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A HIGH ORDER POSITIVITY PRESERVING DG METHOD FOR
COAGULATION-FRAGMENTATION EQUATIONS\ast 

HAILIANG LIU\dagger , ROBIN GR\"OPLER\ddagger , AND GERALD WARNECKE\ddagger 

Abstract. We design, analyze, and numerically validate a novel discontinuous Galerkin (DG)
method for solving the coagulation-fragmentation equations. The DG discretization is applied to the
conservative form of the model, with flux terms evaluated by Gaussian quadrature with Q = k + 1
quadrature points for polynomials of degree k. The first moment (total mass) is naturally conserved
by the scheme construction, and the positivity of the mass density is enforced by the use of a scaling
limiter based on positive cell averages. The positivity of cell averages is shown to propagate by the
time discretization, provided a proper time step restriction is imposed.
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1. Introduction. Aggregation-breakage population balance equations (PBEs)
are the models for the growth of particles by the combined effect of aggregation and
breakage. These equations are a type of partial integro-differential equations which
are also known as coagulation-fragmentation equations. These models describe the
dynamics of particle growth and the time evolution of a system of particles under
the combined effect of aggregation, or coagulation, and breakage, or fragmentation.
Each particle is identified by its size, or volume, which is assumed to be a positive
real number. From a physical point of view, the basic mechanisms taken into account
are the coalescence of two particles to form a larger one and the breakage of particles
into smaller ones. These models are of substantial interest in many areas of science
and engineering [1, 23, 32, 34].

The equations we consider in this paper describe the time evolution of the par-
ticle size distribution (PSD) under the simultaneous effect of binary aggregation and
multiple breakage. The objective of this work is to design a high order discontinuous
Galerkin method for these equations, so that the numerical solution is highly accurate
and remains nonnegative.

In 1917, Smoluchowski [39] proposed the discrete aggregation model in order to
describe the coagulation of colloids moving according to a Brownian motion which is
known as the Smoluchowski coagulation equation. In 1928, M\"uller [31] provided the
continuous version of this equation as

\partial tf(t, x) =
1

2

\int x

0

K(x - y, y)f(t, x - y)f(t, y)dy  - 
\int \infty 

0

K(x, y)f(t, x)f(t, y)dy,
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with f(0, x) = f0(x). Here the variables x \geq 0 and t \geq 0 denote the size of the
particles and time, respectively. The number density of particles of size x at time t is
denoted by f(t, x). The coagulation kernel K(x, y) \geq 0 represents the rate at which
the particles of size x coalesce with particles of size y and is assumed to be symmetric,
i.e., K(x, y) = K(y, x).

Later, analogous models for breakage or fragmentation were developed [29, 42, 43].
The continuous version of the coagulation and multiple fragmentation equations has
been investigated; one of the models is of the form

\partial tf(t, x) =
1

2

\int x

0

K(x - y, y)f(t, x - y)f(t, y)dy  - 
\int \infty 

0

K(x, y)f(t, x)f(t, y)dy(1.1)

+

\int \infty 

x

b(x, y)S(y)f(t, y)dy  - S(x)f(t, x).

Here the breakage function b(x, y) is the probability density function for the formation
of particles of size x from the particles of size y. It is nonzero only for x < y. The
selection function S(x) describes the rate at which particles of size x are selected to
break. The selection function S and breakage function b are defined in terms of the
multiple-fragmentation kernel \Gamma (x, y) as

S(x) =

\int x

0

y

x
\Gamma (x, y)dy, b(x, y) = \Gamma (y, x)/S(y).

This equation is usually referred to as the generalized coagulation-fragmentation equa-
tion, as fragmenting particles can split into more than two pieces. Under some growth
conditions, solutions are shown to exist in the space

X =

\biggl\{ 
f \in L1 :

\int \infty 

0

(1 + x)fdx < \infty , f \geq 0 a.e.

\biggr\} 
for nonnegative initial data f0 \in X.

In aggregation-breakage processes, the total number of particles varies in time
while the total mass of particles remains conserved. In terms of f , the total number
of particles and the total mass of particles at time t \geq 0, respectively, are given by
the moments

M0(t) :=

\int \infty 

0

f(t, x)dx, M1(t) :=

\int \infty 

0

xf(t, x)dx.

It is easy to show that the total number of particles M0(t) decreases by aggregation
and increases by breakage processes while the total mass M1(t) does not vary during
these events. The total mass conservation

M1(t) = M1(0)

holds. However, for some special cases of K when it is sufficiently large compared
to the selection function S, a phenomenon called gelation which has to do with a
phase transition occurs. In this case, the total mass of particles is not conserved; see
Escobedo et al. [10] and further citations for details.

Writing the aggregation and breakage terms in divergence form enables us to get
a precise amount of mass dissipation or conservation. The mass balance formulation
of (1.1) in terms of the mass density n(t, x) = xf(t, x) takes the form

(1.2) \partial tn(t, x) + \partial xF (t, x) = 0,
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subject to the initial and boundary conditions n(0, x) = n0(x) \geq 0 a.e. and n(t, 0) = 0.
The nonlocal flux F (t, x) = Fa(t, x) + Fb(t, x) is a weighted integral of functions

in terms of n(t, x). The aggregation flux is

Fa(t, x) :=

\int x

0

\int \infty 

x - u

A(u, v)n(t, u)n(t, v)dvdu, A(u, v) = K(u, v)/v,

and the breakage flux is

Fb(t, x) =  - 
\int \infty 

x

\int x

0

B(u, v)n(t, v)dudv, B(u, v) = ub(u, v)S(v)/v,

where A(u, v) and B(u, v) are the weight functions. It should be noted that both
forms of aggregation-breakage PBEs (1.1) and (1.2) are interchangeable by using the
Leibniz integration rule. It should also be mentioned that (1.2) reduces to the case of
a pure aggregation or pure breakage process when Fb or Fa is zero, respectively.

