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Abstract

Given a database of vectors, a cosine threshold query returns all vectors in the database having

cosine similarity to a query vector above a given threshold. These queries arise naturally in many

applications, such as document retrieval, image search, and mass spectrometry. The present paper

considers the efficient evaluation of such queries, providing novel optimality guarantees and exhibiting

good performance on real datasets. We take as a starting point Fagin’s well-known Threshold

Algorithm (TA), which can be used to answer cosine threshold queries as follows: an inverted

index is first built from the database vectors during pre-processing; at query time, the algorithm

traverses the index partially to gather a set of candidate vectors to be later verified against the

similarity threshold. However, directly applying TA in its raw form misses significant optimization

opportunities. Indeed, we first show that one can take advantage of the fact that the vectors can be

assumed to be normalized, to obtain an improved, tight stopping condition for index traversal and

to efficiently compute it incrementally. Then we show that one can take advantage of data skewness

to obtain better traversal strategies. In particular, we show a novel traversal strategy that exploits

a common data skewness condition which holds in multiple domains including mass spectrometry,

documents, and image databases. We show that under the skewness assumption, the new traversal

strategy has a strong, near-optimal performance guarantee. The techniques developed in the paper

are quite general since they can be applied to a large class of similarity functions beyond cosine.
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11:2 Cosine Threshold Querying with Optimality Guarantees

1 Introduction

Given a database of vectors, a cosine threshold query asks for all database vectors with

cosine similarity to a query vector above a given threshold.

This problem arises in many applications including document retrieval [11], image

search [24], recommender systems [26] and mass spectrometry. For example, in mass

spectrometry, billions of spectra are generated for the purpose of protein analysis [1, 25, 33].

Each spectrum is a collection of key-value pairs where the key is the mass-to-charge ratio of

an ion contained in the protein and the value is the intensity of the ion. Essentially, each

spectrum is a high-dimensional, non-negative and sparse vector with ∼2000 dimensions where

∼100 coordinates are non-zero.

Cosine threshold queries play an important role in analyzing such spectra repositories.

Example questions include “is the given spectrum similar to any spectrum in the database?”,

spectrum identification (matching query spectra against reference spectra), or clustering

(matching pairs of unidentified spectra) or metadata queries (searching for public datasets

containing matching spectra, even if obtained from different types of samples). For such

applications with a large vector database, it is critically important to process cosine threshold

queries efficiently – this is the fundamental topic addressed in this paper.

◮ Definition 1 (Cosine Threshold Query). Let D be a collection of high-dimensional, non-

negative vectors; q be a query vector; θ be a threshold 0 < θ ≤ 1. Then the cosine threshold

query returns the vector set R = {s|s ∈ D, cos(q, s) ≥ θ}. A vector s is called θ-similar to

the query q if cos(q, s) ≥ θ and the score of s is the value cos(q, s) when q is understood

from the context.

Observe that cosine similarity is insensitive to vector normalization. We will therefore

assume without loss of generality that the database as well as query consist of unit vectors

(otherwise, all vectors can be normalized in a pre-processing step).

In the literature, cosine threshold querying is a special case of Cosine Similarity Search

(CSS) [31, 3, 26], where other aspects like approximate answers, top-k queries and similarity

join are considered. Our work considers specifically CSS with exact, threshold and single-

vector queries, which is the case of interest to many applications.

Because of the unit-vector assumption, the scoring function cos computes the dot product

q ·s. Without the unit-vector assumption, the problem is equivalent to inner product threshold

querying, which is of interest in its own right. Related work on cosine and inner product

similarity search is summarized in Section 5.

In this paper we develop novel techniques for the efficient evaluation of cosine threshold

queries. We take as a starting point the well-known Threshold Algorithm (TA), by Fagin et

al. [16], because of its simplicity, wide applicability, and optimality guarantees. A review of

the classic TA is provided in the full version of the paper.

A TA-like baseline index and algorithm and its shortcomings. The TA algorithm can be

easily adapted to our setting, yielding a first-cut approach to processing cosine threshold

queries. We describe how this is done and refer to the resulting index and algorithm as the

TA-like baseline. Note first that cosine threshold queries use cos(q, s), which can be viewed

as a particular family of functions F (s) = s · q parameterized by q, that are monotonic in s

for unit vectors. However, TA produces the vectors with the top-k scores according to F (s),

whereas cosine threshold queries return all s whose score exceeds the threshold θ. We will

show how this difference can be overcome straightforwardly.
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Figure 1 An example of cosine threshold query with six 10-dimensional vectors. The missing

values are 0’s. We only need to scan the lists L1, L3, and L4 since the query vector has non-

zero values in dimension 1, 3 and 4. For θ = 0.6, the gathering phase terminates after each

list has examined three entries (highlighted) because the score for any unseen vector is at most

0.8 × 0.3 + 0.3 × 0.3 + 0.5 × 0.2 = 0.43 < 0.6. The verification phase only needs to retrieve from

the database those vectors obtained during the gathering phase, i.e., s1, s2, s3 and s5, compute the

cosines and produce the final result.

