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Abstract— This paper investigates the collision potential of
any two nodes in first and second order integrator networks
subject to distributed disturbances. Our results extend previous
analysis quantifying this notion of robustness using an induced
L2 to L∞ norm for networks with symmetric feedback in-
terconnection to systems with directed feedback. We focus on
the special case where the underlying feedback interconnection
is represented by a strongly connected digraph described by
a diagonalizable weighted graph Laplacian matrix. We derive
analytical expressions for system robustness for networks of
first and second order systems with two different combinations
of absolute and relative state feedback. A numerical example
simulating a second order system connected over a line graph
(a vehicle platoon) is employed to investigate the effect of
asymmetric feedback control laws on collision potential. Our
numerical results show that in contrast to previous results show-
ing improved stability margin through asymmetric feedback
control laws, this type of control law can actually increase
the collision potential (decrease system robustness) for certain
vehicle pairs in platoons with and without leaders.

I. INTRODUCTION

A large number of networks can be modeled as first or
second order integrator systems connected over one or more
directed graphs. These systems are typically evaluated in
terms of their stability. For first order systems, stability is
commonly defined in terms of the ability to reach consensus,
e.g., to achieve some coordinated behavior in a first order
robotic network [1]. The stability of second order systems
is often defined in terms of the application of interest, e.g.,
synchronization in power systems [2], [3], [4] or biological
networks [5], or string stability in vehicle platoons [6], [7].
Another measure of interest is the error decay rate, which
can be quantified through the real part of the least stable
eigenvalue (stability margin) [8], [9].

Performance of networked systems can likewise be eval-
uated using a number of metrics including the long range
disorder (e.g. steady-state variance of each state) [10], [11],
[12], or the L2 to L2 gain from a disturbance input to
the system states (which the authors referred to as the L2

gain) [13]. System performance has also been extensively
studied in terms of various notions of system robustness. For
example, [13] focused on how communication errors affected
leader-follower consensus using the L2 gain described above.
[14] explored the impact of additive and measurement noise
on the input-output H2 norm of the system, whereas [15]
investigated robustness of linear systems with respect to δ-
correlated stochastic disturbances.
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Recent work [16] introduced the notion of collision poten-
tial between two network nodes as a measure of robustness
in vehicle networks under a variety of feedback control
laws. In that work, collision potential was quantified in
terms of an L2 to L∞ induced norm, which was shown
to be equivalent to an H2 norm for the special case of a
single output bounded input bounded output system. They
used this framework to derive the maximum permissible
disturbance energy that ensures that no two vehicles in the
network collide for the special case of symmetric feedback
interconnection structures. Asymmetry has been shown to
increase the stability margin for the special case of vehicle
networks connected over line graphs (vehicle platoons) [9].
Therefore it is of interest to extend the results in [16] to
systems with asymmetric feedback to investigate if similar
performance gains can be achieved.

This paper takes a step toward to general asymmetric
networks by extending the analysis framework in [16] to
a special class of asymmetric control laws; those whose
underlying graph structure is described by a diagonalizable
weighted graph Laplacian matrix. These results extend a
subset of the results in [17], which considered systems whose
interconnection structures emit normal graph Laplacians. We
first extend the H2 norm computations in [16] to evaluate the
collision potential of a critical node pair in single and double
integrator networks for systems connected over digraphs
described by diagonalizable weighted graph Laplacians. For
the second order systems, we obtain closed form solutions
for systems with two different feedback laws; (1) relative
position and absolute velocity (RPAV) control and (2) relative
position and relative velocity (RPRV) control.

We illustrate the theory through a simulation study of
second order systems connected over a line graph as a model
of vehicle platoons. We then investigate collision potential
between vehicle pairs for networks with RPAV and RPRV
control laws in platoons with and without leaders. Our results
show that while asymmetric feedback control laws improve
the stability margin, as found in [9], they also increase the
potential that certain vehicle pairs will collide in platoons
with and without leaders. Therefore there is a trade-off
between stability and this type of robustness in these systems.

