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Abstract—Lithography hotspot detection is one of the fundamen-
tal steps in physical verification. Due to the increasingly complicated
design patterns, early and quick feedback for lithography hotspots
is desired to guide design closure in early stages. Machine learning
approaches have been successfully applied to hotspot detection
while demonstrating a remarkable capability of generalization to
unseen hotspot patterns. However, most of the proposed machine
learning approaches are not yet able to answer one critical question:
how much a hotspot predicted from a trained model can be
trusted? In this work, we present Litho-GPA, a lithography hotspot
detection framework, with Gaussian Process assurance to provide
confidence in each prediction. The framework also incorporates
a data selection scheme with a sequence of weak classifiers to
sample representative data and eventually reduce the amount of
training data and lithography simulations needed. Experimental
results demonstrate that our Litho-GPA is able to achieve the state-
of-the-art accuracy while obtaining on average 28% reduction in
false alarms.

1. INTRODUCTION

Lithography hotspot detection plays a pivotal role in physical
verification. It detects potential manufacturing hotspots in layout
patterns such that early fixing is possible before shipping the
designs. Efficient and accurate lithography hotspot detection is
critical for layout finishing and design closure towards yield
improvement in the physical verification stage. Lithography
hotspots can be accurately detected through full-chip lithography
simulations which compute the aerial images and contours of
printed patterns [1], [2]; though, at a tremendous computational
cost [3].

Pattern matching and machine learning based techniques have
been proposed for early and quick detection of lithography
hotspots during physical verification [4]. Pattern matching is a
direct and fast method for hotspot detection [5], [6]. However,
pattern matching, including fuzzy pattern matching [7], [8], is
still insufficient to handle never-before-seen hotspot patterns. On
the other hand, machine learning approaches have demonstrated
good generalization capability to recognize unseen hotspot pat-
terns [9]-[17]. In these approaches, a labeled dataset is used to
train a machine learning model capable of detecting hotspots in
new layout patterns with high accuracy. The primary objective
is to achieve high accuracy while minimizing false alarms.
Practically, accuracy is given the highest priority; hence, a
moderate number of false alarms is typically tolerated for the
sake of achieving better accuracy. This is due to the fact that
missing any hotspot may result in significant yield degradation.
Recently, deep learning techniques have been actively explored
to improve the accuracy of hotspot detection [18]-[23].

Nonetheless, most of the proposed machine learning ap-
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proaches are not yet able to answer one critical question: how
much a hotspot predicted from a machine learning model can
be trusted? With efforts mainly tailored towards achieving better
accuracy, little attention has been given to this confidence issue.
In practice, addressing this concern requires machine learning
models to provide confidence guarantees alongside the label
predictions. For example, in a deep learning model, the results
of the softmax are usually interpreted as probability estimates.
However, it has been shown that these probability estimates
do not match the correct likelihood [24]; in fact, networks are
often too confident about their predictions. In other words, in
a classification problem, the output of the softmax can lead to
correct labeling of samples; however, the values of the softmax
is not a good uncertainty measure.

Bayesian-based methods are the typical option when confi-
dence estimation is needed. In this work, we adopt a Gaussian
Process (GP) based classification that can provide a confidence
metric for each predicted instance. In practice, a GP prediction
is used as a final label only when the confidence level matches
a user-defined metric, otherwise, the prediction is marked as
untrusted and lithography simulation can be used to further
verify the results.

On the other hand, learning based approaches usually require
a large amount of training data to obtain models with good
generalization, especially for imbalanced datasets, as in the case
of the hotspot detection task. This imbalance increases the cost
of data preparation and slows down the design closure. This is
mainly because each training data sample requires lithography
simulation to obtain its label and hotspot samples appear much
less often than non-hotspot ones. Therefore, we also propose
an active learning scheme with a sequence of weak classifiers
to reduce the turnaround time and the cost of data preparation.
The combination of GP and active learning scheme is not only
able to achieve high accuracy, but also provides a confidence
estimation for predictions, with a small amount of training data.

