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ABSTRACT

Lithography simulation is one of the most fundamental steps in pro-
cess modeling and physical verification. Conventional simulation
methods suffer from a tremendous computational cost for achieving
high accuracy. Recently, machine learning was introduced to trade
off between accuracy and runtime through speeding up the resist
modeling stage of the simulation flow. In this work, we propose
LithoGAN, an end-to-end lithography modeling framework based
on a generative adversarial network (GAN), to map the input mask
patterns directly to the output resist patterns. Our experimental
results show that LithoGAN can predict resist patterns with high
accuracy while achieving orders of magnitude speedup compared
to conventional lithography simulation and previous machine learn-
ing based approach.

1 INTRODUCTION

Lithography holds a fundamental position in today’s semiconductor
manufacturing [1]. It transfers a designed mask pattern into a resist
pattern on the top surface of a semiconductor wafer [2, 3]. In order
to bypass the cost-intensive and time-consuming experimental
verification, the semiconductor industry has relied on lithography
simulation for process development and performance verification
[4, 5]. However, the steady decrease of the feature sizes along with
the growing complexity and variation of the manufacturing process
have tremendously increased the lithography modeling complexity
and prolonged the already-slow simulation procedure.

Lithography simulation mainly falls into two categories: physics-
level rigorous simulation and compact model-based simulation.
Rigorous simulation precisely simulates the physical effects of ma-
terials to obtain the printed patterns [6, 7]. In practice, the physical
properties of photoresist (resist) and optical systems, the mask pat-
terns, and the process variations are all correlated to the printing.
As a rigorous model has to include these cross-related quantities, it
is computationally expensive. Also, the calibration of lithography
models can take several weeks at advanced technology nodes [8]. In
VLSI manufacturing, modeling efficiency is crucial for fast design
closure along with modeling accuracy. Therefore, compact models
stand as a speedup alternative to rigorous computation with a small
sacrifice in accuracy.
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Figure 1: Conventional lithography simulation flow consist-
ing of multiple stages and the proposed LithoGAN flow.

Figure 1 shows a typical flow of lithography simulation. First,
an aerial image is generated from a mask pattern using an optical
model which is characterized by the illumination type and pro-
jection lenses of an exposure tool. Then a resist model is used to
determine the locally varying slicing thresholds [9]. Lastly, the
thresholds are processed through extrapolation together with the
corresponding aerial image to evaluate the critical dimension (CD)
of the printed patterns or to generate the resist contours.

Although conventional variable threshold resist (VTR) models
are highly efficient, they fail to keep up their accuracy at advanced
technology nodes [10]. To improve simulation quality, machine
learning based techniques have been proposed to construct accu-
rate and efficient resist models [10-13]. These approaches first take
a set of training data to train (calibrate) a model and then use this
model to make predictions on test data. [11] proposes an artificial
neural network (ANN) to predict the height of resist after expo-
sure. However, efforts are spent on determining the appropriate
set of features for model training. To overcome the explicit feature
extraction, [10] proposes a convolutional neural network (CNN)
model that predicts the slicing thresholds in aerial images accu-
rately. Recently, [12] proposed a transfer learning scheme together
with an active learning approach to cope with the deficiency in the
manufacturing data at advanced technology nodes.

Nevertheless, several drawbacks exist in the mainstream com-
pact models and machine learning approaches. The proposed resist
models rely on optical simulation to generate aerial images, which
are accompanied by a high computational cost. Additionally, only
resist height or slicing threshold is predicted from the proposed
models, which requires further processing to finalize the contour
patterns. Hence, the state-of-the-art lithography modeling tech-
niques still suffer from an exorbitant computational cost while
providing partial modeling schemes that rely heavily on pre- and
post-processing procedures.

In spite of various rigorous models and compact models at hand,
it is extremely desirable to further improve lithography modeling
efficiency without compromising much accuracy. Considering the
fact that machine learning based approaches have demonstrated



superior efficacy in a particular stage during lithography modeling,
a natural question then arises: is it possible to build an end-to-end
lithography model with machine learning techniques? Toward this
goal, we propose LithoGAN, a novel lithography modeling frame-
work based on conditional generative adversarial network (CGAN)
that has demonstrated tremendous success in computer vision over
the past few years [14-18]. CGAN manifests itself among numerous
generative models with an inherent capability to perform image
translation tasks such as image colorization and background mask-
ing, where an image in one domain is mapped to a corresponding
image in another domain. In addition, CGAN has been adopted for
optical proximity correction (OPC) enhancement in IC manufactur-
ing [19].