The remainder of this work is organized as the follows.
Section II describes the mathematical background and no-
tation used throughout the work. Section III provides the
models for the first and second order integrator networks
along with their corresponding feedback laws. That section
also describes the single system output that enables the
computation of collision potential through the L2 to L∞



induced H2 norm. Section IV presents the main theoretical
results; closed form solutions for the H2 norm based mea-
sure of collision potential for a first order system, and for
second order systems with RPAV and RPRV control laws. A
numerical investigation for the special case of second order
systems connected over a line graph (i.e., a linear vehicle
platoon) is provided in Section V. We conclude the paper in
Section VI.

II. PRELIMINARIES

For a complex number x = a + bi, Re(x) = a and
Im(x) = b respectively denote the real and complex parts of
x. x̄ = a − bi represents the conjugate of x. 0n×n ∈ Rn×n
and In×n ∈ Rn×n respectively denote an n × n matrix
with all elements equal to zero, and an n × n identity
matrix. Given A ∈ Cn×n, we denote its inverse as A−1,
i.e., AA−1 = In×n. The conjugate transpose of matrix
A is denoted as A∗. For a real matrix A, we denote the
transpose of A by AT , and the inverse of the transpose
as A−T = (AT )−1 = (A−1)T . Given a matrix T , [T ]pq
denotes the element in its pth row and qth column. tr(T )
denotes the trace of matrix T . 1n ∈ Rn is a column vector
with all elements equal to 1. 0n ∈ Rn is a column vector
with with all elements equal to 0. Given a set of numbers
S = {s1 s2 · · · sn}, diag(S) ∈ Cn×n is a diagonal matrix
with the ordered elements of S along its main diagonal.

We define an undirected graph as an ordered pair, denoted
G = (N, E), where N is the set of nodes and E is the set
of unordered pairs of nodes {i, j} called edges. A weighted
directed graph (digraph) is denoted as G = (N, E ,W ), where
the N is the set of nodes, E is the set of ordered pairs of
nodes (i, j) describing directed edges and W is a set of non-
negative weights w(i,j), for ordered node pairs (i, j). If there
is no directed edge connecting node i to node j, i.e., (i, j) /∈
E , w(i,j) = 0, otherwise, the weight is a strictly positive
number, i.e., w(i,j) > 0. A path is an ordered sequence of
graph nodes such that any pair of consecutive nodes in the
sequence is an edge of the graph. If there is a directed path
from any node to any other node in a directed graph G, then
we say this graph is strongly connected.

Given a weighted digraph G = (N, E ,W ), the associated
weighted Laplacian matrix is

[L]ij =

{
−w(i,j), if i 6= j;∑n
h=1,h6=i w(i,h), otherwise,

where w(i,j) is the weight attributed to the edge between
nodes i and j. λi denotes the ith eigenvalue of L where
0 = λ1 ≤ Re(λ2) ≤ · · · ≤ Re(λn). Finally, we define the
n×n matrix T =

[
t1 t2 · · · tn

]
whose ith column ti is

the eigenvector associated with λi(L), therefore t1 = 1
n1n.

III. PROBLEM SETUP

In this section, we introduce the first and second order
systems of interest along with their respective feedback
control laws. As in [16], we utilize two different types
interconnection graphs for each type of system. The first type
of interconnection graph describes the feedback structure. We

refer to this graph as the communication graph and denote
it as G = (N, E ,W ), where E are directed edges defined
as the node pairs (u, v) ∈ E , where information flows from
node u to node v. The second type of graph describes the
physical system interconnection, and we refer to it as the
collision graph, denoted Gc = (N, Ec). The collision graph
has undirected edges Ec ∈ Gc given by the node pairs
{j, k} ∈ Ec for which the vehicles at nodes j and k may
collide. See [16] for a discussion regarding construction of
the collision graph.

To characterize collisions we further define a nominal
spacing between vehicles (or robots) i and j, denoted by
hij , in a manner similar to [16]. If we consider a network
connected over a line graph with vehicle (robot) i imme-
diately in front of vehicle (robot) j, then this hij is the
distance between the front of vehicle (robot) j and the back
of vehicle (robot) i. More generally, we denote the closed
and connected region that a vehicle (robot) resides in as Vi,
which leads to

hij = min |x∗i − x∗j |

for points x∗i ∈ Vi and x∗j ∈ Vj . If j is in front of i, then
hij − xi + xj ≤ 0 means that vehicles (robots) i and j have
collided.