Mathematical results on existence and uniqueness of solutions of (1.1) and fur-
ther citations can be found in McLaughlin, Lamb, and McBride [28] and Lamb [21]
for rather general aggregation kernels, breakage, and selection functions. However,
the equation can only be solved analytically for a limited number of simplified prob-
lems; see Ziff [42] and Dubovskii, Galkin, and Stewart [7] and the references therein.
This leads to the necessity of using numerical methods for solving general equations.
Several such numerical methods have been introduced. Stochastic methods (Monte
Carlo) have been developed; see Lee and Matsoukas [22] for solving equations of ag-
gregation with binary breakage. Finite element techniques can be found in Mahoney
and Ramkrishna [26] and the references therein for the equations of simultaneous
aggregation, growth, and nucleation. Some other numerical techniques are available
in the literature, such as the method of successive approximations by Ramkrishna
[34], the method of moments [25, 27], finite volume methods [30, 17], and sectional
methods, such as the fixed pivot and the cell average technique [15, 19, 40], to solve
such PBEs. There also exist spline methods [8] and a discontinuous Galerkin (DG)
method [36] for the aggregation process. All these methods are applied to the stan-
dard form of the aggregation-breakage equation and have to deal with the problem of
mass conservation.

An alternative numerical approach is based on the mass balance formulation. An
application of a finite volume scheme (FVS) was introduced by Filbet and Lauren\c cot
[11] for solving the aggregation problem. Further, Bourgade and Filbet [2] have ex-
tended their scheme to solve the case of binary aggregation and binary breakage PBEs.
For a special case of a uniform mesh, they have shown error estimates of first order.
Kumar et al. [16] treated the case of aggregation and multiple breakage. The scheme
has also been extended to two-dimensional aggregation problems by Qamar and War-
necke [33]. Finally, it has been observed that the FVS is a good alternative to the
methods mentioned above for solving the PBEs due to its automatic mass conserva-
tion property. An analysis of the finite volume method to solve the aggregation with
multiple breakage PBEs on general meshes is given in [18].

In this paper, we exploit the conservation formulation coupled with DG spatial
discretization to solve (1.1). The DG method is a finite element method using a
completely discontinuous piecewise polynomial space for the numerical solution and
the test functions. Hence the method presented in this work may be seen as a natural
extension of the above FVSs. In general, a DG method can easily handle unstructured
meshes and local spaces of different types, and thus it is flexible for hp-adaptivity.
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More general information about DG methods for elliptic, parabolic, and hyperbolic
PDEs can be found in the recent books and lecture notes; see, e.g., [13, 35, 38].

The application of DG methods to first order hyperbolic problems has been quite
successful; see Cockburn and Shu [6] for solving convection-dominated problems. The
DG method [6] for local hyperbolic conservation law equations, F = F (n(t, x)), has
a key advantage of local solvability, with communication between neighboring cells
realized by the choice of a numerical flux Fh = Fh(n

 - , n+). The application here is
for an integro-differential equation (1.2) which poses additional difficulties. A crucial
difference is that the numerical flux reduces to Fh = Fh(t, xj+1/2) at interface xj+1/2,
yet this interface flux needs to be carefully evaluated in terms of numerical polynomials
in all involved cells. We shall do so by adapting Gaussian quadratures to the present
situation.

Important properties of such schemes including conservation of the first moment
(total mass) and positivity of the mass density are proven for the scheme. The first
is preserved by the construction, and the second by the use of a scaling limiter pre-
sented by Zhang and Shu [41] for general scalar conservation laws. The main idea in
[41] is to find a sufficient condition to preserve the positivity of the cell averages by
repeated convex combinations, so that DG methods with some scaling limiter satisfy
the maximum principle for scalar conservation laws. Unfortunately, the way to find
sufficient conditions in [41] cannot be applied to nonlocal PDEs such as (1.2) in a
straightforward manner. We carefully select quadratures to both maintain the high
order accuracy and preserve the positivity of the cell averages. This is achieved by
further overcoming some new difficulties in identifying the CFL condition. To our
best knowledge, the method is novel, and the techniques introduced here may be
useful for other nonlocal PDEs. In addition, the extensive numerical results clearly
demonstrate that the method performs very well.

From the known results for local conservation laws, we know that a proper time
discretization with matching accuracy is often needed to make the fully discrete
scheme stable. For scalar local conservation laws, it was shown in [3] that the DG
method with P 1 elements in space and the Euler forward method in time is stable only
if the CFL number is of order

\surd 
\Delta x, which is a very restrictive condition. A slope lim-

iter was then used as a way to improve the scheme stability. An obvious drawback in
such a treatment is that the limiter has to balance the spurious oscillations in smooth
regions caused by the use of a lower order time discretization. These difficulties were
further overcome by the Runge–Kutta DG (RKDG) method of Cockburn and Shu
[4, 5]. Such stable methods essentially involve three ingredients: (1) a high order DG
method for space discretization, (ii) an RK method with matching accuracy for time
discretization, and (iii) a limiter to dampen solution oscillations. In subsection 4.2,
by our DG scheme using P 3 polynomials for space discretization and RK4 for time
discretization, we have a comparison to show the blow-up of the numerical solutions
if the limiter is not imposed. This numerical experiment has clearly demonstrated
why the positivity-preserving technique is important.

This paper is organized as follows. First, we derive the DG scheme to solve
aggregation-breakage PBEs in section 2. Then in section 3 details of the implemen-
tation are given. Later on, the scheme is numerically tested for several problems in
section 4. Further, section 5 summarizes some conclusions.

2. Method description. In this section, a DG method for solving aggregation-
breakage PBEs is discussed, following [11] for aggregation and [16] for multiple break-
age.
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In the PBE (1.2), the volume variable x ranges from 0 to \infty . In order to apply
a numerical scheme for the solution of the equation, a first step is to truncate the
problem and fix a finite computational domain \Omega := [0, L] for a 0 < L < \infty .