Our main contributions in the proposed Litho-GPA framework
can be summarized as follows:

e A Gaussian Process based hotspot detection technique is
proposed with the capability of providing the confidence
level associated with the predicted label.

o A novel hotspot detection flow is proposed in which the
accuracy of prediction can be improved by examining the
confidence of prediction.

o An active learning selection scheme based on weak classi-
fiers is developed to reduce the cost of data preparation.

o Experimental results demonstrate Litho-GPA is able to
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achieve comparable accuracy to the state-of-the-art deep
learning approaches while obtaining on average 28% re-
duction in false alarms.

The rest of this paper is organized as follows. Section II
reviews the challenges in hotspot detection and gives the problem
formulation. Section III provides a detailed explanation of the
proposed approach. Section IV demonstrates the effectiveness
of our approaches with comprehensive results, followed by the
conclusion in Section V.

II. PRELIMINARIES

Figure 1 shows an example of two clips where one encompasses
lithography hotspot marked by the red rectangle region (a) while
the other does not (b). The hotspot detection task to be solved
by machine learning techniques can be formulated as a two-
class image classification problem; a classical problem which
has been studied extensively in literature. However, the problem
at hand has its unique characteristics that should be taken into
account. First, despite the fact that the lithography defects are
critical, their relative number is significantly small across the
whole chip. This poses a major challenge when formulating the
task as a learning problem because the two classes are highly
imbalanced which necessitates a proper handling to remove the
inherent bias in the data.

Second, with such imbalanced data, the number of false
alarms is usually comparable to, or even higher than, the number
of true hotspots. In practice, the number of false alarms is among
the most important metrics to evaluate hotspot detection methods
[20]. Accuracy (i.e., true positive rate [25]) and the number of
false alarms (i.e., false positives) are the two prevailing metrics
used for detection evaluation. However, to make use of these
models, a new criterion should be considered which is trust.
Among the questions we address in this work is should we trust
all predictions from a highly accurate model?

(a) Hotspot

(b) Non-hotspot

Fig. 1: An example of lithography hotspot clip (a) and non-
hotspot clip (b).

III. LITHGRAPHY HOTSPOT DETECTION

In this section, we explain the details of the proposed Litho-
GPA framework for lithography hotspot detection. It consists of
two key components: Gaussian Process for hotspot detection and
active learning for data preparation.

A. Hotspot Detection using Gaussian Process

Gaussian Process (GP) classification falls under the category of
probabilistic classification where test predictions take the form of
class probabilities; this contrasts with methods which provide a
class label only [26]. Since generalization to test cases inherently
involves some level of uncertainty, it is natural to attempt to

make predictions in a way that reflects these uncertainties.
For hotspot detection, GP can provide, alongside the label, a
confidence measure about the label which can help judge the
trustworthiness of the obtained classification decision.

In literature, different schemes have been proposed for binary
GP classification. Among the most commonly used are those
based on logistic or probit mapping where Laplace Approx-
imation is used to estimate the posterior distribution [27]. In
other approaches, the binary classification is cast as a regression
problem where the objective is to predict a continuous label
that can be mapped through thresholding to binary labels. In
theory, GP classification with Laplace Approximation (GPC)
uses a Bernoulli likelihood in the Bayesian inference, thus
incorporating the binary labels into the inference. While such
likelihood is an accurate representation of the binary data, it
is not conjugate with GP prior; hence it makes the inference
intractable and requires approximating the posterior distribution.
On the other hand, using a regression based GP for classification
(GPR) moves the binary mapping outside the inference; hence,
preserving the conjugacy that results in a closed form posterior
distribution. In the hotspot detection task, hotspots are assigned
to +1 and non-hotspots are assigned to -1; 0 can be a decision
boundary which maps the continuous quantity output of GPR to
the two discrete classes.