We consider input-output linear systems G of the form

φ̇ = Aφ+Bw (1a)
y = Cφ, (1b)

where x ∈ Rn, A ∈ Rn×n, w ∈ Rm, B ∈ Rn×m, y ∈ Rp
and C ∈ Rp×m. We next specify the state, input and output
matrices for the systems of interest.

1) First Order Systems: We consider single integrator
systems with the dynamics at node i ∈ N given by

ẋi = ui + wi, (2)

where

ui = −
∑

(i,j)∈E

αij(xi − xj)

is the control input for node i, and wi is the disturbance
at that node. This type of model can be used to represent
a robotic network [1]. As in [16], we define the output in
terms of the relative state value for the two critical nodes
of interest {i, j} ∈ Ec such that y = xi − xj . We can then
represent the first order input-output system as

ẋ = −Lx+ In×nw (3a)
y = Cx, (3b)

where x ∈ Rn, and the state matrix A = −L ∈ Rn×n
is a weighed graph Laplacian matrix determined by the
underlying communication graph G. The output matrix is
given by

C =
[
0 · · · 1 0 · · · −1 0 · · ·

]
, (4)

where 1 and −1 are in ith and jth position of matrix C
respectively.



2) Second Order Systems: Second order systems are
widely used to describe vehicle networks. The dynamics at
each node i ∈ N in such systems is given by

ẍi = ui + wi, (5)

where the form of ui is determined the feedback interconnec-
tion structure. Second order systems can have two communi-
cation graphs respectively associated with their position and
velocity feedback interconnection structure, we denote these
by Gx = (Nx, Ex,Wx) and Gv = (Nv, Ev,Wv), respectively.
In the present work we focus on the two feedback control
laws proposed in [10], 1) relative position and absolute
velocity (RPAV) control and 2) relative position and relative
velocity (RPRV) control.

For the RPAV control strategy, the control input at node i
is given by

ui = −
∑

(i,j)∈Ex

αij(xi − xj)− ẋi, (6)

where the feedback law is based on the relative position of
nodes i and j for each edge (i, j) ∈ Ex and a local velocity
measurement relative to a global reference. We refer to this
type of velocity measure as absolute velocity feedback. The
corresponding state space representation is[

ẋ
v̇

]
=

[
0n×n In×n
−Lα −In×n

] [
x
v

]
+

[
0n×n
In×n

]
w (7a)

y =
[
H 0Tn

] [x
v

]
, (7b)

where H is of the form (4), i.e. the output measures the
relative distance between nodes i and j.

For systems under RPRV control the input at node i is
given by

ui = −
∑

(i,j)∈Ex

αij(xi − xj)−
∑

(i,j)∈Ev

βij(ẋi − ẋj). (8)

The corresponding state space form is[
ẋ
v̇

]
=

[
0n×n In×n
−Lα −Lβ

] [
x
v

]
+

[
0n×n
In×n

]
u (9a)

y =
[
H 0Tn

] [x
v

]
, (9b)

where Lα and Lβ are Laplacian matrices corresponding to
the respective position and velocity communication graphs,
Gx and Gv respectively.

IV. ANALYTICAL RESULTS

We now demonstrate how to extend the analysis in [16]
to directed graphs. Theorem 1 in [16] proved that if

‖w‖L2
< min
i,j∈Ec

hij√
Pij

, (10)

for nominal spacing hij , then will be no collisions in the net-
work. Here Pij is the nodal performance between node pair i
and j that was derived in [12] for symmetric communication
graphs. They further showed that this nodal performance Pij

can be computed as theH2 norm for the single output defined
for the systems (3), (7) and (9). Therefore given nominal
vehicle (or robot) spacings hij the collision potential of the
platoon can be evaluated by computing the H2 norm of the
system. Based on (10) a higher H2 norm indicates lower
disturbance capacity.

The H2 norm, and equivalently Pij in (10), can be
interpreted as the sum of the time integrals of the output
response powers due to an impulse disturbance input at each
node [3]

‖G‖2H2
= tr

(
BT

∫ ∞
0

eA
T tCTCeAtdtB

)
. (11)

The next subsections provide closed form expressions for
the H2 norms (that provide measures of collision potential)
for the first order system (3) as well as the second order
systems with RPAV and RPRV control laws, respectively
described in equations (7) and (9).