2.1. DG formulation. We develop a DG method for (1.2) subject to initial data
n0(x). Let us partition the interval \Omega = [0, L] into 0 = x1/2, x3/2, . . . , xN+1/2 = L
to get N subintervals and denote each cell by Ij = (xj - 1/2, xj+1/2], j = 1, . . . , N .
Each cell has the length hj = xj+1/2  - xj - 1/2, and we set h = maxj hj to be the
mesh size. The representative of each cell, usually the center of each cell, xj =
1
2

\bigl( 
xj - 1/2 + xj+1/2

\bigr) 
, is called the pivot or grid point. The piecewise polynomial space

V k
h is defined as the space of polynomials of degree up to k in each cell Ij , that is,

(2.1) V k
h = \{ v : v| Ij \in P k(Ij), j = 1, . . . , N\} .

Note that functions in V k
h are allowed to have discontinuities across cell interfaces.

The DG scheme is defined as follows: find nh \in V k
h such that

(2.2)

\int 
Ij

\partial tnh\phi dx - 
\int 
Ij

Fh\partial x\phi dx+ Fh\phi 
\bigm| \bigm| 
\partial Ij = 0

for all test functions \phi in the finite element space V k
h . Here we use the notation v| \partial Ij =

v(x - 
j+1/2) - v(x+

j - 1/2), and Fj+1/2 = Fh(t, xj+1/2) is an appropriate approximation of

the continuous flux function F (t, xj+1/2). In case of a breakage process, the numerical
flux may be approximated from the mass flux Fb, and similarly for the aggregation
problem with flux Fa. In general, we have Fj+1/2 = Fa,j+1/2 + Fb,j+1/2. The initial

condition nh(0, x) \in V k
h is generated by the piecewise L2 projection of n0(x), that is,\int L

0

(nh(0, x) - n0(x))\phi (x)dx = 0 for any \phi \in V k
h .

The semidiscrete DG scheme (2.2) is complete.

2.2. Flux evaluation. For the numerical integration of the fluxes, we use Gauss-
ian quadrature of order Q with the Gauss evaluation points s\alpha \in ( - 1, 1) and the
weights \omega \alpha > 0:

(2.3)

\int b

a

g(u)du = b - a
2

\int 1

 - 1

g
\bigl( 
b+a
2 + b - a

2 s
\bigr) 
ds = b - a

2

Q\sum 
\alpha =1

\omega \alpha g
\bigl( 
b+a
2 + b - a

2 s\alpha 
\bigr) 
+RQ,

where RQ = \scrO 
\bigl( 
(b - a)2Q

\bigr) 
is the approximation residual, which is zero when g is a

polynomial of degree at most 2Q - 1. We will later use Q = k + 1; see Remark 2.1.
First, consider the boundary term in the DG scheme (2.2). Denote the quadrature

points in Ij as \^x\alpha 
j = xj +

hj

2 s\alpha for \alpha = 1, . . . , Q. Then the aggregation flux

Fa(t, xj+1/2) =

\int xj+1/2

0

\int xN+1/2

xj+1/2 - u

A(u, v)nh(t, u)nh(t, v)dvdu =

j\sum 
l=1

\int 
Il

nh(t, u)\Gamma j(u)du

with the partial flux

\Gamma j(u) =

\int xN+1/2

xj+1/2 - u

A(u, v)nh(t, v)dv
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is approximated by the numerical flux

(2.4) Fa,j+1/2 =

j\sum 
l=1

hl

2

Q\sum 
\alpha =1

\omega \alpha nh(t, \^x
\alpha 
l )\Gamma 

\alpha 
j,l,

where \Gamma \alpha 
j,l is an approximation to the partial flux \Gamma j(\^x

\alpha 
l ) applying Gaussian quadra-

ture, which we explain below. Let the index J be chosen such that xj+1/2  - \^x\alpha 
l \in IJ ,

that is, xJ - 1/2 < xj+1/2  - \^x\alpha 
l \leq xJ+1/2; then

\Gamma j(\^x
\alpha 
l ) =

\int xJ+1/2

xj+1/2 - \^x\alpha 
l

A(\^x\alpha 
l , v)nh(t, v)dv +

N\sum 
i=J+1

\int 
Ii

A(\^x\alpha 
l , v)nh(t, v)dv.

By the Gaussian quadrature formula (2.3), the integral terms can be approximated
as

(2.5) \Gamma \alpha 
j,l =

1

2
(bJ - aJ)

Q\sum 
\beta =1

\omega \beta A(\^x
\alpha 
l , y

\beta 
J )nh(t, y

\beta 
J ) +

N\sum 
i=J+1

hi

2

Q\sum 
\beta =1

\omega \beta A(\^x\alpha 
l , \^x

\beta 
i )nh(t, \^x

\beta 
i ),

where aJ = xj+1/2 - \^x\alpha 
l , bJ = xJ+1/2, and the quadrature points in the first term are

given by

y\beta J =
1

2
(bJ + aJ) +

1

2
(bJ  - aJ)s\beta .

To be more precise, the index J depends on j, l, and \alpha . Note that in (2.5) the polyno-

mial function nh has to be evaluated at intermediate points y\beta J for the approximation
of the integral part here.

Next, we evaluate the breakage flux

Fb(t, xj+1/2) =  - 
\int xN+1/2

xj+1/2

\int xj+1/2

0

B(u, v)nh(t, v)dudv =  - 
N\sum 

l=j+1

\int 
Il

nh(t, v)Gj(v)dv

with the partial flux

Gj(v) =

j\sum 
i=1

\int 
Ii

B(u, v)du

by the numerical flux

(2.6) Fb,j+1/2 =  - 
N\sum 

l=j+1

hl

2

Q\sum 
\alpha =1

\omega \alpha nh(t, \^x
\alpha 
l )G

\alpha 
j,l,

where G\alpha 
j,l is an approximation to the partial flux Gj(\^x

\alpha 
l ) and is given by

(2.7) G\alpha 
j,l =

j\sum 
i=1

hi

2

Q\sum 
\beta =1

\omega \beta B(\^x\beta 
i , \^x

\alpha 
l ).