A baseline index and algorithm inspired by TA can answer cosine threshold queries exactly

without a full scan of the vector database for each query. In addition, the baseline algorithm

enjoys the same instance optimality guarantee as the original TA. This baseline is created as

follows. First, identically to the TA, the baseline index consists of one sorted list for each

of the d dimensions. In particular, the i-th sorted list has pairs (ref(s), s[i]), where ref(s) is

a reference to the vector s and s[i] is its value on the i-th dimension. The list is sorted in

descending order of s[i].1

Next, the baseline, like the TA, proceeds into a gathering phase during which it collects

a complete set of references to candidate result vectors. The TA shows that gathering can

be achieved by reading the d sorted lists from top to bottom and terminating early when

a stopping condition is finally satisfied. The condition guarantees that any vector that

has not been seen yet has no chance of being in the query result. The baseline makes a

straightforward change to the TA’s stopping condition to adjust for the difference between

the TA’s top-k requirement and the threshold requirement of the cosine threshold queries. In

particular, in each round the baseline algorithm has read the first b entries of each index.

(Initially it is b = 0.) If it is the case that cos(q, [L1[b], . . . , Ld[b]]) < θ then it is guaranteed

that the algorithm has already read (the references to) all the possible candidates and thus

it is safe to terminate the gathering phase, see Figure 1 for an example. Every vector s that

appears in the j-th entry of a list for j < b is a candidate.

In the next phase, called the verification phase, the baseline algorithm (again like TA)

retrieves the candidate vectors from the database and checks which ones actually score above

the threshold.

For inner product queries, the baseline algorithm’s gathering phase benefits from the

same d · OPT instance optimality guarantee as the TA. Namely, the gathering phase will

access at most d · OPT entries, where OPT is the optimal index access cost. More specifically,

the notion of OPT is the minimal number of sequential accesses of the sorted inverted index

during the gathering phase for any TA-like algorithm applied to the specific query and index

instance.

There is an obvious optimization: Only the k dimensions that have non-zero values in

the query vector q should participate in query processing – this leads to a k · OPT guarantee

for inner product queries.2 But even this guarantee loses its practical value when k is a large

1 There is no need to include pairs with zero values in the list.
2 This optimization is equally applicable to the TA’s problem: Scan only the lists that correspond to
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11:4 Cosine Threshold Querying with Optimality Guarantees

Table 1 Summary of theoretical results for the near-convex case.

Stopping Condition Traversal Strategy

Baseline This work Baseline This work

Inner Product Tight m · OPT OPT + c

Cosine Not tight Tight NA OPT(θ − ǫ) + c

number. In the mass spectrometry scenario k is ∼100. In document similarity and image

similarity cases it is even higher.

For cosine threshold queries, the k · OPT guarantee no longer holds. The baseline fails

to utilize the unit vector constraint to reach the stopping condition faster, resulting in an

unbounded gap from OPT because of the unnecessary accesses (see Appendix C of the full

version).3 Furthermore, the baseline fails to utilize the skewing of the values in the vector’s

coordinates (both of the database’s vectors and of the query vector) and the linearity of the

similarity function. Intuitively, if the query’s weight is concentrated on a few coordinates,

the query processing should overweight the respective lists and may, thus, reach the stopping

condition much faster than reading all relevant lists in tandem.

We retain the baseline’s index and the gathering-verification structure which characterizes

the family of TA-like algorithms. The decision to keep the gathering and verification stages

separate is discussed in Section 2. We argue that this algorithmic structure is appropriate

for cosine threshold queries, because further optimizations that would require merging the

two phases are only likely to yield marginal benefits. Within this framework, we reconsider

1. Traversal strategy optimization: A traversal strategy determines the order in which the

gathering phase proceeds in the lists. In particular, we allow the gathering phase to

move deeper in some lists and less deep in others. For example, the gathering phase may

have read at some point b1 = 106 entries from the first list, b2 = 523 entries from the

second list, etc. Multiple traversal strategies are possible and, generally, each traversal

strategy will reach the stopping condition with a different configuration of [b1, b2, . . . , bn].

The traversal strategy optimization problem asks that we efficiently identify a traversal

path that minimizes the access cost
∑d

i=1 bi. To enable such optimization, we will allow

lightweight additions to the baseline index.

2. Stopping condition optimization: We reconsider the stopping condition so that it takes

into account (a) the specifics of the cos function and (b) the unit vector constraint.

Moreover, since the stopping condition is tested frequently during the gathering phase, it

has to to be evaluated very efficiently. Notice that optimizing the stopping condition is

independent of the traversal strategy or skewness assumptions about the data.

Contributions and summary of results.

We present a stopping condition for early termination of the index traversal (Section

3). We show that the stopping condition is complete and tight, informally meaning

that (1) for any traversal strategy, the gathering phase will produce a candidate set

containing all the vectors θ-similar to the query, and (2) the gathering terminates as

soon as no more θ-similar vectors can be found (Theorem 7). In contrast, the stopping

condition of the (TA-inspired) baseline is complete but not tight (Theorem 27 in the full

version). The proposed stopping condition takes into account that all database vectors

dimensions that actually affect the function F .
3 Notice, the unit vector constraint enables inference about the collective weight of the unseen coordinates

of a vector.
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are normalized and reduces the problem to solving a special quadratic program (Equation

1) that guarantees both completeness and tightness. While the new stopping condition

prunes further the set of candidates, it can also be efficiently computed in O(log d) time

using incremental maintenance techniques.

We introduce the hull-based traversal strategies that exploit the skewness of the data

(Section 4). In particular, skewness implies that each sorted list Li is “mostly convex”,

meaning that the shape of Li is approximately the lower convex hull constructed from

the set of points of Li. This technique is quite general, as it can be extended to the class

of decomposable functions which have the form F (s) = f1(s[1]) + . . . + fd(s[d]) where

each fi is non-decreasing.4 Consequently, we provide the following optimality guarantee

for inner product threshold queries: The number of accesses executed by the gathering

phase (i.e.,
∑d

i=1 bi) is at most OPT + c (Theorem 16 and Corollary 18), where OPT is

the number of accesses by the optimal strategy and c is the max distance between two

vertices in the lower convex hull. Experiments show that in multiple real-world cases, c is

a very small fraction of OPT.