Our proposed LithoGAN framework is the first complete end-
to-end lithography modeling approach mapping the mask pattern
at one end to the resist pattern at the other. This approach builds
on a CGAN to translate an image from the layout to the resist
shape. It turns out that this translation can achieve high accuracy
in predicting the shape and size of the resist pattern. Moreover, to
further boost the performance of the CGAN, LithoGAN integrates
a CNN that can predict the pattern center to help with localization.
The major contributions of this paper are highlighted as follows.

o The end-to-end lithography modeling problem is formulated
as an image translation task, which maps mask patterns
to resist patterns directly without running optical or resist
simulation.

o The proposed framework is based on a conditional genera-
tive adversarial network, paired with a convolutional neural
network to achieve both high accuracy and efficiency.

o Our framework can achieve ~1800x runtime reduction com-
pared to rigorous simulation and ~190X compared to pre-
vious approaches with machine learning based threshold
prediction [10, 12].

e Experimental results demonstrate our framework achieves
comparable accuracy to the state-of-the-art work [12] which
requires optical simulation and contour processing.

The rest of this paper is organized as follows. Section 2 reviews
the basic concepts and gives the problem formulation. Section 3 pro-
vides a detailed explanation of the proposed LithoGAN framework.
Section 4 demonstrates the effectiveness of our approaches with
comprehensive results, followed by the conclusion in Section 5.

2 PRELIMINARIES

An accurate end-to-end lithography model should produce pat-
terns consistent with the manufactured (golden) ones. In order to
evaluate the accuracy of a model, evaluation metrics are required
to quantify the critical mismatches. Edge placement error (EPE)
is a commonly used metric in lithography to characterize pattern
fidelity [2, 20]. Technically, EPE measures the Manhattan distances
between the printed resist contours and the intended mask patterns
at given measurement points. However, our focus is to measure
the performance of the proposed LithoGAN framework where we
expect a well-trained model to produce contours similar to the
golden contours. In other words, the objective is not to optimize
EPE, but rather to mimic the golden contours obtained from rig-
orous simulation. Hence, we propose a new measure, denoted as
edge displacement error, which is tailored to our problem.

Definition 1 (Edge Displacement Error, EDE). Given the bounding
boxes of the golden and predicted contours respectively, the edge
displacement error for a given edge in the bounding box is defined
as the distance between the golden edge and the predicted one.

The definition of EDE is very similar to EPE, except that EDE
is defined between two contours, while EPE is defined between a
contour and a design target. Figure 2 illustrates how EDE measures
the edge distance between the model predicted contour and the
golden lithography contour. However, this measure is not effective
in capturing the details of the mismatch between the two contours.
While evaluating the quality of the contours is still an open prob-
lem, we introduce additional metrics to provide a comprehensive
evaluation. Considering that the essence of the LithoGAN task is to
predict the color of each pixel in a monochrome image, we adopt the
metrics commonly used in computer vision tasks such as semantic
segmentation [21].

In this work, three metrics are used to evaluate the quality of
the synthesized image besides the EDE metric. For the generality
of the terminology, we use class i to represent color i of a pixel in
the following discussions. Let p; j be the number of pixels of class
i predicted to belong to class j, where i,j € {0,1}. Let t; = 3; p; j
be the total number of pixels of class i.

Definition 2 (Pixel Accuracy). Pixel accuracy is defined as the
percentage of pixels in the image which are correctly classified,

(i pi,i)/ (2 ti)-

Definition 3 (Class Accuracy). Class accuracy is defined as the
average percentage of pixels in the image which are correctly clas-
sified for each class, % 2i(pii/ti).

Definition 4 (Mean IoU). Intersection over union (IoU) measures
the number of pixels present in both the golden and predicted
patterns (intersection) divided by the number of all pixels present
in either of them (union). Mean IoU is an average of the IoU scores

for all classes, % 2ipii/(ti = pii + Xjpji))-

The proposed lithography modeling framework first builds a
CGAN model using a set of layout clip pairs, where each pair in-
cludes a mask pattern and a resist pattern of the center contact as
shown in Figure 3(a) and Figure 3(b) respectively. We define the
CGAN-based end-to-end lithography modeling problem as follows.