The comparison of GPR and GPC is shown in Figure 2.
Examining the figure, one can notice that, with the same number
of samples, GPR is always achieving higher prediction accuracy
and the number of false alarms resulting from GPR is lower
than that from GPC when it converges. Moreover, the fact that
the posterior distribution can be obtained with no approximation
in GPR is reflected in the computational cost where GPC is
significantly more expensive computationally than GPR. Based
on this comparison, GPR was adopted in this work.
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T T 1,000 F 7
g 98.0 /_é/_‘ | é
£ 9601 | 2“ 800 |- h
o )
g 94.0 - B Z 600
g = 600 |
2 920} 1 %

500 1,000 500 1,000

#Training Samples #Training Samples

(a) Accuracy (b) False alarm

Fig. 2: Comparison between GPC and GPR on Layout2 where
accuracy (a) and the number of false alarms (b) are shown.

For the hotspot detection task, the class label y is assumed
to be a continuous noisy version of an underlying GP f(x)
with a Radial Basis Function (RBF) kernel. Based on the prior
distribution of f(x), the joint distribution of the observed outputs
y, and the GP function values for the test outputs, the predictive
posterior for the images in the test data p(f, |y, X, X,) is given
by [27]:

p(fely, X, Xs) ~ N(p, ),
=K (X, X)[K(X,X) +0%1] 'y, (1
%= K (X, Xa) — K (X4, X) [K(X, X) + 021 T K(X, X,),
where X and X, are matrices containing the training and testing
clip data respectively. o2 represents the level of noise in the
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data, y is a vector representing the labels for training data, f, is
a vector representing the function prediction for the testing clip
data, and the matrices K (-,-) represent the covariance matrices
obtained by evaluating the RBF kernel.

In the GPR approach, the posterior distribution in Equation (1)
represents the distribution of the class label in the continuous
domain. To get a point estimate of the class label, proper
thresholding scheme (usually at 0) is used for the mean of the
posterior distribution. However, we are interested in a predic-
tive distribution that can provide a confidence to judge upon
prediction. This can be achieved by leveraging all information
provided by the posterior distribution; i.e., the distribution of
the continuous class label. To elaborate on this, we consider
the example shown in Figure 3 where the posterior distributions
for two samples x; and xo are shown. By looking at the point
estimate, both samples have a mean value greater than 0; hence,
they will be mapped to label 1. However, it is clear that the
uncertainty associated with x5 is much higher compared to that
associated with x;. In other words, there is a higher probability
for the label of x5 to be less than 0.

Therefore, for a sample with mean greater than 0, a confidence
metric can be defined based on the probability that the predicted
label is higher than 0. In such case, sample x; has a probability
of 98% compared to 65% for x5, which implied higher confi-
dence around the prediction of x;. To utilize this information,
a confidence metric v can be defined to judge upon the validity
of the predictions obtained from GPR.

However, while 0 is the intuitive choice for a boundary
between the two labels {—1,+1} in a classification task, the
value of the threshold boundary can be tuned for problems with
special characteristics such as class imbalance in the hotspot
detection task. Hence, the compromise between accuracy and
false alarms can be controlled using a threshold different from
zero. In other words, such thresholding scheme can provide

control over how conservative the model is.

In this hotspot detection task, missing a hotspot can have
much more significant consequences when compared to having
additional false alarms. With this risk assessment in mind, the
threshold can be set to a value x, where x < 0, to bias the
prediction towards the hotspot class. Therefore, the labeling
processes can be performed according to the following scheme:

+1, if p(fi > k) >«
gi =< —1, if p(fi <k)>a )
untrusted, otherwise.

In Equation (2), a class label is given to a particular sample
if it meets the user-defined confidence metric «. Otherwise, the
prediction for the particular sample is set to untrusted reflecting
the low confidence in the model prediction and requiring an
actual simulation run to validate this sample. For example,
considering the two samples in Figure 3 with a = 0.7 and
k = 0, sample x; will get a label of +1 while x5 will not
be assigned a label, and a lithography simulation is needed to
get the right label.