A. First order systems

For a strongly connected graph, the corresponding Lapla-
cian matrix has only one zero eigenvalue. This condition
enables us to state the following theorem.

Theorem 4.1: Given a first order system (3) with com-
munication graph G = (N, E ,W ) and collision graph Gc =
(Nc, Ec). If G is strongly connected and the corresponding
Laplacian matrix L is diagonalizable, the H2 norm of this
first order system is given by

‖G‖2H2
= tr

(
(T−1)∗X̂T−1

)
, (12a)

[
X̂
]
ls

=

0, l or s = 1,
−(t̄il − t̄jl)(tis − tjs)

λ̄l + λs
, otherwise,

(12b)

where {i, j} ∈ Ec. T is a invertible matrix that diagonalizes
the Laplacian matrix, i.e., −L = TΛT−1, tpq = [T ]pq ,
[Λ]ii = λi, and the eigenvalues are sorted as Re(λ1) ≥
Re(λ2) ≥ · · · ≥ Re(λn).

Proof: With G strongly connected, 0 = λ1 > Re(λ2) ≥
· · · ≥ Re(λn). The first column of matrix T is t1 =
1
n1n ∈ Rn which is associated with the zero eigenvalue. As
there is a zero in its spectrum, the H2 norm of this system
may not exist. We therefore first prove the existence of this
norm for our problem. Representing (11) in terms of the
decomposition of L leads to

‖G‖2H2
= tr

(∫ ∞
0

(CeAtB)TCeAtBdt

)
= tr

(
(T−1)∗

∫ ∞
0

eΛtT ∗CTCTeΛtdtT−1

)
.

As Ct1 = 0n, we have

T ∗CTCT =

[
0 0Tn−1

0n−1 (T ∗CTCT )∗

]
,

in which (T ∗CTCT )∗ ∈ Rn×n is a principle submatrix of
TTCTCT . Direct computation of eΛtTTCTCTeΛt shows
that the elements associated with the zero eigenvalue (first



row and first column of T ∗CTCT ) are all 0. Thus the
zero eigenvalue will not contribute to the H2 norm, and the
integral in (11) exists.

Next we prove that the form in (12) is correct. Notice that

[(CT )∗(CT )]ls = (t̄il − t̄jl)(tis − tjs),
we have [

eΛ∗tTTCTCTeΛt
]
ls

={
0, l or s = 1,

(t̄il − t̄jl)(tis − tjs)eλ̄l+λs , otherwise.

Thus we can find ∀l, s 6= 1,[
X̂
]
ls

=

∫ ∞
0

(t̄il − t̄jl)(tis − tjs)eλ̄lt+λstdt

=
−(t̄il − t̄jl)(tis − tjs)

λ̄l + λs
.

B. Second order systems

For second order systems we present the results in terms
of the two control strategies.

The first theorem provides a result analogous to that in
Theorem 4.1 for second order systems under RPAV control.

Theorem 4.2: Given a second order system under the
RPAV control strategy as described in (7). If the commu-
nication graph Gx is strongly connected and the correspond-
ing Laplacian −Lα is diagonalizable, the H2 norm of the
corresponding system is given by

‖Gα‖2H2
= tr

(
(P−1T−1

diagB)∗X̂(P−1T−1
diagB)

)
, (13a)

where
P = EFR.[

X̂
]
ls

=

0, l or s ≤ 2,
−1

δ̄l + δs
q̄lqs, otherwise.

(13b)

ql = [CTdiagP ]l , (13c)
Specifically, Tdiag is a block diagonal matrix

Tdiag =

[
T

T

]
, (14)

where T is the matrix that diagonalizes −Lα = TΛT−1.
[Λ]ii = λi, and the sequence λi is sorted as 0 = λ1 >
Re(λ2) ≥ · · · ≥ Re(λn). E is a permutation matrix such
that

E=
[
e1 en+1 e2 en+2 · · · ei ei+n · · · en e2n

]
, (15)

where ei ∈ R2n is a standard basis vector, i.e., it has a one
as the ith element and all other elements are zeros. Matrix
F is a block diagonal matrix

