegetation. For each study, mean erosion rates in vegetated and 265 vegetation-reduced treatments, as well as their standard errors/deviations and sample sizes, were 266 extracted from tables, figures or text, and the study system (either lab flume or field setting), 267 study species, cause of vegetation reduction (e.g., experimental removal, naturally unvegetated, 268 oil-, herbivory-, or eutrophication- induced loss), and the measure of edge erosion 269 (weight/volume loss, elevational loss, or lateral loss) were recorded. When available in the above 270 studies, belowground biomass data (means, standard errors/deviations and sample sizes) in both 271 vegetated and vegetation-reduced treatments were also extracted. 272 We computed Hedges' g^* effect sizes³¹, a measure of the unbiased, standardized mean

13

274 difference in erosion rate between vegetation-reduced and vegetated treatments for each study. A positive effect size indicates the measure of erosion was lower in the presence than absence of 275 vegetation in the study. Effect sizes are considered significant if their 95% confidence intervals 276 do not overlap zero. Mean effect sizes across all retained studies were estimated using 277 random-effects models³¹. Similarly, we computed Hedges' g^* effect sizes for belowground 278 biomass where belowground biomass data were available. To examine if variation in the effect 279 of vegetation on erosion reduction among studies is related to variation in relative changes in 280 belowground biomass, we examined the relationship between erosion and belowground biomass 281 effect sizes using a meta-regression. 282

To test for the influence of potential publication bias, we used three analyses. First, we 283 tested the asymmetry of funnel plots using a regression test with the sampling variance as the 284 predictor³². Second, we estimated mean effect sizes after correcting potential publication bias 285 using the trim and fill method, which is a nonparametric data augmentation technique to estimate 286 the number of missing studies due to the suppression of the most extreme results on one side of 287 the funnel plot. Missing data were estimated and filled in, and mean effect sizes were 288 re-computed (see details in ref. 32). Third, we computed Rosenthal's fail-safe number to 289 determine the number of studies with no significant effect that are needed to change the 290 significance of the meta-analysis³³. The regression test showed that the funnel plot was 291 significantly asymmetric (z = 3.70, P = 0.0002). Adjusting publication bias using the trim and fill 292 method yielded a smaller but consistently significant mean effect size of 0.95 (0.21-1.69). The 293 Rosenthal's fail-safe number was 346, higher than 5n + 10, where n is the number of studies (i.e., 294

295	15) included in our analysis. Collectively, they indicate that our results were robust to
296	publication bias. All analyses were conducted using the <i>metafor</i> package ³² in R 3.04.
297	
298	
299	References
300	1. United Nations Environment Programme. Marine and Coastal Ecosystems and Human
301	Wellbeing: A Synthesis Report Based on the Findings of the Millennium Ecosystem Assessment.
302	UNEP, Nairobi, Kenya (2006).
303	
304	2. K. K. Arkema, et al., Coastal habitats shield people and property from sea-level rise and
305	storms. <i>Nature Clim. Change</i> 3 , 913–918 (2013).
306	
307	3. E. B. Barbier, et al., Coastal ecosystem-based management with nonlinear ecological
308	functions and values. Science 319 , 321-323 (2008).
309	
310	4. B. R. Silliman, et al., Degradation and resilience in Louisiana salt marshes after the
311	BP-Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. U.S.A. 109, 11234-11239 (2012).
312	
313	5. R. A. Feagin, et al., Shelter from the storm? Use and misuse of coastal vegetation bioshields
314	for managing natural disasters. Conserv. Lett. 3, 1-11 (2010).
315	