B. Active Learning for Data Selection

When formulating the lithography hotspot detection problem as
a learning based classification problem, class imbalance comes
forth among the major challenges characterizing the learning

—p(fi]X,x1,y)
—p(fo X, x2,y)

p(fi > 0) = 98%

Probability

p(f2 > 0) = 65%

x

—1 0 1
Fig. 3: The posterior distributions obtained through GPR for two

samples are shown. The distributions show higher confidence in
the prediction of f; compared to that of fs.

task. In practice, there is an abundance in the non-hotspot data
on one end and scarceness in the hotspot data on the other. With
such setup, a large number of samples is needed to guarantee
enough hotspot samples for building accurate classification mod-
els. This translates to an enormous computational cost associated
with running a large number of lithography simulations. The
main reason to endure this cost is based on the fact that given
a set of un-simulated data samples, one cannot tell beforehand
which ones are hotspots. Hence, the trivial way of collecting
data is to randomly select samples for simulation until enough
hotspot samples are available.

To address this issue, we propose an active learning frame-
work with the objective of selecting samples that are likely to
be hotspots and simulating them to get the actual labels. This
way, a balanced training dataset, adequate for model training,
can be constructed with minimal simulation cost. The main
idea is to iteratively select hotspot candidates for simulation
based on labels obtained using trained weak classifiers. As a
first step, a relatively small set of randomly selected samples,
for which simulations are performed and labels are available, is
used to build a weak classifier that can point out tentative hotspot
samples among the un-simulated ones. These selected samples
are then simulated and added to the available training dataset
to help improve the performance of the classifier in the next
iteration. A weak classifier is adequate here because its training
cost is cheaper and the accuracy requirement at this stage is not
high.

Here, a weak classifier is one that relies on a simple model;
hence, it does not require a large number of samples to train.
Although such a classifier may not have a high true positive
rate, it can help guide the sampling scheme, especially that the
nature of the data will result in a relatively high precision value
even with a low true positive rate. Among the possible options,
Support Vector Machine (SVM) is used as the weak classifier
in this active sampling scheme mainly because of its relatively
superior performance and fast training [25]. The details of the
active learning method are summarized in Algorithm 1.

Algorithm 1 takes a pool of unlabeled data samples P and the
maximum allowable size n of final dataset S as input. An initial
training set S is generated by randomly sampling from the pool,
followed by label queries through lithography simulations (line
1). Next, the algorithm builds a sequence of weak classifiers to
seek more hotspots with the knowledge of previous sampled and
simulated hotspots (lines 3 — 8). Each weak classifier is trained
with the obtained labeled dataset S so far (line 5) and is applied
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Algorithm 1 Active Learning for Data Selection

Require: A pool of unlabeled data samples P, n
Ensure: Labeled training dataset S
1: § + Select mg samples randomly from P and obtain their
labels through simulation;
k<« 0;
repeat
k< k+1;
Train the SVM model with the training dataset S;
Sk + Select my, samples from P\S with highest hotspot
probability by SVM and simulate the labels;
S+ SUS;
: until No hotspot in Sy or |S| > n
9: return S.

SANANE

% A

to the remaining unlabeled samples in the pool P, i.e., P\S. The
top my samples with the high probability of being hotspot are
chosen from P\ S, and their labels are obtained by lithography
simulations (line 6). Then, the selected set Sy is added to the
labeled dataset S. Note that the algorithm will return early if
no actual hotspot is detected among the mj samples (line 8).
That is because, after several iterations, the trained SVM model
is expected to have good accuracy, hence, if no hotspot can be
detected by the latest classifier, it is likely that none are still
present in the pool. Besides, the algorithm can exit from the
iterations of weak classifier building if there are enough samples
for the Gaussian Process in Section III-A (line 8).

C. Overall Flow

The proposed Litho-GPA framework is illustrated in Figure 4.
We first leverage the iterative weak classifier-based sampling
scheme to prepare a training set containing enough hotspots
(Section III-B). A GPR model is trained with the selected data
samples. We then apply the GPR model to make predictions
with confidence estimation on the testing set (Section III-A). If
GPR gives the predicted label with high confidence, the result
is trusted; otherwise, the unsure testing samples will be verified
with lithography simulations.