Despite the fact that cosine and its tight stopping condition are not decomposable, we show

that the hull-based strategy can be adapted to cosine threshold queries by approximating

the tight stopping condition with a carefully chosen decomposable function. We show

that when the approximation is at most ǫ-away from the actual value, the access cost is

at most OPT(θ − ǫ) + c (Theorem 20) where OPT(θ − ǫ) is the optimal access cost on the

same query q with the threshold lowered by ǫ and c is a constant similar to the above

decomposable cases. Experiments show that the adjustment ǫ is very small in practice,

e.g., 0.1. We summarize these new results in Table 1.

The paper is organized as follows. We introduce the algorithmic framework and basic

definitions in Section 2. Section 3 and 4 discuss the technical developments as we mentioned

above. Finally, we discuss related work in Section 5 and conclude in Section 6.

2 Algorithmic Framework

In this section, we present a Gathering-Verification algorithmic framework to facilitate

optimizations in different components of an algorithm with a TA-like structure. We start

with notations summarized in Table 2.

To support fast query processing, we build an index for the database vectors similar to

the original TA. The basic index structure consists of a set of 1-dimensional sorted lists

(a.k.a inverted lists in web search [11]) where each list corresponds to a vector dimension and

contains vectors having non-zero values on that dimension, as mentioned earlier in Section 1.

Formally, for each dimension i, Li is a list of pairs {(ref(s), s[i]) | s ∈ D ∧ s[i] > 0} sorted in

descending order of s[i] where ref(s) is a reference to the vector s and s[i] is its value on the

i-th dimension. In the interest of brevity, we will often write (s, s[i]) instead of (ref(s), s[i]).

As an example in Figure 1, the list L1 is built for the first dimension and it includes 4 entries:

(s1, 0.8), (s5, 0.7), (s3, 0.3), (s4, 0.2) because s1, s5, s3 and s4 have non-zero values on the

first dimension.

Next, we show the Gathering-Verification framework (Algorithm 1) that operates on the

index structure. The framework has two phases: gathering and verification.

4 The inner product threshold problem is the special case where fi(s[i]) = qi · s[i].

ICDT 2019
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Table 2 Notation.

D the vector database

d the number of dimen-

sions

s (bold font) a data vector

q (bold font) a query vector

s[i] or si the i-th dimensional

value of s

|s| the L1 norm of s

‖s‖ the L2 norm of s

θ the similarity threshold

cos(p, q) the cosine of p and q

Li the inverted list of the

i-th dimension

b = (b1, . . . , bd) a position vector

Li[bi] the bi-th value of Li

L[b] the vector (L1[b1], . . . ,

Ld[bd])

Algorithm 1: Gathering-Verification Frame-

work.

input : (D, {Li}1≤i≤d, q, θ)

output : R the set of θ-similar vectors

/* Gathering phase */

1 Initialize b = (b1, . . . , bd) = (0, . . . , 0);

// ϕ(·) is the stopping condition

2 while ϕ(b) = false do

// T (·) is the traversal strategy to

determine which list to access

next

3 i← T (b);

4 bi ← bi + 1;

5 Put the vector s in Li[bi] to the candidate

pool C;

/* Verification phase */

6 R← {s|s ∈ C ∧ cos(q, s) ≥ θ};

7 return R;

Gathering phase (line 1 to line 5). The goal of the gathering phase is to collect a complete

set of candidate vectors while minimizing the number of accesses to the sorted lists. The

algorithm maintains a position vector b = (b1, . . . , bd) where each bi indicates the current

position in the inverted list Li. Initially, the position vector b is (0, . . . , 0). Then it traverses

the lists according to a traversal strategy that determines the list (say Li) to be accessed

next (line 3). Then it advances the pointer bi by 1 (line 4) and adds the vector s referenced

in the entry Li[bi] to a candidate pool C (line 5). The traversal strategy is usually stateful,

which means that its decision is made based on information that has been observed up to

position b and its past decisions. For example, a strategy may decide that it will make the

next 20 moves along dimension 6 and thus it needs state in order to remember that it has

already committed to 20 moves on dimension 6.

The gathering phase terminates once a stopping condition is met. Intuitively, based on

the information that has been observed in the index, the stopping condition checks if a

complete set of candidates has already been found.

Next, we formally define stopping conditions and traversal strategies. As mentioned

above, the input of the stopping condition and the traversal strategy is the information that

has been observed up to position b, which is formally defined as follows.

◮ Definition 2. Let b be a position vector on the inverted index {Li}1≤i≤d of a database D.

The partial observation at b, denoted as L(b), is a collection of lists {L̂i}1≤i≤d where for

every 1 ≤ i ≤ d, L̂i = [Li[1], . . . , Li[bi]].

◮ Definition 3. Let L(b) be a partial observation and q be a query with similarity threshold

θ. A stopping condition is a boolean function ϕ(L(b), q, θ) and a traversal strategy is

a function T (L(b), q, θ) whose domain is [d]5. When clear from the context, we denote them

simply by ϕ(b) and T (b) respectively.