F =

F1

. . .
Fn

 , (16)

where F1 = I2×2 and Fi =

[
1 0
0
√
λi

]
, ∀i 6= 1. R is another

a block diagonal matrix such that

R =

R1

. . .
Rn

 , (17)

where R1 =

[
1 −

√
2

2

0
√

2
2

]
and Ri =−−1 +

√
1 + 4λi

2
√
λi

−−1−
√

1 + 4λi

2
√
λi

1 1

, ∀i 6= 1. With

only λ1 = 0, it is easy to verify that matrix R is invertible.
The values δi = [∆]ii are the diagonal elements of the
block diagonal matrix

∆ =

∆1

. . .
∆n

 , (18)

with ∆1 =

[
0 0
0 1

]
and ∆i =

[
−1−

√
1+4λi

2
−1+

√
1+4λi

2

]
,

∀i 6= 1.
Proof: First we diagonalize the state matrix

A = TdiagEFR∆R−1F−1ETT−1
diag.

Since the first element of ∆ (which is an the eigenvalue of
A) is zero, the H2 norm may not exist. Therefore analogous
to the proof of Theorem 4.1, we need to verify the existence
of the H2 norm. From (11), we have

‖Gα‖2H2
= tr(P̂ ∗

∫ ∞
0

e∆∗tP ∗T ∗diagC
∗CTdiagPe

∆tdt P̂ ),

(19)

P̂ = P−1T−1
diagB.

In particular

CTdiagE =
[
ti1−tj1 0 ti2−tj2 · · · 0 tin − tjn

]
.

As the first column of T is t1 = 1
n1n, thus

CTdiagE =
[
0 0 ti2−tj2 · · · 0 tin − tjn

]
.

With F and R as block diagonal matrices, we have

CTdiagP = CTdiagEFR = q =
[
0 0 h2n−2

]
. (20)

Therefore the integration associated with eigenvalue δ1 = 0
is zero and the H2 norm exists. We then recover the form
of (13) by substituting (20) into (19).

Compared with RPAV control, the existence of relative
velocity feedback in the RPRV control law introduces a
second communication graph Gv . The following theorem
describes the form of the H2 norm for RPRV control.

Theorem 4.3: Given a second order system under the
RPRV control strategy as described in (8). If the communi-
cation graphs of position and velocity, respectively Gx and
Gv , are strongly connected and their corresponding Laplacian



matrices −Lα and −Lβ are simultaneously diagonalizable,

the H2 norm of this second order system can be represented

as

‖Gαβ‖2H2
=tr

(
(P−1T−1

diagB)∗X̂(P−1T−1
diagB)

)
, (21a)

where

P = EFR;

[
X̂
]
ls
=

⎧⎨
⎩
0, l or s ≤ 2,
−1

δ̄l + δs
q̄lqs, otherwise;

(21b)

ql = [CTdiagP ]l . (21c)
In particular, Tdiag is of the form (14), with matrix T that can

diagonalize both −Lα and −Lβ , e.g., −Lα = TΛαT
−1 and

−Lβ = TΛβT
−1, with [Λα]ii = λα

i and [Λβ ]ii = λβ
i . λα

i is

sorted as 0 = λα
1 > Re(λα

2 ) ≥ · · · ≥ Re(λα
n). E is given by

(15). The matrix F is obtained by substituting λi = λα
i into

(16). Matrix R is a block diagonal matrix defined in (17),

with R1 = In×n and

Ri=

⎡
⎢⎣−λβ

i +
√
(λβ

i )
2+4λα

i

2
√
λα
i

−
λβ
i−

√
(λβ

i )
2+4λα

i

2
√

λα
i

1 1

⎤
⎥⎦, ∀i �=1.

δk is the kth diagonal element of a block diagonal matrix

Δ which is of the form of (18) but with different entries. In

particular, for this case Δ1 =

[
0 1
0 0

]
is a 2×2 Jordan block

associated with 0s and

Δi=

⎡
⎢⎢⎢⎣
λβ
i −

√
(λβ

i )
2+4λα

i

2

λβ
i +

√
(λβ

i )
2+4λα

i

2

⎤
⎥⎥⎥⎦ , ∀i �= 1.

