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ABSTRACT

Lithography simulation is one of the most fundamental steps in pro-

cess modeling and physical verification. Conventional simulation

methods suffer from a tremendous computational cost for achieving

high accuracy. Recently, machine learning was introduced to trade

off between accuracy and runtime through speeding up the resist

modeling stage of the simulation flow. In this work, we propose

LithoGAN, an end-to-end lithography modeling framework based

on a generative adversarial network (GAN), to map the input mask

patterns directly to the output resist patterns. Our experimental

results show that LithoGAN can predict resist patterns with high

accuracy while achieving orders of magnitude speedup compared

to conventional lithography simulation and previous machine learn-

ing based approach.

1 INTRODUCTION

Lithography holds a fundamental position in today’s semiconductor

manufacturing [1]. It transfers a designed mask pattern into a resist

pattern on the top surface of a semiconductor wafer [2, 3]. In order

to bypass the cost-intensive and time-consuming experimental

verification, the semiconductor industry has relied on lithography

simulation for process development and performance verification

[4, 5]. However, the steady decrease of the feature sizes along with

the growing complexity and variation of the manufacturing process

have tremendously increased the lithography modeling complexity

and prolonged the already-slow simulation procedure.

Lithography simulation mainly falls into two categories: physics-

level rigorous simulation and compact model-based simulation.

Rigorous simulation precisely simulates the physical effects of ma-

terials to obtain the printed patterns [6, 7]. In practice, the physical

properties of photoresist (resist) and optical systems, the mask pat-

terns, and the process variations are all correlated to the printing.

As a rigorous model has to include these cross-related quantities, it

is computationally expensive. Also, the calibration of lithography

models can take several weeks at advanced technology nodes [8]. In

VLSI manufacturing, modeling efficiency is crucial for fast design

closure along with modeling accuracy. Therefore, compact models

stand as a speedup alternative to rigorous computation with a small

sacrifice in accuracy.
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Figure 1: Conventional lithography simulation flow consist-

ing of multiple stages and the proposed LithoGAN flow.

Figure 1 shows a typical flow of lithography simulation. First,

an aerial image is generated from a mask pattern using an optical

model which is characterized by the illumination type and pro-

jection lenses of an exposure tool. Then a resist model is used to

determine the locally varying slicing thresholds [9]. Lastly, the

thresholds are processed through extrapolation together with the

corresponding aerial image to evaluate the critical dimension (CD)

of the printed patterns or to generate the resist contours.

Although conventional variable threshold resist (VTR) models

are highly efficient, they fail to keep up their accuracy at advanced

technology nodes [10]. To improve simulation quality, machine

learning based techniques have been proposed to construct accu-

rate and efficient resist models [10ś13]. These approaches first take

a set of training data to train (calibrate) a model and then use this

model to make predictions on test data. [11] proposes an artificial

neural network (ANN) to predict the height of resist after expo-

sure. However, efforts are spent on determining the appropriate

set of features for model training. To overcome the explicit feature

extraction, [10] proposes a convolutional neural network (CNN)

model that predicts the slicing thresholds in aerial images accu-

rately. Recently, [12] proposed a transfer learning scheme together

with an active learning approach to cope with the deficiency in the

manufacturing data at advanced technology nodes.

Nevertheless, several drawbacks exist in the mainstream com-

pact models and machine learning approaches. The proposed resist

models rely on optical simulation to generate aerial images, which

are accompanied by a high computational cost. Additionally, only

resist height or slicing threshold is predicted from the proposed

models, which requires further processing to finalize the contour

patterns. Hence, the state-of-the-art lithography modeling tech-

niques still suffer from an exorbitant computational cost while

providing partial modeling schemes that rely heavily on pre- and

post-processing procedures.

In spite of various rigorous models and compact models at hand,

it is extremely desirable to further improve lithography modeling

efficiency without compromising much accuracy. Considering the

fact that machine learning based approaches have demonstrated



superior efficacy in a particular stage during lithography modeling,

a natural question then arises: is it possible to build an end-to-end

lithography model with machine learning techniques? Toward this

goal, we propose LithoGAN, a novel lithography modeling frame-

work based on conditional generative adversarial network (CGAN)

that has demonstrated tremendous success in computer vision over

the past few years [14ś18]. CGANmanifests itself among numerous

generative models with an inherent capability to perform image

translation tasks such as image colorization and background mask-

ing, where an image in one domain is mapped to a corresponding

image in another domain. In addition, CGAN has been adopted for

optical proximity correction (OPC) enhancement in IC manufactur-

ing [19].