316	6. N. Peyronnin, et al., Louisiana's 2012 coastal master plan: overview of a science-based and
317	publicly informed decision-making process. J. Coast. Res. 67, 1-15 (2013).
318	
319	7. C. M. Duarte, I. J. Losada, I. E. Hendriks, I. Mazarrasa, N. Marbà, The role of coastal plant
320	communities for climate change mitigation and adaptation. Nature Clim. Change 3, 961-968
321	(2013).
322	
323	8. A. E. Sutton-Grier, K. Wowk, H. Bamford, Future of our coasts: The potential for natural and
324	hybrid infrastructure to enhance the resilience of our coastal communities, economies and
325	ecosystems. Environ Sci. Policy 51, 137-148 (2015).
326	
327	9. R. Feagin, S. Lozada-Bernard, T. Ravens, I. Möller, K. Yeager, A. Baird, Does vegetation
328	prevent wave erosion of salt marsh edges? Proc. Natl. Acad. Sci. U.S.A. 106, 10109-10113
329	(2009).
330	
331	10. I. Möller, et al., Wave attenuation over coastal salt marshes under storm surge conditions.
332	Nat. Geosci. 7, 727-731 (2014).
333	
334	11. N. C. Howes, et al., Hurricane-induced failure of low salinity wetlands. Proc. Natl. Acad.
335	Sci. U.S.A. 107, 14014-14019 (2010).
336	

337	12. G. Mariotti, S. Fagherazzi, A numerical model for the coupled long-term evolution of salt
338	marshes and tidal flats. J. Geophys. Res. Earth 115, F01004 (2010).
339	
340	13. L. A. Deegan, et al., Coastal eutrophication as a driver of salt marsh loss. Nature 490,
341	388-392 (2012).
342	
343	14. J. van de Koppel, D. van der Wal, J. P. Bakker, P. M. Herman. Self-organization and
344	vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1-E12 (2005).
345	
346	15. M. Marani, A. d'Alpaos, S. Lanzoni, M. Santalucia, Understanding and predicting wave
347	erosion of marsh edges. Geophys. Res. Lett. 38, L21401 (2011).
348	
349	16. C. C. Shepard, C. M. Crain, M. W. Beck, The protective role of coastal marshes: a systematic
350	review and meta-analysis. PLoS ONE 6, e27374 (2011).
351	
352	17. K. B. Gedan, M. L. Kirwan, E. Wolanski, E. B. Barbier, B. R. Silliman, The present and
353	future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to
354	the paradigm. Clim. Change 106, 7-29 (2011).
355	
356	18. A. H. Altieri, M. D. Bertness, T. C. Coverdale, E. E. Axelman, N. C. Herrmann, P. L.
357	Szathmary, Feedbacks underlie the resilience of salt marshes and rapid reversal of

358 consumer-driven die-off. *Ecology* **94**, 1647-1657 (2013).

359

360

361	waves, bank erosion and emergent vegetation: an experimental study in a wave tank. Aquat. Bot.
362	53 , 187-198 (1996).
363	
364	20. S. Francalanci, M. Bendoni, M. Rinaldi, L. Solari, Ecomorphodynamic evolution of salt
365	marshes: Experimental observations of bank retreat processes. Geomorphology 195, 53-65
366	(2013).
367	
368	21. C. Benner, P. Knutson, R. Brochu, A. Hurme, Vegetative erosion control in an oligohaline
369	environment Currituck Sound, North Carolina. Wetlands 2, 105-117 (1982).
370	
371	22. T. C. Coverdale, C. P. Brisson, E. W. Young, S. F. Yin, J. P. Donnelly, M. D. Bertness,
372	Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion. PLoS
373	<i>ONE</i> 9 , e93296 (2014).
374	
375	23. G. Mariotti, S. Fagherazzi, Critical width of tidal flats triggers marsh collapse in the absence
376	of sea-level rise. Proc. Natl. Acad. Sci. U.S.A. 110, 5353-5356 (2013).
377	
378	24. M. L. Kirwan, A. B. Murray, W. S. Boyd, Temporary vegetation disturbance as an

19. H. Coops, N. Geilen, H. J. Verheij, R. Boeters, G. van der Velde, Interactions between

379	explanation for permanent loss of tidal wetlands. Geophys. Res. Lett. 35, L05403 (2008).
380	
381	25. D. Van der Wal, A. Wielemaker-Van den Dool, P. M. Herman, Spatial patterns, rates and
382	mechanisms of saltmarsh cycles (Westerschelde, The Netherlands). Estuar. Coast. Shelf Sci. 76,

383 357-368 (2008).