Verification phase (line 6). The verification phase examines each candidate vector s seen

in the gathering phase to verify whether cos(q, s) ≥ θ by accessing the database. Various

5 [d] is the set {1, . . . , d}
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techniques [31, 4, 26] have been proposed to speed up this process. Essentially, instead of

accessing all the d dimensions of each s and q to compute exactly the cosine similarity, these

techniques decide θ-similarity by performing a partial scan of each candidate vector. We

review these techniques, which we refer to as partial verification, in Appendix B. Additionally,

as a novel contribution, we show that in the presence of data skewness, partial verification

can have a near-constant performance guarantee (Theorem 25 of the full version) for each

candidate.

◮ Theorem 4 (Informal). For most skewed vectors, θ-similarity can be computed at constant

time.

Remark on optimizing the gathering phase. Due to these optimization techniques, the

number of sequential accesses performed during the gathering phase becomes the dominating

factor of the overall running time. This reason behind is that the number of sequential

accesses is strictly greater than the number of candidates that need to be verified so reducing

the sequential access cost also results in better performance of the verification phase. In

practice, we observed that the sequential cost is indeed dominating: for 1,000 queries on 1.2

billion vectors with similarity threshold 0.6, the sequential gathering time is 16 seconds and

the verification time is only 4.6 seconds. Such observation justifies our goal of designing a

traversal strategy with near-optimal sequential access cost, as the dominant cost concerns

the gathering stage.

Remark on the suitability of TA-like algorithms. One may wonder whether algorithms

that start the gathering phase NOT from the top of the inverted lists may outperform the

best TA-like algorithm. In particular, it appears tempting to start the gathering phase

from the point closest to qi in each inverted list and traverse towards the two ends of each

list. Appendix E of the full version proves why this idea can lead to poor performance.

In particular, we prove that in a general setting, the computation of a tight and complete

stopping condition (formally defined in Definition 5 and 6) becomes np-hard since it needs to

take into account constraints from two pointers (forward and backward) for each inverted list.

Furthermore, in many applications, the data skewing leads to small savings from pruning the

top area of each list, since the top area is sparsely populated - unlike the densely populated

bottom area of each list. Thus it is not justified to use an expensive gathering phase algorithm

for small savings.

Section 5.1 reviews additional prior work ideas [31, 32] that avoid traversing some

top/bottom regions of the inverted index. Such ideas may provide additional optimizations

to TA-like algorithms in variations and/or restrictions of the problem (e.g., a restriction that

the threshold is very high) and thus they present future work opportunities in closely related

problems.

3 Stopping condition

In this section, we introduce a fine-tuned stopping condition that satisfies the tight and

complete requirements to early terminate the index traversal.

First, the stopping condition has to guarantee completeness (Definition 5), i.e. when the

stopping condition ϕ holds on a position b, the candidate set C must contain all the true

results. Note that since the input of ϕ is the partial observation at b, we must guarantee

that for all possible databases D consistent with the partial observation L(b), the candidate

set C contains all vectors in D that are θ-similar to the query q. This is equivalent to require

ICDT 2019



11:8 Cosine Threshold Querying with Optimality Guarantees

that if a unit vector s is found below position b (i.e. s does not appear above b), then s is

NOT θ-similar to q. We formulate this as follows.

◮ Definition 5 (Completeness). Given a query q with threshold θ, a position vector b on

index {Li}1≤i≤d is complete iff for every unit vector s, s < L[b] implies s · q < θ. A stopping

condition ϕ(·) is complete iff for every b, ϕ(b) = True implies that b is complete.

The second requirement of the stopping condition is tightness. It is desirable that the

algorithm terminates immediately once the candidate set C contains a complete set of

candidates, such that no additional unnecessary access is made. This can reduce not only

the number of index accesses but also the candidate set size, which in turn reduces the

verification cost. Formally,

◮ Definition 6 (Tightness). A stopping condition ϕ(·) is tight iff for every complete position

vector b, ϕ(b) = True.

It is desirable that a stopping condition be both complete and tight. However, as we

shown in Appendix C of the full version, the baseline stopping condition ϕBL =
(

q · L[b] < θ
)

is complete but not tight as it does not capture the unit vector constraint to terminate as

soon as no unseen unit vector can satisfy s ·q ≥ θ. Next, we present a new stopping condition

that is both complete and tight.

To guarantee tightness, one can check at every snapshot during the traversal whether the

current position vector b is complete and stop once the condition is true. However, directly

testing the completeness is impractical since it is equivalent to testing whether there exists a

real vector s = (s1, . . . , sd) that satisfies the following following set of quadratic constraints:

(a)
d
∑

i=1

si · qi ≥ θ, (b) si ≤ Li[bi], ∀ i ∈ [d], and (c)
d
∑

i=1

s2
i = 1. (1)

We denote by C(b) (or simply C) the set of Rd points defined by the above constraints. The

set C(b) is infeasible (i.e. there is no satisfying s) if and only if b is complete, but directly

testing the feasibility of C(b) requires an expensive call to a quadratic programming solver.

Depending on the implementation, the running time can be exponential or of high-degree

polynomial [10]. We address this challenge by deriving an equivalently strong stopping

condition that guarantees tightness and is efficiently testable:

◮ Theorem 7. Let τ be the solution of the equation
∑d

i=1 min{qi · τ, Li[bi]}
2 = 1 and

MS(L[b]) =

d
∑

i=1

min{qi · τ, Li[bi]} · qi (2)

called the max-similarity. The stopping condition ϕTC(b) = (MS(L[b]) < θ) is tight and

complete.