Problem 1 (End-to-End Lithography Modeling). Given a dataset
containing the pairs of mask patterns and corresponding resist
patterns of center contacts, the objective of end-to-end lithography
modeling is to train a model that can accurately predict the resist
pattern of the center contact based on a given mask pattern.
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Figure 3: (a) Mask pattern and (b) resist pattern of target con-
tact. Green rectangle denotes the center contact after OPC;
red rectangles represent other contacts after OPC; blue rect-
angles denote the SRAFs.

3 LITHOGAN FRAMEWORK

3.1 Data Preparation

For training the proposed framework, a dataset consisting of paired
images corresponding to mask patterns and resist patterns is needed.
Proper resolution enhancement techniques (RETs) such as sub-
resolution assist feature (SRAF) generation and OPC have been
applied to the original input mask clips of size 2 X 2 pm. Towards a
better localization around the target contact, these clips are then
cropped to 1 X 1pum such that, in each clip, the target contact is
located exactly at the center of the clip.

The obtained clips are converted to RGB images of size 256 X 256
pixels where the target contact of interest is encoded into the green
channel, neighboring contacts are encoded into the red channel, and
SRAFs are encoded into the blue channel. This coloring scheme,
demonstrated by the example in Figure 3(a), maps the different
types of objects to different colors to help the model discriminate
these objects during the learning and inference processes. On the
other hand, the target contact is designed to be 60 X 60 nm; hence,
we use the window size 128 X 128 nm to crop the golden resist pat-
tern of the target contact. Although synthesizing a 128 X 128 image
might be enough for generating the pattern, the cost of mispredic-
tion could be high. For example, mispredicting 1 pixel may result
in 1 nm error to the contour, hence, imposing an extremely high
requirement to the model. Therefore, we scale the 128 X 128 nm clip
to a monochrome image of size 256 X 256 pixels as in Figure 3(b)
such that error from mispredicting 1 pixel is around 0.5 nm. Further
improvement to the accuracy is possible by scaling the clip to larger
images, but it may cause additional overhead in the modeling effort.

3.2 CGAN Architecture Design

GANS are deep neural networks that use a training dataset to learn
the distribution of the input, typically images, and generate new
images from the learned distribution. At the highest level, GANs
consist of two networks that compete with each other: a generator
and a discriminator [14]. The generator G generates fake samples to
fool the discriminator, while the adversarially trained discriminator
D distinguishes between real images and fake images generated
by the generator. The competition throughout the training process
drives both to improve: the discriminator guides the generator on
what images to create, while also improving itself by learning what
distinguishes real images from the fake ones from the generator.
At the end of the training process, the generator learns the dis-
tribution of the training data and is eventually able to generate

real-looking images. On the other hand, it is hard for the discrim-
inator to distinguish between training set images and generated
images. After the GAN model converges, the role of the discrimi-
nator is over, and the main interest is in the generator who is now
able to generate high-quality images. In this way, a GAN learns
a generative model that maps a random noise vector z to output
image y:y = G(z).

Unlike the aforementioned unconditional GAN, the goal of a
CGAN is to learn how to generate fake samples with a specific
condition or characteristics rather than a generic sample purely
based on random noise [15]. Specifically, for image translation tasks,
both the generator and discriminator observe another input image
y. CGAN requires the generated image G(x,z) to not only fool
the discriminator but also to be close to the ground truth output
corresponding to the particular input image. Hence, in this work,
we adopt this image translation idea proposed in [16].
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Figure 4: CGAN for lithography modeling.

Figure 4 shows the training process of our proposed lithography
modeling CGAN. x represents the mask pattern image after SRAF
insertion and OPC, and y represents the golden resist pattern of
the target contact given by lithography simulation. The generator
generates a fake resist pattern G(x,z) when fed with the input
mask pattern x. The discriminator is responsible for classifying this
image pair (x, G(x, z)) as fake, and meanwhile, it needs to predict
the image pair (x, y) as real. Here “real” means that y is the output
image corresponding to input x. In other words, the target contact
in x after resist development will become y.