Now, let us consider the second term in the DG scheme (2.2). We apply again
Gaussian quadrature of order Q for the approximation of the integral,

(2.8)

\int 
Ij

Fh\partial x\phi dx =

\int 1

 - 1

Fh\partial \xi \phi d\xi \approx 
Q\sum 

\gamma =1

\omega \gamma \phi 
\prime (s\gamma )Fh(t, \^x

\gamma 
j ).

The approximation of the flux at the Gauss points, Fh(t, \^x
\gamma 
j ), is very similar to the

approximation of the boundary terms above and is shown in Appendix A.
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Remark 2.1. For the approximation of the integral over a cell Ij , we consider the
Q-point Gaussian quadrature which is accurate for polynomials up to degree 2Q - 1.
In case of a linear and local flux function, F would be of polynomial degree k and
\phi \prime would have maximal degree k  - 1, in total 2k  - 1, corresponding to Q = k Gauss
points. In our case, the flux is nonlocal, and quadrature rules are also needed for
the evaluation of the flux. Note that Q = k would be enough to make the scheme
consistent. However, for our simulations we have chosen Q = k + 1 since we observe
an interesting type of superconvergence in this case which we will demonstrate in the
numerical tests; see section 4. For simplicity, we choose the same Q for the numerical
approximation of the partial fluxes which is not necessary.

2.3. Time discretization and positivity. By taking the forward Euler dis-
cretization in time to (2.2), we obtain a fully discrete scheme

(2.9)

\int 
Ij

nm+1
h  - nm

h

\Delta t
\phi dx - 

\int 
Ij

Fm
h \phi x dx+ Fm

h \phi 
\bigm| \bigm| 
\partial Ij = 0.

Define the cell average of nh(x) on Ij by

(2.10) \=nj :=
1

hj

\int 
Ij

nh(x) dx.

Let \phi = \Delta t
hj

so that

(2.11) \=nm+1
j = \=nm

j  - \lambda j [F
m
j+1/2  - Fm

j - 1/2], \lambda j = \Delta t/hj .

Due to the exactness of quadrature rule for polynomials of degree 2k+1, and especially
of degree k, we have

(2.12) \=nm
j =

1

hj

\int 
Ij

nm
h (x)dx =

1

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

j ).

For the proof of the following theorem, we take a closer look at the differences of
the flux at two neighboring interfaces. The flux difference for Fa at time level m can
be reorganized to

Fm
a,j+1/2  - Fm

a,j - 1/2 =  - 
j - 1\sum 
l=1

hl

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

l )
\bigl( 
\Gamma \alpha 
j - 1,l - \Gamma \alpha 

j,l

\bigr) 
+

hj

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

j )\Gamma 
\alpha 
j,j ,

where the two terms on the right-hand side can be seen as a type of birth and death
term, respectively. For use in the following theorem, define the first term as

Ba,j =

j - 1\sum 
l=1

hl

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

l )
\bigl( 
\Gamma \alpha 
j - 1,l - \Gamma \alpha 

j,l

\bigr) 
.

Similarly, the flux difference for Fb at time level m can be combined to

Fm
b,j+1/2 - Fm

b,j - 1/2 =  - 
N\sum 

l=j+1

hl

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

l )
\bigl( 
G\alpha 

j,l - G\alpha 
j - 1,l

\bigr) 
+
hj

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

j )G
\alpha 
j - 1,j .

Note that G\alpha 
j,l  - G\alpha 

j - 1,l \geq 0 and G\alpha 
j - 1,j \geq 0.
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Theorem 2.2. The high order scheme (2.11) preserves the positivity, i.e., assum-
ing the numerical solution nm

h at time level tm to be positive at all points \^x\alpha 
j ; then

\=nm+1
j > 0 under the CFL condition

(2.13) \Delta t <
1

maxj,\alpha 

\Bigl( 
(\Gamma \alpha 

j,j)+ +G\alpha 
j - 1,j +

1
hj \=nm

j
( - Ba,j)+

\Bigr) ,
where (\cdot )+ denotes max\{ \cdot , 0\} .

Proof. We rewrite scheme (2.11), using (2.12), as

\=nm+1
j = \=nm

j  - \lambda j [Fj+1/2  - Fj - 1/2]

= \=nm
j  - \lambda j

\Biggl[ 
hj

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

j )\Gamma 
\alpha 
j,j  - 

j - 1\sum 
l=1

hl

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

l )
\bigl( 
\Gamma \alpha 
j - 1,l - \Gamma \alpha 

j,l

\bigr) \Biggr] 

 - \lambda j

\left[  hj

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

j )G
\alpha 
j - 1,j  - 

N\sum 
l=j+1

hl

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

l )
\bigl( 
G\alpha 

j,l - G\alpha 
j - 1,l

\bigr) \right]  
\geq 1

2

Q\sum 
\alpha =1

\omega \alpha n
m
h (\^x\alpha 

j )

\Biggl[ 
1 - \Delta t\Gamma \alpha 

j,j  - \Delta tG\alpha 
j - 1,j  - \Delta t

1

hj\=nm
j

( - Ba,j)

\Biggr] 
.

Therefore, \=nm+1
j > 0 under the restriction on the time step (2.13).

Remark 2.3. The CFL condition is somewhat inconvenient, but this condition is
only sufficient. For aggregation, in most practical cases the term Ba,j is positive, and
hence the third term of the condition vanishes. For breakage, the condition depends
only on the breakage kernel and the maximal grid point leading to a very restrictive
time step. Fortunately, in most cases the time step can be chosen much larger without
losing positivity.