Proof. The tight and complete stopping condition is obtained by applying the Karush-Kuhn-

Tucker (KKT) conditions [23] for solving nonlinear programs. We first formulate the set of

constraints in (1) as an optimization problem over s:

maximize

d
∑

i=1

si · qi subject to

d
∑

i=1

s2
i = 1 and si ≤ Li[bi], ∀i ∈ [d] (3)
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So checking whether C is feasible is equivalent to verifying whether the maximal
∑d

i=1 si ·qi is

at least θ. So it is sufficient to show that
∑d

i=1 si ·qi is maximized when si = min{qi ·τ, Li[bi]}

as specified above.

The KKT conditions of the above maximization problem specify a set of necessary

conditions that the optimal s needs to satisfy. More precisely, let

L(s, µ, λ) =

d
∑

i=1

siqi −

d
∑

i=1

µi(Li[bi] − si) − λ

(

d
∑

i=1

s2
i − 1

)

be the Lagrangian of (3) where λ ∈ R and µ ∈ R
d are the Lagrange multipliers. Then,

◮ Lemma 8 (derived from KKT). The optimal s in (3) satisfies the following conditions:

∇sL(s, µ, λ) = 0 (Stationarity)

µi ≥ 0, ∀ i ∈ [d] (Dual feasibility)

µi(Li[bi] − si) = 0, ∀ i ∈ [d] (Complementary slackness)

in addition to the constraints in (3) (called the Primal feasibility conditions).

By the Complementary slackness condition, for every i, if µi 6= 0 then si = Li[bi]. If µi = 0,

then from the Stationarity condition, we know that for every i, qi + µi − 2λ · si = 0 so

si = qi/2λ. Thus, the value of si is either Li[bi] or qi/2λ.

If Li[bi] < qi/2λ then since si ≤ Li[bi], the only possible case is si = Li[bi]. For

the remaining dimensions, the objective function
∑d

i=1 si · qi is maximized when each si is

proportional to qi, so si = qi/2λ. Combining these two cases, we have si = min{qi/2λ, Li[bi]}.

Thus, for the λ that satisfies
∑d

i=1 min{qi/2λ, Li[bi]}
2 = 1, the objective function

∑d

i=1 si ·

qi is maximized when si = min{qi/2λ, Li[bi]} for every i. The theorem is obtained by letting

τ = 1/2λ. ◭

Remark of ϕTC. The tight stopping condition ϕTC computes the vector s below L(b) with

the maximum cosine similarity MS(L[b]) with the query q. At the beginning of the gathering

phase, bi = 0 for every i so MS(L[b]) = 1 as s is not constrained. The cosine score is

maximized when s = q where τ = 1. During the gathering phase, as bi increases, the upper

bound Li[bi] of each si decreases. When Li[bi] < qi for some i, si can no longer be qi. Instead,

si equals Li[bi], the rest of s increases proportional to q and τ increases. During the traversal,

the value of τ monotonically increases and the score s(L[b]) monotonically decreases. This

is because the space for s becomes more constrained by L(b) as the pointers move deeper in

the inverted lists.

Testing the tight and complete condition ϕTC requires solving τ in Theorem (7), for which

a direct application of the bisection method takes O(d) time. We show a novel efficient

algorithm (Appendix D) in the full version of the paper based on incremental maintenance

which takes only O(log d) time for each test of ϕTC.

◮ Theorem 9. The stopping condition ϕTC(b) can be incrementally computed in O(log d)

time.

4 Near-Optimal Traversal Strategy

Given the inverted lists index and a query, there can be many stopping positions that are

both complete and tight. To optimize the performance, we need a traversal strategy that

reaches one such position as fast as possible. Specifically, the goal is to design a traversal
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strategy T that minimizes |b| =
∑d

i=1 bi where b is the first position vector satisfying the

tight and complete stopping condition if T is followed. Minimizing |b| also reduces the

number of collected candidates, which in turn reduces the cost of the verification phase. We

call |b| the access cost of the strategy T . Formally,

◮ Definition 10 (Access Cost). Given a traversal strategy T , we denote by {bi}i≥0 the

sequence of position vectors obtained by following T . The access cost of T , denoted by

cost(T ), is the minimal k such that ϕTC(bk) = True. Note that cost(T ) also equals |bk|.

◮ Definition 11 (Instance Optimality). Given a database D with inverted lists {Li}1≤i≤d,

a query vector q and a threshold θ, the optimal access cost OPT(D, q, θ) is the minimum
∑d

i=1 bi for position vectors b such that ϕTC(b) = True. When it is clear from the context,

we simply denote OPT(D, q, θ) as OPT(θ) or OPT.

At a position b, a traversal strategy makes its decision locally based on what has been

observed in the inverted lists up to that point, so the capability of making globally optimal

decisions is limited. As a result, traversal strategies are often designed as simple heuristics,

such as the lockstep strategy in the baseline approach. The lockstep strategy has a d · OPT

near-optimal bound which is loose in the high-dimensionality setting.

In this section, we present a traversal strategy for cosine threshold queries with tighter

near-optimal bound by taking into account that the index values are skewed in many realistic

scenarios. We approach the (near-)optimal traversal strategy in two steps.