384

385	26. B. R. Silliman, J.	Van de Koppel, M.	D. Bertness, L. E	E. Stanton, I. A.	Mendelssohn, Drought,
-----	------------------------	-------------------	-------------------	-------------------	-----------------------

snails, and large-scale die-off of southern US salt marshes. *Science* **310**, 1803-1806 (2005).

387

388	27. C. Angelini, B. R. Silliman, Patch size-dependent community recovery after massive
389	disturbance. <i>Ecology</i> 93 , 101-110 (2012).

390

391 28. G. McClenachan, R. E. Turner, A. W. Tweel, Effects of oil on the rate and trajectory of

Louisiana marsh shoreline erosion. *Environ. Res. Lett.* **8**, 044030 (2013).

393

- 394 29. R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for
- 395 Statistical Computing, Vienna, Austria (2013).

396

397 30. M. L. Pinsky, G. Guannel, K. K. Arkema, Quantifying wave attenuation to inform coastal

habitat conservation. *Ecosphere* **4**, art95 (2013).

401	John Wiley & Sons (2009).
402	
403	32. W. Viechtbauer. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36,
404	1-48 (2010).
405	
406	Acknowledgements
407	Funding for this work was provided in part by an NSF grant to B. R. Silliman (BIO-OCE) and
408	Netherlands Royal Society Visiting Professorship to B.R. Silliman. The Florida Department of
409	Environmental Protection granted a permit for this work.
410	
411	Author contributions
412	BS, QH, CA, MK, PD, JB, JN, JvdK wrote the paper; BS, CA and JN designed study, QH and
413	BS analyzed data.
414	
415	Competing interests
416	The authors declare that they have no competing interests.
417	
418	Additional information
419	Supplementary information is available for this paper:
420	Text S1. Treatment effects on plant cover and rhizomes in the field experiment.

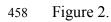
31. M. Borenstein, L. V. Hedges, J. P. Higgins, H. R. Rothstein. Introduction to Meta-Analysis.

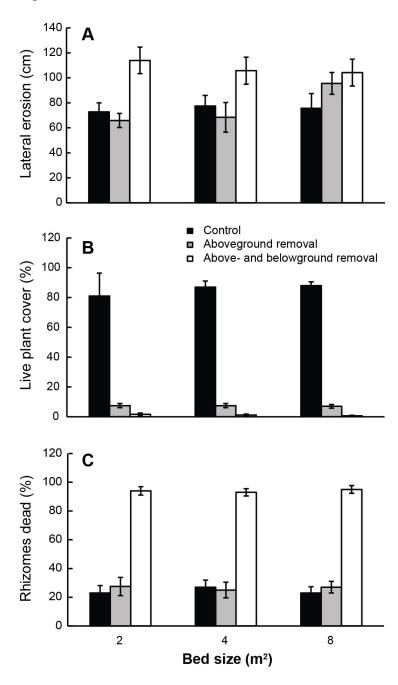
400

- 421 Fig. S1. Vertical erosion rates in each plant presence x plot size treatment.
- 422 Fig. S2. Meta-regression of the effect sizes of vegetation on erosion against relative changes in
- 423 belowground biomass.
- Fig. S3. Experimental field site and photographs showing different experimental treatments
- Fig. S4. Map of the site where the experiment took place.

427 FIGURE LEGENDS

Fig. 1. Photographs showing the experiment. (A-C) Representative experimental plots. (A) 428 Control, (B) aboveground removal belowground removal, and (C) aboveground removal only. 429 Note that the marsh in front of and behind the first white marker pole in 430 aboveground+belowground removal plots has already collapsed while in aboveground removal 431 and control plots the marsh is still intact. Photos were taken one year after the beginning of the 432 experiment. (**D**-**E**) Representative photographs showing wave exposure on marsh borders (**D**) 433 and substantial erosion in aboveground+belowground removal treatments three years after the 434 435 experiment began (E). 436 Fig. 2. Summary of the results of the field experiment. (A) Erosion rates on the marsh edge, 437