2.4. A scaling limiter. Theorem 2.2 implies that in order to preserve the solu-
tion positivity, we need to enforce nm

h (\^x\alpha 
j ) \geq 0. This is achieved by a reconstruction

step using cell averages as a reference.
Let nh \in P k(Ij) be an approximation of a smooth function g(x) \geq 0 with the cell

average \=nj , defined in (2.10). Following the idea of a scaling limiter in [41], we define
the scaled polynomial by

(2.14) \~nh(x) = \theta (nh(x) - \=nj) + \=nj , \theta = min

\Biggl\{ 
1,

\=nj

\=nj  - min
x\in Sj

nh(x)

\Biggr\} 
,

where
Sj = \{ \^x\alpha 

j , \alpha = 1, . . . , Q\} .
It is easy to check that the cell average of \~nh is still \=nj . Following [41, 24], we have
the next lemma.

Lemma 2.4. If \=nj > 0, then the modified polynomial satisfies

\~nh(x) \geq 0 for all x \in Sj .

Furthermore, it is as accurate as nh in the following sense:

(2.15) | \~nh(x) - nh(x)| \leq Ck\| nh  - g\| \infty for all x \in Ij ,

where Ck is a constant depending on the polynomial degree k.
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Remark 2.5. Lemma 2.4 establishes that the reconstructed polynomial is as ac-
curate as the original polynomial. Our numerical results based on this reconstruction
are excellent. It would be interesting to analyze how the reconstruction error will
accumulate in time.

3. Implementation details. We would like to introduce the matrix formulation
of our numerical scheme and outline the flowchart of the algorithm.

3.1. Matrix formulation and implementation. As a basis for the set of test
functions we choose the Legendre polynomials, denoted by \phi i(\xi ),

\phi 0(\xi ) = 1, \phi 1(\xi ) = \xi , \phi 2(\xi ) =
1
2

\bigl( 
3\xi 2  - 1

\bigr) 
, . . . \phi := (\phi 0, . . . , \phi k)

T ,

which are orthogonal in L2([ - 1, 1]). On each cell, the unknown function can be
represented as

nh(t, x) =
k\sum 

i=0

ni
j(t)\phi i(\xi 

j(x)), x \in Ij .

Here \xi j(x) is the mapping from Ij to [ - 1, 1], \xi j(x) := 2
hj
(x  - xj). To determine nh,

it suffices to identify the coefficients nj = (n0
j , . . . , n

k
j )

T . Due to the orthogonality of
the basis functions, the mass matrix becomes diagonal,

(3.1)

\int 
Ij

\partial tnh\phi dx =
hj

2

\int 1

 - 1

\phi (\xi )\phi T (\xi )d\xi 
d

dt
nj(t) =

hj

2
diag\{ c0, . . . , ck\} 

d

dt
nj(t),

where ci =
2

2i+1 are the normalization constants.
The fact that we only require nm

h to be positive at certain points can reduce the
computational cost considerably. Instead of finding the minimum of nh on the whole
computational cell Ij , we take the minimum only on the test set Sj .

3.2. Algorithm flowchart. In (2.9), we give a fully discretized scheme using
the Euler forward time stepping. For a higher order time discretization, we consider
an algorithm with the strong stability preserving (SSP)-RK method [12]. It can
be implemented by repeating the following flowchart in each stage since each SSP-
RK method is a convex linear combination of the forward Euler. For our numerical
simulations, we use a low storage explicit 5-stage fourth order RK method, given in
[13, p. 64]. The desired positivity-preserving property is ensured under a suitable
CFL condition:

(1) Initialization: From the given initial data n0(x),
(i) generate n0

h \in V k
h by piecewise L2 projection, and

(ii) reconstruct n0
h as in step (3).

(2) Evolution: Use the scheme (2.9) to compute nm+1
h .

(i) If \=nm+1
j is positive for all j, set nm

h = nm+1
h , and continue with step (3).

(ii) Otherwise, halve the time step \Delta t and restart step (2).
(3) Reconstruction: Use (2.14) and set nm

h = \~nm
h , and continue with step (2).

4. Numerical results. In this section, we give numerical tests for the proposed
positivity-preserving DG scheme applied to pure aggregation and breakage and also
for the combined processes considering several test problems. The following test cases
are chosen similar to those in [18]. We compare our results with some standard
numerical methods, the cell average technique (CAT) by Kumar [15] and the finite
volume scheme (FVS) by Filbet and Lauren\c cot [11], which is a special case of the
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presented DG scheme for k = 0. The error calculation for the CAT is based on the
number density, f(t, x), whereas all other errors are calculated with respect to the
mass density, n(t, x) = xf(t, x).

For this type of equations it is convenient to use a geometric grid,

xj+1/2 = rxj - 1/2.

We choose the factor r = 2(30/N) to span about nine orders of magnitude. We set
x1/2 = 0 and x3/2 = x0, where x0 can be adapted to the different cases. Recall that
h = maxj hj . The time step \Delta t is chosen to be very small in order to reduce numerical
errors due to the time discretization.

All numerical simulations below were carried out to investigate the experimental
order of convergence (EOC). The error is measured in a continuous and a discrete
norm. The continuous L1 norm can be approximated by

(4.1) eh =
\sum 
j

hj

2

R\sum 
\alpha =1

\~\omega \alpha | nh(t, \~x
\alpha 
j ) - n(t, \~x\alpha 

j )| ,

using a high order Gaussian quadrature rule, where \~\omega \alpha > 0 are the weights and \~x\alpha 
j

are the corresponding Gauss points in each cell Ij . We choose R = 16 through all the
examples. The symbol h corresponds to the number of cells. The discrete L1 norm is
given by

(4.2) eh,d =
\sum 
j

hj

2

Q\sum 
\alpha =1

\omega \alpha | nh(t, \^x
\alpha 
j ) - n(t, \^x\alpha 

j )| ,

where the Gaussian quadrature points are the same as used for the discretization of
the scheme. We have chosen the L1 norm since it is a natural choice for conservation
laws. Using the L2 or L\infty norm, similar numerical results and the same order of
convergence can be obtained. The error calculation in the discrete norm coincides for
k = 0 with that used by Filbet and Lauren\c cot [11] for the FVS.