First, we consider the simplified case with the unit-vector constraint ignored so that

the problem is reduced to inner product queries. We propose a general traversal strategy

that relies on convex hulls pre-computed from the inverted lists during indexing. During

the gathering phase, these convex hulls are accessed as auxiliary data during the traversal

to provide information on the increase/decrease rate towards the stopping condition. The

hull-based traversal strategy not only makes fast decisions (in O(log d) time) but is near-

optimal (Corollary 18) under a reasonable assumption. In particular, we show that if the

distance between any two consecutive convex hull vertices of the inverted lists is bounded by

a constant c, the access cost of the strategy is at most OPT + c. Experiments on real data

show that this constant is small in practice.

The hull-based traversal strategy is quite general, as it applies to a large class of functions

beyond inner product called the decomposable functions, which have the form
∑d

i=1 fi(si)

where each fi is a non-decreasing real function of a single dimension si. Obviously, for a

fixed query q, the inner product q · s is a special case of decomposable functions, where each

fi(si) = qi · si. We show that the near-optimality result for inner product queries can be

generalized to any decomposable function (Theorem 16).

Next, in Section 4.4, we consider the cosine queries by taking the normalization constraint

into account. Although the function MS(·) used in the tight stopping condition ϕTC is not

decomposable so the same technique cannot be directly applied, we show that the hull-based

strategy can be adapted by approximating MS(·) with a decomposable function. In addition,

we show that with a properly chosen approximation, the hull-based strategy is near-optimal

with a small adjustment to the input threshold θ, meaning that the access cost is bounded

by OPT(θ − ǫ) + c for a small ǫ (Theorem 20). Under the same experimental setting, we

verify that ǫ is indeed small in practice.

4.1 Decomposable Functions

We start with defining the decomposable functions for which the hull-based traversal strategies

can be applied:
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◮ Definition 12 (Decomposable Function). A decomposable function F (s) is a d-dimensional

real function where F (s) =
∑d

i=1 fi(si) and each fi is a non-decreasing real function.

Given a decomposable function F , the corresponding stopping condition is called a

decomposable condition, which we define next.

◮ Definition 13 (Decomposable Condition). A decomposable condition ϕF is a boolean function

ϕF (b) =
(

F (L[b]) < θ
)

where F is a decomposable function and θ is a fixed threshold.

When the unit vector constraint is lifted, the decomposable condition is tight and complete

for any scoring function F and threshold θ. As a result, the goal of designing a traversal

strategy for F is to have the access cost as close as possible to OPT when the stopping

condition is ϕF .

4.2 The max-reduction traversal strategy

To illustrate the high-level idea of the hull-based approach, we start with a simple greedy

traversal strategy called the Max-Reduction traversal strategy TMR(·). The strategy works

as follows: at each snapshot, move the pointer bi on the inverted list Li that results in the

maximal reduction on the score F (L[b]). Formally, we define

TMR(b) = argmax
1≤i≤d

(F (L[b]) − F (L[b + 1i])) = argmax
1≤i≤d

(fi(Li[bi]) − fi(Li[bi + 1]))

where 1i is the vector with 1 at dimension i and 0’s else where. Such a strategy is reasonable

since one would like F (L[b]) to drop as fast as possible, so that once it is below θ, the

stopping condition ϕF will be triggered and terminate the traversal.

It is obvious that there are instances where the max-reduction strategy can be far from

optimal, but is it possible that it is optimal under some assumption? The answer is positive:

if for every list Li, the values of fi(Li[bi]) are decreasing at decelerating rate, then we can

prove that its access cost is optimal. We state this ideal assumption next.

◮ Assumption 1 (Ideal Convexity). For every inverted list Li, let ∆i[j] = fi(Li[j]) − fi(Li[j +

1]) for 0 ≤ j < |Li|.
6 The list Li is ideally convex if the sequence ∆i is non-increasing, i.e.,

∆i[j + 1] ≤ ∆i[j] for every j. Equivalently, the piecewise linear function passing through the

points {(j, fi(Li[j]))}0≤j≤|Li| is convex for each i. A database D is ideally convex if every

Li is ideally convex.

An example of an inverted list satisfying the above assumption is shown in Figure 2(a).

The max-reduction strategy TMR is optimal under the ideal convexity assumption:

◮ Theorem 14 (Ideal Optimality). Given a decomposable function F , for every ideally convex

database D and every threshold θ, the access cost of TMR is exactly OPT.

We prove Theorem 14 with a simple greedy argument (see Appendix F for more details):

each move of TMR always results in the globally maximal reduction in the scoring function as

guaranteed by the convexity condition.

6 Recall that Li[0] = 1.
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Imitating the max-reduction strategy, for every pair of consecutive indices jk, jk+1 in

Hi and for every index j ∈ [jk, jk+1), let ∆̃i[j] =
fi(Li[jk]) − fi(Li[jk+1])

jk+1 − jk

. Since the

(jk, fi(Li[jk]))’s are vertices of a lower convex hull, each sequence ∆̃i is non-decreasing. Then

the hull-based traversal strategy is simply defined as

THL(b) = argmax
1≤i≤d

(∆̃i[bi]). (4)

Remark on data structures. In a practical implementation, to answer queries with scoring

function F using the hull-based strategy, the lower convex hulls need to be ready before

the traversal starts. If F is a general function unknown a priori, the convex hulls need

to be computed online which is not practical. Fortunately, when F is the inner product

F (s) = q · s parameterized by the query q, each convex hull Hi is exactly the convex hull

for the points {(j, Li[j])}0≤i≤|Li| from Li. This is because the slope from any two points

(j, fi(Li[j])) and (k, fi(Li[k])) is
qiLi[j] − qiLi[k]

j − k
, which is exactly the slope from (j, Li[j])

and (k, Li[k]) multiplied by qi. So by using the standard convex hull algorithm [14], Hi can

be pre-computed in O(|Li|) time. Then the set of the convex hull vertices Hi can be stored

as inverted lists and accessed for computing the ∆̃i’s during query processing. In the ideal

case, Hi can be as large as |Li| but is much smaller in practice.