The discriminator outputs a value D(x, y) indicating the chance
that (x, y) is a real pair. As demonstrated in Figure 4, the objective
of the discriminator is to maximize the chance of recognizing the
image pair (x, y) as real and the image pair (x, G(x,z)) as fake.
Mathematically, the objective function of D is given by [14]

max Ex y[log D(x. )] + Bxllog(1 - D(x.Gx.2))l. (1)

On the generator side, the objective is to generate images with
the highest possible value of D(x, G(x, z)) to fool the discriminator.
Besides, the generator wishes that the generated image G(x, z) is
close to the ground truth y. The objective of G is defined as [15, 16]

min Ex z[log(1 - D(x,G(x,2)))] + 4 - Ex,y [lly - G(x.2)ll;]. (2)

where {1 norm is used to quantify the pixel-wise difference between
the generated image and the ground truth. In practice, it has been
shown that £; norm encourages less blurring when compared to {2
norm [16]. Combining Equation (1) and Equation (2), we have the



following objective function for CGAN,
mci;n mgx Ex,y[log D(x,y)] + Ex .[log(1 — D(x, G(x, 2)))]

+A- Ex,y,z[”y - G(x, Z)”l]

The details of the CGAN architecture are summarized in Ta-
ble 1. The problem that we consider maps a high-resolution in-
put (256 X 256) to a high-resolution output (256 X 256), and a com-
mon approach to design such a generator is the use of an encoder-
decoder network [14-16, 22]. The encoder passes the input through
a series of layers that progressively downsample the input until a
bottleneck layer; then the decoder reverses the process by progres-
sively upsampling. In Table 1, column “Filter” gives the size and
stride of the filter. All convolutional (Conv) and deconvolutional
(Deconv) layers have 5 x 5 filters with a stride of 2. Batch normaliza-
tion (BN) [23] is selectively applied on certain convolutional layers.
The encoder uses leaky ReLU (LReLU) as the activation function,
whereas the decoder uses ReLU. The discriminator is a convolu-
tional neural network that performs classification to distinguish
between the real image pairs and fake image pairs.

The standard approach to train GANSs alternates between one
step of optimizing D and one step of optimizing G [14]. In this
way, we train both the generator and the discriminator to improve
simultaneously, thus avoiding the case where one network is sig-
nificantly more mature than the other. Here we use mini-batch
stochastic gradient descent (SGD) for gradient update and apply
the Adam solver [24] during the training stage.

®)

3.3 LithoGAN

CGAN has demonstrated proven success in image generation tasks
[15, 16] where generated images follow the distribution of the train-
ing data conditioned on the input images. However, for traditional
computer vision tasks, locations of the objects in the generated
image are not a major concern. For example, when trained to gen-
erate car images, the output of the GAN is judged upon based on
the quality of an image as seen by a human while neglecting the
exact location of the car in the image. However, for the lithogra-
phy modeling task, the center of the generated resist pattern is as
important as the shape of the pattern. Here the center refers to the
center of the bounding box enclosing the resist pattern. In fact, we
are interested in predicting a resist pattern which is accurate in
both the shape and center.

With these two objectives in mind, and based on our experiments
shown in Section 4, it is evident that CGAN falls short of predicting
the correct center location of the resist pattern while demonstrating
excellent results predicting the shape of the pattern. Hence, we
propose a dual learning framework, referred to as LithoGAN, which
splits the modeling task into two objectives:

o Resist shape modeling: a CGAN model is used to predict the
shape of the resist pattern while neglecting the center;

o Resist center prediction: a CNN model is used to predict the
center location of the resist pattern.

The application of the proposed LithoGAN framework is illus-
trated in Figure 5 where two data paths are shown. In the first path,
a trained CGAN model is utilized to predict the shape of the resist
pattern. During training, the golden pattern is re-centered at the
center of the image, and the coordinates of the original center are
saved for CNN training. In other words, the model is trained to
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Figure 5: The proposed LithoGAN Framework.

predict resist patterns that are always centered at the center of the
images. On the other hand, the second path is composed of a CNN
trained to predict the center of the resist pattern based on the mask
image. The CNN architecture for the resist center prediction task is
shown in Table 2, where max-pooling (P) with filter size 2 X 2 and
stride 2 is applied after each convolutional layer.

In such a way, the shape and the center of the resist pattern
are predicted separately. They are combined in the last step before
output. As shown in Figure 5, the image generated by CGAN is
adjusted by recentering the resist shape based on center the coordi-
nates predicted from the CNN. The resulting adjusted image is the
final output of the LithoGAN framework.