Proof: A Laplacian matrix whose zero eigenvalue

has algebraic and geometric multiplicity one, always has

the corresponding eigenvector 1
n1n. Since Lα and Lβ are

strongly connected and simultaneously diagonalizable by T ,

if λα
1 = 0, then t1 = 1

n1n, and λβ
1 = 0. Based on this

statement, we can locate the position of the zero eigenvalue

in Λβ and block diagonalize

A = TdiagEFRΔR−1F−1ETT−1
diag.

such that Δ is the block diagonal matrix with all of the

eigenvalues of A on its main diagonal and Δ1 is a Jordan

block associated with the two 0 eigenvalues. In order to

compute the H2 using (19) we first need to prove that the

H2 norm exists. By explicitly computing CTdiagPeΔt using

(20), one can show that the elements in CTdiagP associated

with the zero eigenvalues in Δ are 0. Therefore these 0
eigenvalues do not contribute to the H2 norm and the norm

exists. The desired result (21) can then be obtained using

(19).

C. Application to line graphs
In this section we discuss the special case of networks

whose communication interconnection structure is repre-

sented by a line graph. In particular, we show that the

weighted Laplacians associated with the corresponding di-

rected graphs are diagonalizable. Figure 1 provides an exam-

ple of such system consisting of a vehicular network with 4

nodes in both the communication and collision graphs. The

solid line represents the communication graph for position

and velocity feedback, Gx = Gv = (N, E ,W ) with edge set

E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}. The dashed

line represents the collision graph, Gc = (Nc, Ec), which has

the edge set Ec = {{1, 2} , {2, 3} , {3, 4}}.

Fig. 1: A vehicular network example with line graph structure

We now introduce the graph Laplacians for the symmetric

and asymmetric gain structures for these linear networks.

Given a weighted line graph with n nodes, the corresponding

Laplacian matrix with symmetric gains is given by

Lsym =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ . (22)

For the assymetric systems we focus on a special class of

asymmetry in which the sum of asymmetric gains for a

given edge pair (along a particular edge in the graph) have

equal offsets (ε positive in one direction and negative in the

other). Therefore the sum of the bidirectional communication

remains the same for either a symmetric or an asymmetric

graph with nominal edge weights 1. For example if the

control gain from node i to node j is 1 + ε then the gain

from node j to node i is 1−ε. This allows direct comparison

with the results in [9], which studied how such an asymmetry

structure affects system stability. This structure leads to

a communication graph that can be represented by the

following weighted Laplacian matrix

Lasym =⎡
⎢⎢⎢⎢⎢⎣

1− ε −1 + ε
−1− ε 2 −1 + ε

. . .
. . .

. . .

−1− ε 2 −1 + ε
−1− ε 1 + ε

⎤
⎥⎥⎥⎥⎥⎦ , (23)

where 0 < ε < 1. Note that when ε = 0, Lasym = Lsym.

Lemma 4.4: An N×N Laplacian matrix of the form (22)

or (23) is diagonalizable, and its eigenvalues are given by{
λ1 = 0

λi+1 = 2 + 2p cos iπ
N , i ∈ {1, 2, · · · , N − 1}, (24)

where p =
√
1− ε2 and 0 ≤ ε < 1.



Proof: We use the fact that a Toeplitz matrix of the
form

L =



b+ γ c 0 · · · 0 α
a b c 0

0
. . . . . . . . .

...
... a b c 0
0 a b c
β 0 · · · 0 a b+ δ


. (25)

has the eignevalues:

λ = b+ 2cρ cos θ, (26)

where ρ =
√
a/c and θs are solutions to

ρn(ac sin (N + 1)θ + (γδ − αβ) sin (N − 1)θ

− cρ(γ + δ)sinNθ)− (cαρ2N + αβ)sinθ = 0, (27)

with sin(θ) 6= 0 [18]. Applying this to the matrices of the
form (22) and (23), we obtain a = −1−ε, b = 2, c = −1+ε,
α = β = 0, γ = a, δ = c, and ρ =

√
−1−ε
−1+ε ., which leads to

λi = 2− 2
√

1− ε2 cos θi, i ∈ {1, 2, · · · , N}. (28)

Equation (27) reduces to

2
√
ac sinNθ(2

√
ac cos θ − 1) = 0. (29)

Solving (29) we get θ = iπ
N or cos(θ) = 1

2
√
ac

, which leads
to N distinct λi values in (28). Therefore matrices of the
form (22) or (23) have N distinct eigenvalues, i.e., they are
diagonalizable.