Moreover, during the traversal using the strategy THL, choosing the maximum ∆̃i[bi] at

each step can be done in O(log d) time using a max heap. This satisfies the requirement that

the traversal strategy is efficiently computable.

Near-optimality results. We show that the hull-based strategy THL is near-optimal under

the near-convexity assumption.

◮ Theorem 16. Given a decomposable function F , for every near-convex database D and

every threshold θ, the access cost of THL is strictly less than OPT + c where c is the convexity

constant.

When the assumption holds with a small convexity constant, this near-optimality result

provides a much tighter bound compared to the d · OPT bound in the TA-inspired baseline.

This is achieved under data assumption and by keeping the convex hulls as auxiliary data

structure, so it does not contradict the lower bound results on the approximation ratio [16].

Proof. Let B = {bi}i≥0 be the sequence of position vectors generated by THL. We call a

position vector b a boundary position if every bi is the index of a vertex of the convex hull

Hi. Namely, bi ∈ Hi for every i ∈ [d]. Notice that if we break ties consistently during the

traversal of THL, then in between every pair of consecutive boundary positions b and b′ in

B, THL(b) will always be the same index. We call the subsequence positions {bi}l≤i<r of

B where bl = b and br = b′ a segment with boundaries (bl, br). We show the following

lemma.

◮ Lemma 17. For every boundary position vector b generated by THL, we have F (L[b]) ≤

F (L[b∗]) for every position vector b∗ where |b∗| = |b|.

Intuitively, the above lemma says that if the traversal of THL reaches a boundary position b,

then the score F (L[b]) is the minimal possible score obtained by any traversal sequence of

at most |b| steps. We prove Lemma 17 by generalizing the greedy argument in the proof of

Theorem 14. More details can be found in Appendix G of the full version.
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stopping condition ϕTC, the hull-based strategy can then be applied with the convex hull

indices constructed with the approximation F̃ . In the rest of this section, we first generalize

the result in Theorem 16 to scoring functions having decomposable approximations and show

how the hull-based traversal strategy can be adapted. Next, we show a natural choice of the

approximation for MS with practically tight near-optimal bounds. Finally, we discuss data

structures to support fast query processing using the traversal strategy.

We start with some additional definitions.

◮ Definition 19. A d-dimensional function F is decomposably approximable if there exists a

decomposable function F̃ , called the decomposable approximation of F , and two non-negative

constants ǫ1 and ǫ2 such that F̃ (s) − F (s) ∈ [−ǫ1, ǫ2] for every vector s.

When applied to a decomposably approximable function F , the hull-based traversal

strategy THL is adapted by constructing the convex hull indices and the {∆̃i}1≤i≤d using the

approximation F̃ . The following can be obtained by generalizing Theorem 16:

◮ Theorem 20. Given a function F approximable by a decomposable function F̃ with

constants (ǫ1, ǫ2), for every near-convex database D wrt F̃ and every threshold θ, the access

cost of THL is strictly less than OPT(θ − ǫ1 − ǫ2) + c where c is the convexity constant.

Proof. Recall that bl is the last boundary position generated by THL that does not satisfy the

tight stopping condition for F (which is ϕTC when F is MS) so F (L[bl]) ≥ θ. It is sufficient

to show that for every vector b∗ where |b∗| = |bl|, F (L[b∗]) ≥ θ − ǫ1 − ǫ2 so no traversal

can stop within |bl| steps, implying that the final access cost is no more than |bl| + c which

is bounded by OPT(θ − ǫ1 − ǫ2) + c.

By Lemma 17, we know that for every such b∗, F̃ (L[b∗]) ≥ F̃ (L[bl]). By definition of

the approximation F̃ , we know that F (L[b∗]) ≥ F̃ (L[b∗]) − ǫ1 and F̃ (L[bl]) ≥ F (L[bl]) − ǫ2.

Combined together, for every b∗ where |b∗| = |bl|, we have

F (L[b∗]) ≥ F̃ (L[b∗]) − ǫ1 ≥ F̃ (L[bl]) − ǫ1 ≥ F (L[bl]) − ǫ1 − ǫ2 ≥ θ − ǫ1 − ǫ2.

This completes the proof of Theorem 20. ◭

Choosing the decomposable approximation. By Theorem 20, it is important to choose an

approximation F̃ of MS with small ǫ1 and ǫ2 for a tight near-optimality result. By inspecting

the formula (2) of MS, one reasonable choice of F̃ can be obtained by replacing the term τ

with a fixed constant τ̃ . Formally, let

F̃ (L[b]) =

d
∑

i=1

min{qi · τ̃ , Li[bi]} · qi (5)

be the decomposable approximation of MS where each component is a non-decreasing function

fi(x) = min{qi · τ̃ , x} · qi for i ∈ [d].

Ideally, the approximation is tight if the constant τ̃ is close to the final value of τ which is

unknown in advance. We argue that when τ̃ is properly chosen, the approximation parameter

ǫ1 + ǫ2 is very small. With a detailed analysis in Appendix H, we obtain the following upper

bound of ǫ:

ǫ ≤ max{0, τ̃ − 1/MS(L[bl])} + MS(L[bl]) − F̃ (L[bl]). (6)
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LSH. A widely used technique for cosine similarity search is locality-sensitive hash (LSH) [27,

5, 20, 22, 30]. The main idea of LSH is to partition the whole database into buckets using a

series of hash functions such that similar vectors have high probability to be in the same

bucket. However, LSH is designed for approximate query processing, meaning that it is

not guaranteed to return all the true results. In contrast, this work focuses on exact query

processing which returns all the results.