4 EXPERIMENTAL RESULTS

The proposed framework for lithography modeling is implemented
in Python with the TensorFlow library [25] and validated on a Linux
server with 3.3GHz Intel i9 CPU and Nvidia TITAN Xp GPU. The
experiments are performed on two benchmarks obtained from [12],
where 982 and 979 mask clips are generated at 10nm technology
node (N10) and 7nm node (N7) respectively. [12] performed SRAF
insertion and OPC using Mentor Calibre [26], and then ran rigorous
simulation to generate resist patterns using Synopsys Sentaurus
Lithography [27] calibrated from manufactured data. In this work,
the resist patterns generated by rigorous simulation are considered
as the golden results. To guarantee highly accurate resist patterns,
the pattern corresponding to the center contact in a clip is the only
one adopted after each simulation. In other words, obtaining the
golden resist pattern for each contact in a mask layout requires
one rigorous simulation [28], and similarly, predicting this pattern
using LithoGAN requires one model evaluation.

Each data sample for model training is a pair of the mask pattern
image and the resist pattern image created using the color encoding
scheme presented in Section 3.1. We randomly sample 75% of the
data for training different models for N10 and N7 respectively, and
the remaining 25% clips are for testing. In our experiments, we set
the batch size to 4 and the number of maximum training epochs to
80. The weight parameter A in Equation (3) is set to 100. The learning
rate and the momentum parameters in the Adam optimizer are set
to 0.0002 and (0.5, 0.999). The training time for each of CGAN and
LithoGAN is around 2 hours. Note that we train the CGAN and
LithoGAN models five times each with different random seeds to
eliminate random performance variation. The results reported in
this section are the average of the five runs.



Table 1: The CGAN architecture.

Table 2: The CNN architecture.
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Figure 6: (a) Mask pattern input (b) CGAN output and (c)
LithoGAN output. Each row represents one clip example.
The golden contour is outlined in black. The prediction pat-
tern is filled with green and outlined in red.

4.1 CGAN vs. LithoGAN

To demonstrate the performance of both frameworks discussed in
this work: (i) the proposed lithography modeling CGAN and (ii) the
improved LithoGAN, we visualize their performance in Figure 6.
The top two rows are for samples from the N10 dataset, and the
bottom two rows are for samples from the N7 dataset. According
to [12], there are three types of contact arrays in the dataset, and
Figure 6 includes at least one sample from each type. One can
clearly see that CGAN outputs a shape very close to the golden
resist pattern but the resist center can be quite far from the golden
center; whereas, LithoGAN predicts both the shape and the center
accurately. By examining the histogram showing the distribution of
EDE in Figure 7, one can notice that LithoGAN can achieve lower
EDE values when compared to CGAN; hence, making it closer to
the golden solution.

LithoGAN achieves better accuracy compared to CGAN with
the assistance of the CNN which predicts the location of the resist
shape center. The average Euclidean distance between the golden

Generator Encoder Generator Decoder Discriminator Layer Filter | Output Size
Layer Filter | Output Size Layer Filter | Output Size Layer Filter | Output Size Input - 256X256X3
Input 256%256x3 || Deconv-BN-LReLU | 5%5,2 2X2x512 Input - 256X256X6 Conv-ReLU-BN-P | 7x7,1 | 128x128x32
Conv-ReLU 5%5,2 | 128x128%x64 Dropout - 2X2x512 Conv-LReLU 5%5,2 | 128x128x64 Conv-ReLU-BN-P | 3x3,1 64X64X64
Conv-BN-ReLU | 5x5,2 | 64x64x128 || Deconv-BN-LReLU | 5x5,2 4X4X512 Conv-BN-LReLU | 5%5,2 | 64X64Xx128 Conv-ReLU-BN-P | 3x3,1 | 32x32x64
Conv-BN-ReLU | 5%5,2 | 32x32x256 Dropout - 4X4X512 Conv-BN-LReLU | 5%5,2 | 32x32x256 Conv-ReLU-BN-P | 3x3,1 16X16X64
Conv-BN-ReLU | 5%5,2 | 16X16X512 Deconv-BN-LReLU | 5%5,2 8X8x512 Conv-BN-LReLU | 5%5,1 | 16x16x512 Conv-ReLU-BN-P | 3x3.1 8X8X64
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Conv-BN-ReLU | 5x5,2 4X4X512 Deconv-BN-LReLU | 5%5,2 | 32x32x256 ReLU+Dropout _ 64
Conv-BN-ReLU | 5x5,2 2X2x512 Deconv-BN-LReLU | 5x5,2 | 64X64%x128 FC _ 2
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Figure 7: EDE distributions for CGAN and LithoGAN.

location of the center and the predicted location on the test set is
used to measure the CNN prediction error. The error values for N10
and N7 datasets are 0.43 nm and 0.37 nm respectively.