V. NUMERICAL RESULTS

In this section, we explore the influence of asymmetry
on the collision potential in second order systems connected
over a line graph (e.g., a linear vehicle platoon) for two
scenarios; a platoon with no leader and a platoon with a
leader. A system with a leader has a feedback interconnection
structure the differs from the feedback laws for the two no
leader cases described in (6) and (8) due to the self loop at
the first node. The corresponding RPAV and RPRV feedback
laws are respectively,

u1 =−
∑

(1,j)∈E

αij(x1−xj)−α̂x1−βiv1,

u1 =−
∑

(1,j)∈E

αij(x1−xj)−α̂x1−
∑

(1,j)∈E

βij(v1−vj)−β̂v1.

The interconnection structure is described by the following
matrix

L̂asym =
1− ε+ α̂ −1 + ε
−1− ε 2 −1 + ε

. . . . . . . . .
−1− ε 2 −1 + ε

−1− ε 1 + ε

 .

We perform simulations for 50 node networks using pa-
rameters α̂ = β̂ = 0.5 for the leader control laws and an
asymmetry offset given by ε = 0.02. We set Lα = Lβ for
the RPRV control laws. We consider the following cases

1) Sym RPAV w/L: Symmetric relative position absolute
velocity control with leader

2) Sym RPAV no/L: Symmetric relative position absolute
velocity control without leader

3) Asy RPAV w/L: Asymmetric relative position absolute
velocity control with leader

4) Asy RPAV no/L: Asymmetric relative position abso-
lute velocity control without leader

5) Sym RPRV w/L: Symmetric relative position relative
velocity control with leader

6) Sym RPRV no/L: Symmetric relative position relative
velocity control without leader

7) Asy RPRV w/L: Asymmetric relative position relative
velocity control with leader

8) Asy RPRV no/L: Asymmetric relative position relative
velocity control without leader

Figure 2 compares how the H2 norm changes along the
platoon for adjacent pairs of vehicles for each of the cases.
These results show that when ε is small, all of the cases
show better performance (disturbance rejection capability)
for the node pairs at the front of the platoon. However, the
performance of last several nodes pairs is actually worse for
systems with asymmetric control feedback.

Additional simulation results demonstrate that as we in-
crease ε, the performances deteriorates rapidly, especially for
the last several node pairs. For ε = 0.1, the benefits of asym-
metric control laws seen at the front of the network cannot
compensate for the performance deterioration experienced
by the last several node pairs. Thus we can conclude that
for both RPAV and RPRV control strategies, asymmetric
feedback does not reduce collusion potential (robustness)
in these platoons and in fact makes long platoons more
vulnerable.

VI. CONCLUSIONS

We examine the collision potential for any node pair
in first and second order double integrator networks with
asymmetric feedback laws. We focus on the special case of
systems whose feedback interconnection is described by a
strongly connected digraph with a diagonalizable weighted
graph Laplacian. Our main results exploit the fact that this
performance measure can be computed in terms of the H2

norm of the system to find closed form expressions that
describe this performance measure in terms of the eigenval-
ues of the graph Laplacians. Numerical examples are used
to illustrate the theory for second order integrator systems
communicating over a line graph (a linear vehicle platoon)
with two different feedback laws. We consider networks
with and without leaders, and find that the asymmetric
communication graphs increase the possibility that vehicle
pairs toward the rear of the platoon will collide. This decrease
in system robustness is in contrast to the previously observed
improved stability margin with asymmetric feedback laws.
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Fig. 2: The H2 norm for vehicle pairs along linear platoons for the eight different cases. In systems with and without leaders,
the asymmetric control laws decrease the collision potential (increase robustness) at the front of the platoon but the benefits
decrease as the platoon length increases. In fact, the performance obtained using the asymmetric feedback is worse than that
for the symmetric control laws for the vehicle pairs at the end of the simulated platoon.

Characterizing vehicular and robotic networks with more
general asymmetric communication graphs as well as the
stability/performance trade-off is another topic of ongoing
work.
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