Clip pool

L

| Select samples | | Train GPR model |
'
| Run simulation | | Predict using GPR |

Train SVM

True New H
detected?

False

b

!

Output H/NH

Fig. 4: Overall flow including data preparation with active
sampling and hotspot detection with Gaussian process.

Training set

IV. EXPERIMENTAL RESULTS

Our Litho-GPA framework is implemented in Python with the
scikit-learn library [28] and validated on the ICCAD 2012 CAD

contest benchmark set [29]. Layout1 is not used because it
contains only a few clips and has a different technology node
from the rest of the four benchmarks. Layout5 has a small
number of hotspots, and hence we merge it with Layout4.
Table I summarizes the benchmark information, the number of
all the clips (#All) and the number of hotspot clips (#H) in
the training set (Train) and testing set (Test). The input image
is downsized to 128x128 by a nearest-neighbor reduction to
improve SVM and GPR training time. We run ten experimental
trials for each evaluation, each with a different random seed, and
report the average results. It is important to note that, although
all samples in the training sets are already labeled in these
benchmarks, to validate our framework we assume that they
are not labeled at the beginning and obtain the labels through
simulations in the framework.
TABLE I. ICCAD 2012 contest benchmark statistics [21].

Desien ‘ Train [ Test ‘

S8 THAN [ #H | #AN | #H |
Layout2 | 5459 | 174 | 41,796 | 498
Layout3 5,552 | 909 | 48,141 1,808
Layoutds5 | 7.289 | 121 | 51435 | 218

A. Active Learning for Data Selection

The purpose of the proposed active sampling approach in Section
III-B is to balance the dataset by selectively choosing tentative
hotspots to be included in the training set. Here, we compare
random data selection and the proposed data selection scheme. In
the experiments, we set mg to 300 and my, to 100 in Algorithm 1.
SVM takes 22.3s at each iteration on average. Table II displays
the number of total sampled data (columns “#All”) and the
number of hotspots (columns “#H”) selected by the two schemes
when setting 1400 as the maximum allowable size of training
samples for both schemes. It is observed that the active learning
scheme converges before reaching the size limit for Layout?2
and Layout4s&b5.

TABLE II: Comparison of different sampling strategies.

Desien [ Random I Active |
SEN THAl %) [ FH (%) | FAL (%) | (%) |
Layout2 1,400.0 25.6 44.0 253 1,050.0 192 | 1727 993
Layout3 1,400.0 252 | 2223 245 1,400.0 252 | 8863 975
Layout4&5 1,400.0 19.2 234 19.3 1,190.0 163 101.5 839

Varying the maximum training set size n in Algorithm 1, the
comparison of the two sampling schemes is shown in Figure 5.
The figure shows that, with the same number of training samples,
the proposed approach can achieve higher accuracy compared
to the random sampling. Note that the accuracy is based on the
GPR direct prediction results without lithography simulations.
This is in fact due to the higher number of hotspots available
in the training data when using the active sampling scheme
compared to the random sampling strategy as demonstrated also
in Figure 5. Moreover, one can easily notice that the iterative
SVM evaluations are capable of detecting most of the hotspots
in the dataset within a few iterations.

B. Validation of Gaussian Process

We demonstrate the effectiveness of the proposed GPR with
validation simulations for hotspot detection. Table III shows the
comparison between the state-of-the-art method [21] and our
method, in terms of accuracy (ACC) and the number of false
alarms (#FA). In this table, “All” denotes model training uses
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Fig. 5: The number of selected hotspots and testing accuracy (without validation simulations) for different sampling techniques are
shown. “All” represents the total number of hotspots in the entire training set.

TABLE III: Comparison of different flows in terms of accuracy and false alarms. The results are averaged over ten runs.