If the problem has analytical solutions, the following formula is used to calculate
the EOC:

EOC = ln(eh/eh/2)/ ln(2),

where eh corresponds to N number of cells and eh/2 corresponds to 2N cells. In
case of the unavailability of the analytical solutions, the EOC can be computed using
eh = \| nh  - nh/2\| , where nh/2 is interpolated onto the grid of nh by a high order
polynomial interpolation. For the calculation of the EOC, we show the numerical
errors at time t = 0.01 since the order of convergence of the DG scheme after longer
times is disturbed by the low order time integration.

We shall also evaluate the moments of the numerical solution by

Mp,h =

\int L

0

xp - 1nh(t, x)dx =
\sum 
j

hj

2

R\sum 
\alpha =1

\~\omega \alpha (\~x
\alpha 
j )

p - 1nh(t, \~x
\alpha 
j ), p = 0, 1, 2, . . . ,

where R is chosen large enough such that the integration is exact for all moments
under consideration. The error in the moments is then given by

e(Mp,h) =
| Mp,h  - Mp| 

Mp
, p = 0, 1, 2, . . . ,

where the error in the first moment e(M1,h) of course vanishes by the construction of
the method.



B458 HAILIANG LIU, ROBIN GR\"OPLER, AND GERALD WARNECKE

4.1. Pure aggregation.
Test case 1. The numerical verification of the EOC of the DG solutions for

aggregation is discussed by taking three problems, namely the case of constant, sum,
and product aggregation kernels. The analytical solutions for these problems taking
the exponential initial distribution n(0, x) = x exp( - x) have been given by Scott [37].
The computational domain in these cases is taken as [10 - 3, 106].

The numerical solutions for the sum aggregation kernel with N = 15 cells and
different polynomial degree k are shown in Figure 4.1. The numerical solution is
shown together with the analytical one at time t = 3, where the degree of aggregation
is Iagg = 1  - M0(t)/M0(0) \approx 95\%. Due to the logarithmic scale of the x-axis, the
piecewise linear solution for k = 1 appears curved and also the Gauss points are of
course symmetrically distributed in one cell. Obviously, the approximation improves
for a higher polynomial degree.

The numerical errors for the sum aggregation kernel are shown in Tables 4.1 and
4.2. In the continuous L1 norm, the EOC is k + 1, as expected. In the discrete

Fig. 4.1. Numerical solution for N = 15 cells and different k for test case 1.
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Table 4.1
L1 errors eh and EOC for test case 1.

k\setminus N 15 30 60 120 240 EOC
0 (FVS) 4.2e-1 2.1e-1 1.0e-1 5.2e-2 2.6e-2 1.0

1 1.3e-1 4.4e-2 1.1e-2 2.8e-3 6.9e-4 2.0
2 7.4e-2 8.0e-3 1.1e-3 1.4e-4 1.7e-5 3.0
4 1.3e-2 3.0e-4 1.0e-5 3.3e-7 1.0e-8 5.0
8 3.6e-5 3.7e-7 7.0e-10 1.4e-12 1.2e-14 9.0

CAT 5.3e-1 2.3e-1 1.1e-1 5.3e-2 2.6e-2 1.0

Table 4.2
Discrete L1 errors eh,d and EOC for test case 1.

k\setminus N 15 30 60 120 240 EOC
0 (FVS) 1.3e-1 5.5e-2 1.4e-2 3.5e-3 8.8e-4 2.0

1 8.7e-2 9.0e-3 1.2e-3 1.5e-4 1.8e-5 3.0
2 3.8e-2 1.9e-3 1.1e-4 6.8e-6 4.3e-7 4.0
4 3.6e-3 5.2e-5 9.4e-7 1.5e-8 2.3e-10 6.0
8 2.9e-5 4.7e-8 6.0e-11 6.6e-14 2.0e-14 10.0

CAT 1.3e-1 3.7e-2 9.6e-3 2.4e-3 6.1e-4 2.0

L1 norm, the EOC is k + 2 on a geometric grid which is one order higher than in
the continuous norm. It appears that the evaluation of the numerical solution at
the same Gauss points as used for the discretization of the scheme shows a type of
superconvergence. For k = 0, the second order convergence for the FVS on smooth
grids was proven in [18].

The numerical results for the constant and product aggregation kernels are very
similar and are not shown again. In our tests, we observe that even the postgelation
phase [9] for the product aggregation kernel can be simulated very well.

The evolution of the numerical error in time is shown for the constant aggregation
kernel in Figure 4.2(left). We show the results for N = 30 cells and varying polynomial
degree k up to time t = 1000, where the degree of aggregation is Iagg \approx 99.8\%. One
can observe that the numerical error remains bounded for longer times.

Fig. 4.2. Error evolution of nh for N = 30 and different k (left) and of the second moment for
N(k + 1) = 90 (right) for test case 1.
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Table 4.3
Numerical errors in the first six moments for test case 1.