Figure 8 gives a visualization example of how resist pattern
images generated by LithoGAN progressively become more real
and closer to the golden results along the training process. Besides,
the loss changes of the generator and discriminator are depicted
in Figure 9. It shows that the model converges after 50 epochs and
produces resist patterns of high quality.

4.2 Framework Validation

We first compare the accuracy of our proposed LithoGAN with the
state-of-the-art work on lithography modeling [12]. The work [12]
first runs the optical simulation with Mentor Calibre [26] on the
mask pattern clips. Then it uses the trained CNN model to predict
four thresholds for each clip and performs threshold processing
to generate the final contours. Instead, the proposed CGAN and
LithoGAN for direct lithography modeling only need the mask
pattern clips as input and directly output the resist shapes.

Table 3 gives a detailed comparison among the three methods
using the proposed metrics in Section 2, where the average results
over all the test samples are reported. In this work, the goal is to
mimic the results of the rigorous simulation; hence, these results are
considered a reference and all metrics are computed with reference
to them. In addition to the mean EDE error over all the test samples,
we also report the standard deviation for their EDE values. By
examining the results in Table 3, one can easily find that LithoGAN
outperforms CGAN in all the metrics, and the detailed comparison
has been shown in Section 4.1. Besides, although [12] achieves
slightly better results, LithoGAN is still competent for lithography
usage at advanced technology nodes. That is because the average
error of the critical dimension obtained from LithoGAN, 1.99 nm
and 1.65 nm for N10 and N7 respectively, fall within the acceptable
range (10% of the half pitch for contacts) [10, 12].

Next, we demonstrate the runtime comparison in Table 4. It is
reported in [12] that the rigorous simulation for both of the two
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Figure 8: Visualization of the model advancement process. The prediction results for two
testing samples using the LithoGAN model trained at different numbers of epochs are shown.

Each row represents one clip example.

Table 3: Comparison of evaluation metrics among different
lithography modeling methods.

Dataset | Method EDE (nm) Pixel Acc. | Class Acc. | Mean IoU
Mean | Std. dev.

Ref. [12] 0.67 0.55 0.98 0.99 0.98

N10 CGAN 1.52 0.95 0.96 0.97 0.94
LithoGAN 1.08 0.88 0.97 0.98 0.96

Ref. [12] 0.55 0.53 0.99 0.99 0.98

N7 CGAN 1.21 0.77 0.98 0.98 0.96
LithoGAN 0.88 0.67 0.99 0.99 0.97

datasets takes more than 15 hours. For a fair comparison, we rerun
the proposed lithography modeling flow in [12] on our platform.
The first step in [12], optical simulation, takes around 80 minutes.
We use the same training dataset as that of CGAN and LithoGAN to
train their proposed CNN model. Prediction of the four thresholds
for each sample in the entire dataset using the CNN model takes 8
seconds. Contour processing is performed on 6 cores in parallel and
takes 15 minutes. On the other hand, prediction for an entire N10 or
N7 dataset using our CGAN or LithoGAN model takes less than 30
seconds. By comparing the runtime of generating resist patterns for
all clips reported in Table 4, one can notice that CGAN/LithoGAN
can achieve ~1800x runtime reduction when compared to rigorous
simulation and ~190x when compared to the flow with machine
learning based threshold prediction approach [12]. Hence, the pro-
posed LithoGAN framework achieves significant runtime reduction
while obtaining evaluation results that fall within the accepted
lithography range.

Table 4: Runtime comparison among different methods.