Desien All + [21] [ Random + [21] Active + [21] [ Active + 21T+ VS | Active + GPR [ Active + GPR + VS [ #Sim
g #FA ACC (%) ‘ #FA ACC (%) ‘ #FA ACC (%) ‘ #FA ACC (%) ‘ #FA ACC (%) ‘ #FA ACC (%) ‘ (%)
Layout?2 234.1 97.4 370.9 91.3 1,030.7 99.4 733.3 99.6 502.8 99.1 714 99.4 16.4
Layout3 3,064.1 98.3 3,3334 97.7 6,716.3 99.1 5,189.7 99.5 4,443.2 98.3 2,463.4 99.0 17.2
Layout4&5 443.4 91.7 512.5 64.2 1,598.4 96.3 1,162.3 98.9 1,130.2 91.2 177.5 99.1 26.8
[ Average | 124720 958 | 14056 844 [ 31151 982 [ 23618 993 | 20254 062 | 9041 _ 992 [ 201 |
[ Raio | 10 o . — | 18 04 | — — | on s | — |

all the training samples in the benchmark, while “Random”
and “Active” denote the training data obtained from random
sampling and the proposed active sampling scheme in Table II.
For the method [21], we strictly use its DCT representation and
CNN structure for the comparison. To further demonstrate that
softmax output of CNN is not a good uncertainty measure, we
compare the performance of CNN and GPR after performing
the same number of validation simulations (VS). For GPR,
threshold « in Equation (2) is set to -0.2; the confidence metric
a is set to 0.682, which is equivalent to one standard deviation
confidence interval for a Gaussian distribution. According to
this criterion, any untrusted sample needs to be further verified
through lithography simulation. Since there is no well-defined
metric to quantify confidence interval for CNN, to ensure fair-
ness, we perform the same number of validation simulations to
the test samples which has nearly the same softmax probability
of being hotspot/non-hotspot and then compare the accuracy and
the number of false alarms; that is, we choose the samples which
minimize |softmax(NH) — softmax(H)|. Column “#Sim” gives
the ratio of the number of validation simulations to the testing
data size.

Table III shows that the state-of-the-art work [21] using all the
training dataset (All + [21]) achieves 95.8% accuracy on average.
Our proposed active learning data selection further improves
the accuracy of its model to 98.2% (Active + [21]). However,
the average number of false alarms of this flow increases from
1247.2 to 3115.1. Active data selection together with our GPR
method (Active + GPR) gives a similar accuracy (96.2%) as the
state-of-the-art result. Moreover, given the strength of providing
confidence of GPR, the accuracy (Active + GPR + VS) is
improved to 99.2% after performing validation simulations, and
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meanwhile, it reduces the number of false alarms by 28%
compared with the All + [21] flow. Compared with the Active +
[21] + VS flow, the Active + GPR + VS flow obtains comparable
accuracy and 2.6x false alarm reduction, which demonstrates
the effectiveness of employing confidence measure provided by
GPR. In the experiments, GPR training takes 296.6s, 1490.5s
and 235.4s on average for the three benchmarks while testing
takes 579.4s, 1342.2s and 586.7s.

C. Control of Prediction Confidence

Lastly, we explore the effect of a to control the desired pre-
diction confidence. Figure 6 plots the testing accuracy after
validation simulations and the percentage of simulated testing
samples using different values of «. The accuracy reflects that
of the trusted GPR predictions in addition to the instances
validated through simulation. As one would expect, larger «
values translate to better results in terms of accuracy and false
alarms at the expense of higher simulation cost. It is important
to note that the choice of « gives the user the flexibility to
control the trade-off between the overall detection quality and
the number of simulations needed.

V. CONCLUSION

In this work, we present Litho-GPA, a hotspot detection frame-
work with Gaussian Process assurance to provide confidence
in classifier prediction. The prediction accuracy is improved by
exploring both the mean and confidence of prediction. Besides,
an active data selection scheme based on weak classifiers is
developed to reduce the computational cost in data preparation.
Experimental results demonstrate Litho-GPA can achieve com-
parable accuracy to the state-of-the-art deep learning approaches
while obtaining on average 28% reduction in false alarms.
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