(B) plant cover, and (C) proportional rhizomes dead in each plat presence × plot size treatment. Shown are means and SEs (n = 4-5). Plant presence treatments significantly affected edge erosion rates (P = 0.0146), plant cover (P < 0.001), and proportion of dead rhizomes (P < 0.001) and while neither bed size alone nor its interaction with vegetation removal affected those vegetation variables or marsh edge erosion (P > 0.45 in all cases). Fig. 3. Synthesis of field and laboratory studies on salt marsh vegetation loss and marsh


edge erosion. All study species were *Spartina alterniflora*, except that Coops et al. (1996)
examined *Scirpus lacustris* (the lower one) and *Phragmites australis* (the upper one) and that
Benner et al. (1982) examined a mixed group of grasses and sedges. Data points and error bars

448	are effect sizes (Hedges' g^*) and 95% confidence intervals. Positive effect sizes indicate
449	vegetation reduces erosion. Effect sizes are significant if their 95% confidence intervals do not
450	overlap zero. Although five of the 15 comparisons had an insignificant effect size, three were
451	actually reported as being significantly positive in the original studies (only our more
452	conservative test found them to be insignificant).

- **Figures**
- 455 Figure 1

460 Figure 3.

	Study	System	Cause of vegetation loss	Erosion measure	Effect size estimate
	Coops et al. 1996 Coops et al. 1996 Feagin et al. 2009	Lab Lab Lab	Naturally bare Naturally bare Naturally bare	Volume/weight Volume/weight Volume/weight	
	Feagin et al. 2009 Altieri et al. 2013 Brisson et al. 2014 Sheehan & Ellison 2015 Lin et al. 2016	Field Field Field Field Field	Removal Removal Herbivory_induced Removal Oiling	Vertical Vertical Vertical Vertical Vertical	
	Benner et al. 1982 Silliman et al. 2012 Coverdale et al. 2014 Silliman et al. 2016 Zengel et al. 2015 Turner et al. 2016 Vu et al. 2017	Field Field Field Field Field Field Field	Naturally bare Oiling Herbivory Oiling Oiling Oiling Removal	Lateral Lateral Lateral Lateral Lateral Lateral Lateral	
	Present study Present study	Field Field	Removal Removal	Vertical Lateral	⊢ _ ⊢ _
61	Random-effects meta-ana	alysis		г -2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

463 Supplementary Materials

465	Text S1. Treatment effects on plant cover and rhizomes in the field experiment
466	Generalized linear models (GLM) were used to examine the individual and interactive
467	effects of plot size and plant presence treatments on live plant cover and the proportion of dead
468	rhizomes. Quasi-Poisson distributions were used to account for overdispersion (overdispersion
469	parameters were 2.83 and 3.11 for live plant cover and proportional of dead rhizomes data,
470	respectively). Effects of plot size and plant presence treatments and their interactions were tested
471	by comparing the resulting deviances to Wald $\chi 2$ test statistics using the Type II sum of squares
472	in R <i>car</i> package ^{$30,31$} .
473	As expected, aboveground removal significantly eliminated live plant cover in both
474	above ground and above ground + below ground removal treatments (df = 2, χ^2 = 368.2, <i>P</i> < 0.001;
475	Fig. 2B). Average live plant cover in control treatments was $85.33 \pm 5.03\%$, while in
476	above ground and above ground + below ground removal treatments live plant cover was $< 10\%$.
477	Neither plot size (df = 2, χ^2 = 0.20, <i>P</i> = 0.82) nor the interaction between plant presence and plot
478	size (df = 4, $\chi 2$ = 0.27, <i>P</i> = 0.90) affected live above ground plant cover. The proportion of dead
479	rhizomes, in addition, was significantly greater in aboveground + belowground removal
480	treatments that received regular herbicide application (df = 2, χ^2 = 260.2, <i>P</i> < 0.001; Fig. 2C),
481	indicating this method for killing belowground plant structures was effective. No effect was
482	found of plot size (df = 2, $\chi 2$ = 0.01, <i>P</i> = 1.00). While the proportion of dead rhizomes in cores
483	was typically 10-30% in control and aboveground removal treatments, it was > 90% in all

aboveground + belowground removal treatments. No interaction between plant presence and plot size treatments on rhizome mortality was found (df = 4, $\chi 2$ = 0.90, *P* = 0.92).