(N, k) e(M0,h) e(M1,h) e(M2,h) e(M3,h) e(M4,h) e(M5,h)
FVS (90, 0) 6.6e-3 0 9.4e-3 3.7e-2 8.6e-2 1.6e-1

(45, 1) 2.8e-4 0 3.7e-4 3.8e-3 1.6e-2 4.5e-2
(30, 2) 6.7e-5 0 6.2e-4 2.2e-3 3.6e-3 1.5e-3
(18, 4) 9.1e-6 0 1.2e-4 6.1e-4 3.1e-3 1.6e-2
(10, 8) 5.1e-6 0 7.7e-5 7.6e-4 8.2e-3 4.6e-2

CAT (90) 3.7e-14 0 1.1e-2 2.9e-2 5.1e-2 7.3e-2

In this test case, we also discuss the approximation of the moments. The errors in
the first six moments M0, . . . ,M5 for the constant aggregation kernel at time t = 1000
are shown in Table 4.3. For a better comparison, we have chosen the same number of
evaluation points N(k+1) = 90. One can see that the prediction of the zeroth moment
is very accurate and even the higher moments are approximated well. The lower
moments are predicted better for an increasing polynomial degree k. The accuracy
in the higher moments for a larger polynomial degree k is disturbed by some small
oscillations of the piecewise high order polynomial for large values of x. For the
CAT, we have to use the normalized moments \~Mp,h(t) = Mp,h(t)/Mp,h(0) for the

error calculation of the moments, e( \~Mp,h), since the discretization is focused on the
number density and even the first moment has a discretization error in the initial
distribution. The first two moments are preserved exactly by the construction of the
method, and it produces errors similar to those of the FVS for the higher moments.

In Figure 4.2(right), we have shown the evolution of the error in the second
moment e(M2,h) in time for different k again with the same number of evaluation
points N(k + 1) = 90. One can observe that the error in the moments increases
initially but remains bounded for longer times.

4.2. Pure breakage.
Test case 2. Here, the EOC is calculated for the binary breakage b(x, y) = 2/y

together with the linear and quadratic selection functions, i.e., S(x) = x and S(x) =
x2. The analytical solutions for such problems have been given by Ziff and McGrady
[43] for an exponential initial condition, n(0, x) = x exp( - x). The computational
domain in these cases is taken as [10 - 6, 103].

Table 4.4
L1 errors eh and EOC for test case 2.

k\setminus N 15 30 60 120 240 EOC
0 (FVS) 4.2e-1 2.1e-1 1.0e-1 5.2e-2 2.6e-2 1.0

1 1.3e-1 4.5e-2 1.1e-2 2.8e-3 6.9e-4 2.0
2 7.0e-2 8.0e-3 1.1e-3 1.4e-4 1.7e-5 3.0
4 1.3e-2 3.1e-4 1.0e-5 3.3e-7 1.0e-8 5.0
8 2.5e-5 4.2e-7 7.4e-10 1.4e-12 1.2e-14 9.0

CAT 5.3e-1 2.3e-1 1.1e-1 5.3e-2 2.6e-2 1.0

The results for the linear selection function are shown in Table 4.4. Hence, we
observe that the DG scheme is k+1 order convergent in the L1 norm. Similar to the
previous case, the order of convergence is k + 2 using the discrete L1 norm, which is
not shown again. For k = 0, the second order convergence was proven in [18] to be
mesh-independent for breakage. The results for the quadratic selection function are
very similar and are omitted. Also, the behavior of the error evolution and the error
in the moments is similar and is not shown again.
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In this example, we want to show that the reconstruction step using a scaling lim-
iter is necessary for the stability of the numerical scheme. Consider a linear selection
function S(x) = x, and choose N = 6 cells and k = 3, i.e., cubic polynomials. The
CFL condition is then given by

\Delta t <
1

maxj,\alpha 
\bigl( 
G\alpha 

j - 1,j

\bigr) =
1

G1
N - 1,N

=
\^x1
N

(xN - 1/2)2
\approx 0.0939.

Now, using the SSP-RK4 method with a constant time step of \Delta t = 0.01 we observe
that the numerical solution produces oscillations at the tail of the size distribution
and blows up in finite time; see Figure 4.3. Only for \Delta t \leq 0.005 do we observe a stable
solution without using a reconstruction step. This is a significant restriction. With
the use of the scaling limiter presented above, we observe that no negative values
are generated by the scheme and therefore the solution remains stable, even when
raising the time step to \Delta t = 1. This shows that the scaling limiter is necessary for
a reasonable time discretization of the DG scheme.

Fig. 4.3. Numerical solution for N = 6 and k = 3 without a scaling limiter at time t = 0.09
(left) and evolution of the numerical error with and without a scaling limiter (right).

Test case 3. Now, the case of multiple breakage with the quadratic selection
function S(x) = x2 is considered where an analytical solution is not known. For
the numerical simulations, the following normal distribution as an initial condition is
taken:

n(0, x) =
x

\sigma 
\surd 
2\pi 

exp

\biggl( 
 - (x - \mu )2

2\sigma 2

\biggr) 
.

The computations are made for the breakage function considered by Hill and Ng [14]:

b(x, y) = p

\biggl( 
[m+ (m+ 1)(p - 1)]!

m![m+ (m+ 1)(p - 2)]!

\biggr) 
xm(y  - x)m+(m+1)(p - 2)

ypm+p - 1
, p \in N, p \geq 2,

where the relation
\int y

0
b(x, y)dx = p holds, where p gives the total number of fragments

per breakage event. The parameter m \geq 0 is responsible for the shape of the daughter
particle distribution. The numerical solutions are obtained using p = 4, m = 2.

For the numerical simulation, the computational domain is taken as [10 - 6, 103].
In this case, the numerical error eh is computed from the numerical solutions nh and
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nh/2, as mentioned above. As expected, we again observe from Table 4.5 that the
DG scheme shows convergence of order k + 1. Using the discrete L1 norm, we again
obtain the higher convergence order k + 2.

Table 4.5
L1 errors eh and EOC for test case 3.

k\setminus N 15 30 60 120 240 EOC
0 (FVS) 5.5e-1 2.5e-1 1.1e-1 6.6e-2 3.3e-2 1.0

1 1.7e-1 5.5e-2 1.4e-2 3.5e-3 8.8e-4 2.0
2 3.0e-2 1.3e-2 1.6e-3 2.0e-4 2.6e-5 3.0
4 1.4e-2 5.8e-4 1.6e-5 5.6e-7 1.7e-8 5.0
8 4.0e-4 1.5e-7 1.6e-9 3.1e-12 8.2e-14 9.0

CAT 3.0e-1 1.1e-1 4.6e-2 2.1e-2 1.0e-2 1.0

4.3. Coupled aggregation-breakage.
Test case 4. Finally, the EOC is evaluated for the simultaneous process with a con-

stant aggregation kernel K(x, y) = 1 and breakage kinetics b(x, y) = 2/y, S(x) = x/2.
For the simulation, the computational domain [10 - 3, 106] is taken. The analytical
solutions for this problem are given by Lage [20] for the following two different initial
conditions:

n(0, x) = xe - x,

n(0, x) = 4x2e - 2x.