TA-family algorithms. Another technique for cosine similarity search is the family of TA-like

algorithms. Those algorithms were originally designed for processing top-k ranking queries

that find the top k objects ranked according to an aggregation function (see [21] for a survey).

We have summarized the classic TA algorithm [16], presented a baseline algorithm inspired

by it, and explained its shortcomings in Section 1. The Gathering-Verification framework

introduced in Section 2 captures the typical structure of the TA-family when applied to our

setting.

The variants of TA (e.g., [18, 6, 15, 12]) can have poor or no performance guarantee for

cosine threshold queries since they do not fully leverage the data skewness and the unit vector

condition. For example, Güntzer et al. developed Quick-Combine [18]. Instead of accessing all

the lists in a lockstep strategy, it relies on a heuristic traversal strategy to access the list with

the highest rate of changes to the ranking function in a fixed number of steps ahead. It was

shown in [17] that the algorithm is not instance optimal. Although the hull-based traversal

strategy proposed in this paper roughly follows the same idea, the number of steps to look

ahead is variable and determined by the next convex hull vertex. Thus, for decomposable

functions, the hull-based strategy makes globally optimal decisions and is near-optimal under

the near-convexity assumption, while Quick-Combine has no performance guarantee because

of the fixed step size even when the data is near-convex.

COORD. Teflioudi et al. proposed the COORD algorithm based on inverted lists for

CSS [32, 31]. The main idea is to scan the whole lists but with an optimization to prune

irrelevant entries using upper/lower bounds of the cosine similarity with the query. Thus,

instead of traversing the whole lists starting from the top, it scans only those entries within

a feasible range. We can also apply such a pruning strategy to the Gathering-Verification

framework by starting the gathering phase at the top of the feasible range. However, there

is no optimality guarantee of the algorithm. Also the optimization only works for high

thresholds (e.g., 0.95), which are not always the requirement. For example, a common and

well-accepted threshold in mass spectrometry search is 0.6, which is a medium-sized threshold,

making the effect of the pruning negligible.

Partial verification. Anastasiu and Karypis proposed a technique for fast verification of

θ-similarity between two vectors [3] without a full scan of the two vectors. We can apply

the same optimization to the verification phase of the Gathering-Verification framework.

Additionally, we prove that it has a novel near-constant performance guarantee in the presence

of data skewness.

Other variants. There are several studies focusing on cosine similarity join to find out all

pairs of vectors from the database such that their similarity exceeds a given threshold [7, 3, 4].

However, this work is different since the focus is comparing to a given query vector q rather

than join. As a result, the techniques in [7, 3, 4] are not directly applicable: (1) The inverted

index is built online instead of offline, meaning that at least one full scan of the whole data
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is required, which is inefficient for search. (2) The index in [7, 3, 4] is built for a fixed query

threshold, meaning that the index cannot be used for answering arbitrary query thresholds

as concerned in this work. The theoretical aspects of similarity join were discussed recently

in [2, 20].

5.2 Euclidean distance threshold queries

The cosine threshold queries can also be answered by techniques for distance threshold queries

(the threshold variant of nearest neighbor search) in Euclidean space. This is because there

is a one-to-one mapping between the cosine similarity θ and the Euclidean distance r for

unit vectors, i.e., r = 2 sin(arccos(θ)/2). Thus, finding vectors that are θ-similar to a query

vector is equivalent to finding the vectors whose Euclidean distance is within r. Next, we

review exact approaches for distance queries while leaving the discussion of approximate

approaches in the full version.

Tree-based indexing. Several tree-based indexing techniques (such as R-tree, KD-tree,

Cover-tree [8]) were developed for range queries (so they can also be applied to distance

queries), see [9] for a survey. However, they are not scalable to high dimensions (say thousands

of dimensions as studied in this work) due to the well known dimensionality curse issue [34].

Pivot-based indexing. The main idea is to pre-compute the distances between data vectors

and a set of selected pivot vectors. Then during query processing, use triangle inequalities to

prune irrelevant vectors [13, 19]. However, it does not scale in high-dimensional space as

shown in [13] since it requires a large space to store the pre-computed distances.

Clustering-based (or partitioning-based) methods. The main idea of clustering is to

partition the database vectors into smaller clusters of vectors during indexing. Then during

query processing, irrelevant clusters are pruned via the triangle inequality [29, 28]. Clustering

is an optimization orthogonal to the proposed techniques, as they can be used to process

vectors within each cluster to speed up the overall performance.

6 Conclusion

In this work, we proposed optimizations to the index-based, TA-like algorithms for answering

the cosine threshold queries, which lie at the core of numerous applications. The novel

techniques include a complete and tight stopping condition computable incrementally in

O(log d) time and a family of convex hull-based traversal strategies with near-optimality

guarantees for a larger class of decomposable functions beyond cosine. With these techniques,

we show near-optimality first for inner-product threshold queries, then extend the result to the

full cosine threshold queries using approximation. These results are significant improvements

over a baseline approach inspired by the classic TA algorithm. In addition, we have verified

with experiments on real data the assumptions required by the near-optimality results.
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