Our proposed LithoGAN framework is the first complete end-

to-end lithography modeling approach mapping the mask pattern

at one end to the resist pattern at the other. This approach builds

on a CGAN to translate an image from the layout to the resist

shape. It turns out that this translation can achieve high accuracy

in predicting the shape and size of the resist pattern. Moreover, to

further boost the performance of the CGAN, LithoGAN integrates

a CNN that can predict the pattern center to help with localization.

The major contributions of this paper are highlighted as follows.

• The end-to-end lithography modeling problem is formulated

as an image translation task, which maps mask patterns

to resist patterns directly without running optical or resist

simulation.

• The proposed framework is based on a conditional genera-

tive adversarial network, paired with a convolutional neural

network to achieve both high accuracy and efficiency.

• Our framework can achieve ∼1800× runtime reduction com-

pared to rigorous simulation and ∼190× compared to pre-

vious approaches with machine learning based threshold

prediction [10, 12].

• Experimental results demonstrate our framework achieves

comparable accuracy to the state-of-the-art work [12] which

requires optical simulation and contour processing.

The rest of this paper is organized as follows. Section 2 reviews

the basic concepts and gives the problem formulation. Section 3 pro-

vides a detailed explanation of the proposed LithoGAN framework.

Section 4 demonstrates the effectiveness of our approaches with

comprehensive results, followed by the conclusion in Section 5.

2 PRELIMINARIES

An accurate end-to-end lithography model should produce pat-

terns consistent with the manufactured (golden) ones. In order to

evaluate the accuracy of a model, evaluation metrics are required

to quantify the critical mismatches. Edge placement error (EPE)

is a commonly used metric in lithography to characterize pattern

fidelity [2, 20]. Technically, EPE measures the Manhattan distances

between the printed resist contours and the intended mask patterns

at given measurement points. However, our focus is to measure

the performance of the proposed LithoGAN framework where we

expect a well-trained model to produce contours similar to the

golden contours. In other words, the objective is not to optimize

EPE, but rather to mimic the golden contours obtained from rig-

orous simulation. Hence, we propose a new measure, denoted as

edge displacement error, which is tailored to our problem.

Definition 1 (Edge Displacement Error, EDE). Given the bounding

boxes of the golden and predicted contours respectively, the edge

displacement error for a given edge in the bounding box is defined

as the distance between the golden edge and the predicted one.
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Figure 2: An illustration of the EDE evaluation metric.

The definition of EDE is very similar to EPE, except that EDE

is defined between two contours, while EPE is defined between a

contour and a design target. Figure 2 illustrates how EDE measures

the edge distance between the model predicted contour and the

golden lithography contour. However, this measure is not effective

in capturing the details of the mismatch between the two contours.

While evaluating the quality of the contours is still an open prob-

lem, we introduce additional metrics to provide a comprehensive

evaluation. Considering that the essence of the LithoGAN task is to

predict the color of each pixel in a monochrome image, we adopt the

metrics commonly used in computer vision tasks such as semantic

segmentation [21].

In this work, three metrics are used to evaluate the quality of

the synthesized image besides the EDE metric. For the generality

of the terminology, we use class i to represent color i of a pixel in

the following discussions. Let pi, j be the number of pixels of class

i predicted to belong to class j, where i, j ∈ {0, 1}. Let ti =
∑
j pi, j

be the total number of pixels of class i .

Definition 2 (Pixel Accuracy). Pixel accuracy is defined as the

percentage of pixels in the image which are correctly classified,

(
∑
i pi,i )/(

∑
i ti ).

Definition 3 (Class Accuracy). Class accuracy is defined as the

average percentage of pixels in the image which are correctly clas-

sified for each class, 12
∑
i (pi,i/ti ).

Definition 4 (Mean IoU). Intersection over union (IoU) measures

the number of pixels present in both the golden and predicted

patterns (intersection) divided by the number of all pixels present

in either of them (union). Mean IoU is an average of the IoU scores

for all classes, 12
∑
i (pi,i/(ti − pi,i +

∑
j pj,i )).

The proposed lithography modeling framework first builds a

CGAN model using a set of layout clip pairs, where each pair in-

cludes a mask pattern and a resist pattern of the center contact as

shown in Figure 3(a) and Figure 3(b) respectively. We define the

CGAN-based end-to-end lithography modeling problem as follows.

Problem 1 (End-to-End Lithography Modeling). Given a dataset

containing the pairs of mask patterns and corresponding resist

patterns of center contacts, the objective of end-to-end lithography

modeling is to train a model that can accurately predict the resist

pattern of the center contact based on a given mask pattern.