Method Rigorous Ref. [12] Ours

Sim Optical Sim [ ML | Contour | (CGAN/LithoGAN)
Time | >15h 8om [ 8 [ 15m 30s
Ratio | > 1800 190 1

Therefore, given its compelling speedup, LithoGAN paves the
way for a new lithography modeling paradigm that can address
the ever-increasing challenge of lithography simulation. This new
paradigm can provide an accelerated framework which can perform
within the adequate accuracy range for lithography.

5 CONCLUSION

In this work, we have presented the LithoGAN framework for end-
to-end lithography modeling. LithoGAN is a dual learning network
that predicts the resist shape using a CGAN model and predicts
resist center using a CNN model. Experimental results show that

Figure 9: Loss curves of the
generator and discriminator
in LithoGAN.

the proposed framework predicts resist patterns of high quality
while obtaining orders of magnitude speedup compared to conven-
tional lithography simulation and previous machine learning based
approach.

ACKNOWLEDGMENT

This work is supported in part by NSF under Award No. 1718570
and Toshiba Memory Corporation.

REFERENCES

(11

[10]
(1]
(2]
[13]
[14]
[15]
[16]

(17]

(18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography. SPIE press, 2001,
vol. 47.

C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication.
John Wiley & Sons, 2008.

H. Levinson, Principles of Lithography. ~SPIE press, 2011.

C. A. Mack, Field Guide to Optical Lithography. SPIE Press Bellingham, 2006, vol. 6.

X. Ma and G. R. Arce, Computational lithography. John Wiley & Sons, 2011, vol. 77.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain
method. Artech house, 2005.

K.D. Lucas, H. Tanabe, and A. J. Strojwas, “Efficient and rigorous three-dimensional model for
optical lithography simulation,” Journal of the Optical Society of America A, vol. 13, no. 11, pp.
2187-2199, 1996.

“A review of model development for 10nm lithography,” http://www.techdesignforums.com,

practice/technique/model-development- 10nm-lithography, 2015.

T. M. A-M. G. M. E. John Randall, Kurt G. Ronse, “Variable-threshold resist models for lithog-
raphy simulation,” in Proc. SPIE, vol. 3679, 1999.

T. M. S. N. Yuki Watanabe, Taiki Kimura, “Accurate lithography simulation model based on
convolutional neural networks,” in Proc. SPIE, vol. 10147, 2017.

Y. S. Seongbo Shim, Suhyeong Choi, “Machine learning-based 3d resist model,” in Proc. SPIE,
vol. 10147, 2017.

Y. Lin, M. Li, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, and D. Z. Pan, “Data efficient
lithography modeling with transfer learning and active data selection,” IEEE TCAD, 2018.

Y. Lin, M. B. Alawieh, W. Ye, and D. Z. Pan, “Machine learning for yield learning and optimiza-
tion,” in Proc. ITC, 2018, pp. 1-10.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Proc. NIPS, 2014, pp. 2672-2680.

M. Mirza and S. Osindero, “Conditional generative adversarial nets;” arXiv preprint
arXiv:1411.1784, 2014.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional ad-
versarial networks,” in Proc. CVPR, 2017, pp. 5967-5976.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. P. Aitken, A. Tejani,
J. Totz, Z. Wang et al., “Photo-realistic single image super-resolution using a generative adver-
sarial network,” in Proc. CVPR, vol. 2, no. 3, 2017, p. 4.

J-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in Computer Vision (ICCV), 2017 IEEE International Confer-
ence on, 2017.

H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization with lithography-
guided generative adversarial nets,” in Proc. DAC, 2018, pp. 131:1-131:6.

X. Xu, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, and D. Z. Pan, “A machine learning
based framework for sub-resolution assist feature generation,” in Proc. ISPD, 2016, pp. 161-168.
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmenta-
tion,” in Proc. CVPR, 2015, pp. 3431-3440.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convo-
lutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

S.Toffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift” CoRR, vol. abs/1502.03167, 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, 2014.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard et al., “Tensorflow: a system for large-scale machine learning.” in Proc. OSDI, vol. 16,
2016, pp. 265-283.

Mentor Graphics, “Calibre verification user’s manual,” 2008.

Synopsys, “Sentaurus Lithography,” https://www.synopsys.com/silicon/mask-synthesis/
sentaurus-lithography.html, 2016.

T. Kimura, T. Matsunawa, S. Nojima, and D. Z. Pan, “Hybrid hotspot detection using regression
model and lithography simulation,” in Proc. SPIE, vol. 9781, 2016.