486

- 487 30. Ø. Langsrud, ANOVA for unbalanced data: Use Type II instead of Type III sums of squares.
- 488 Stat. Comput. 13, 163-167 (2003).

489

- 490 31. J. Fox, H. S. Weisberg, An R Companion to Applied Regression, second edition. Sage
- 491 Publications (2010).

- **Fig. S1.** Vertical erosion rates in each plant presence x plot size treatment. Shown are means and
- 494 SEs (n = 4-5).

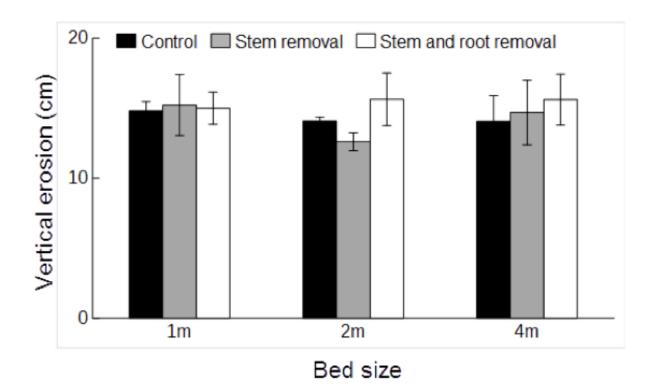
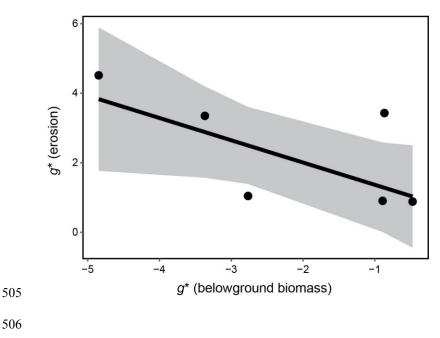
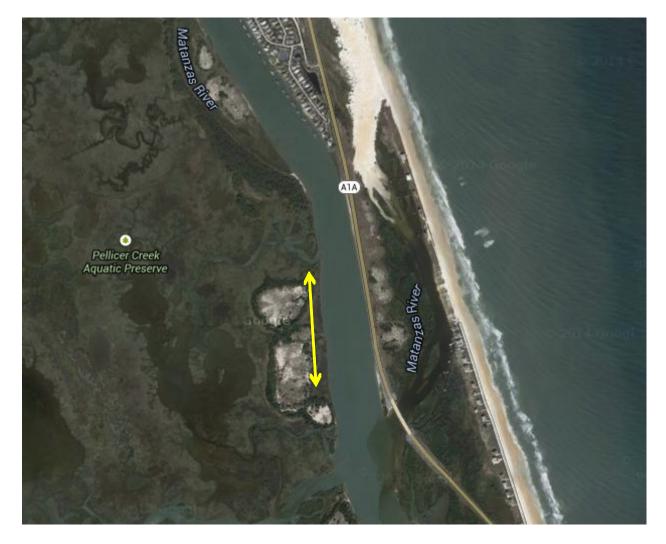


Fig. S2 Meta-regression of the effect sizes of vegetation on erosion against relative changes in belowground biomass. Negative g^* (belowground biomass) indicates reduction in belowground biomass, and positive g^* (erosion) indicates that higher erosion rate in vegetation-reduced treatments than in control treatments. The meta-regression model is nearly significant ($R^2 = 0.48$, P = 0.054). Shaded areas are 95% confidence intervals.




Fig. S3. Experimental field site and photo showing, from left to right, (1) 1x2m aboveground +
belowground removal, (2) 1x2 m control plot, (3) 2x2m aboveground removal, and (4) 2x2m
aboveground+belowground removal. Note that the escarped edge indicates that the shoreline is
already eroding and that there are clumps of marsh eroding from the aboveground +

512 belowground removal plot.

513

- **Fig. S4**. Map of the ICW ~ 30km south of St. Augustine Florida where the experiment took
- 516 place. Note consistent width of the ICW in this area. Yellow line indicates the area and the side
- 517 of the ICW where this study took place.