The former exponential initial condition is a steady state solution. The latter
Gaussian-like initial condition is a special case where the number of particles stays
constant. From Table 4.6, we find that the DG scheme is k + 1 order convergent
where the results for the first case are shown. As before, we obtain one order higher
convergence on a geometric grid in the discrete norm. The second case is very similar
and is omitted.

Table 4.6
L1 errors eh and EOC for test case 4.

k\setminus N 15 30 60 120 240 EOC
0 (FVS) 4.2e-1 2.1e-1 1.1e-1 5.2e-2 2.6e-2 1.0

1 1.3e-1 4.5e-2 1.1e-2 2.8e-3 6.9e-4 2.0
2 7.4e-2 8.1e-3 1.1e-3 1.4e-4 1.7e-5 3.0
4 1.3e-2 3.0e-4 1.0e-5 3.3e-7 1.0e-8 5.0
8 3.9e-5 4.0e-7 7.3e-10 1.4e-12 4.2e-15 9.0

CAT 5.3e-1 2.3e-1 1.1e-1 5.3e-2 2.6e-2 1.0

All test cases demonstrate the advantage of the high order DG method over
the lower order methods. For a high accuracy, only the use of high values of k is
suitable, and even for a moderate accuracy, the high order method may be better
suited. Consider, for example, an error tolerance of about 1.3 \times 10 - 2. In Table 4.6,
we observe that for k = 0 one needs N = 480 cells due to the linear convergence.
With the same error tolerance, the number of cells needed is decreased considerably
to N = 60, 15 for k = 1, 4, respectively. This shows clearly the significance of the
proposed DG scheme.

5. Concluding remarks. In this paper, we have developed a high order DG
scheme which can be proven to be positivity-preserving for both coagulation and
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fragmentation equations. We have tested the DG scheme and clearly observed the
convergence order k + 1 and the strict positivity preservation in all these tests. In-
terestingly, the DG scheme shows a type of superconvergence of order k + 2 on a
geometric grid in the discrete norm which evaluates the numerical solution at the
same Gaussian quadrature points as used for the discretization of the scheme. Even
though the CFL condition derived to preserve positivity might be very restrictive in
some cases, we emphasize that it is not a necessary condition and can be relaxed
significantly. The high accuracy was verified numerically by taking various examples
of pure aggregation, pure breakage, and the combined problems.

By applying the limiter or the simplified version, which avoids the evaluation of
extrema of polynomials, to a discontinuous Galerkin scheme solving one-dimensional
coagulation-fragmentation equations, with the time evolution by an SSP-RK method,
we obtain a high order accurate scheme with strict positivity preservation.

Appendix A. In subsection 2.2, we have shown the flux evaluation for the bound-
ary term in the DG scheme (2.2). For the numerical approximation of the second term,
we apply Gaussian quadrature, as already shown in (2.8). The approximation of the
flux at the Gauss points, Fh(t, \^x

\gamma 
j ), is shown in the following.

For aggregation, the flux Fa(t, \^x
\gamma 
j ) can be approximated by the numerical flux

(A.1) F \gamma 
a,j =

j\sum 
l=1

bl  - al
2

Q\sum 
\alpha =1

\omega \alpha nh(t, u
\alpha 
l )\Gamma 

\gamma ,\alpha 
j,l ,

where al = xl - 1/2, bl = xl+1/2 for l < j and bl = \^x\gamma 
j for l = j, and u\alpha 

l = 1
2 (bl + al) +

1
2 (bl  - al)s\alpha . The partial flux \Gamma \gamma 

j (u
\alpha 
l ) is approximated by

(A.2) \Gamma \gamma ,\alpha 
j,l =

1

2
(bJ - aJ)

Q\sum 
\beta =1

\omega \beta A(u
\alpha 
l , y

\beta 
J )nh(t, y

\beta 
J )+

N\sum 
i=J+1

hi

2

Q\sum 
\beta =1

\omega \beta A(u\alpha 
l , \^x

\beta 
i )nh(t, \^x

\beta 
i ),

where aJ = \^x\gamma 
j  - u\alpha 

l , bJ = xJ+1/2, and y\beta J = 1
2 (bJ + aJ) +

1
2 (bJ  - aJ)s\beta . The index J

is chosen such that \^x\gamma 
j  - u\alpha 

l \in IJ . Here, the index J depends on j, \gamma , l, and \alpha .
For breakage, the flux Fb(t, \^x

\gamma 
j ) is approximated by

(A.3) F \gamma 
b,j =  - 

N\sum 
l=j

bl  - al
2

Q\sum 
\alpha =1

\omega \alpha nh(t, u
\alpha 
l )G

\gamma ,\alpha 
j,l ,

where al = \^x\gamma 
j for l = j and al = xl - 1/2 for l > j, bl = xl+1/2, and u\alpha 

l = 1
2 (bl + al) +

1
2 (bl  - al)s\alpha . The partial flux G\gamma 

j (u
\alpha 
l ) is approximated by

(A.4) G\gamma ,\alpha 
j,l =

j\sum 
i=1

bi  - ai
2

Q\sum 
\beta =1

\omega \beta B(u\beta 
i , u

\alpha 
l ),

where ai = xi - 1/2, bi = xi+1/2 for i < j and bi = \^x\gamma 
j for i = j, and u\beta 

i = 1
2 (bi + ai) +

1
2 (bi  - ai)s\beta .
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