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Abstract—Lithography hotspot detection is one of the fundamen-
tal steps in physical verification. Due to the increasingly complicated
design patterns, early and quick feedback for lithography hotspots
is desired to guide design closure in early stages. Machine learning
approaches have been successfully applied to hotspot detection
while demonstrating a remarkable capability of generalization to
unseen hotspot patterns. However, most of the proposed machine
learning approaches are not yet able to answer one critical question:
how much a hotspot predicted from a trained model can be
trusted? In this work, we present Litho-GPA, a lithography hotspot
detection framework, with Gaussian Process assurance to provide
confidence in each prediction. The framework also incorporates
a data selection scheme with a sequence of weak classifiers to
sample representative data and eventually reduce the amount of
training data and lithography simulations needed. Experimental
results demonstrate that our Litho-GPA is able to achieve the state-
of-the-art accuracy while obtaining on average 28% reduction in
false alarms.

I. INTRODUCTION

Lithography hotspot detection plays a pivotal role in physical

verification. It detects potential manufacturing hotspots in layout

patterns such that early fixing is possible before shipping the

designs. Efficient and accurate lithography hotspot detection is

critical for layout finishing and design closure towards yield

improvement in the physical verification stage. Lithography

hotspots can be accurately detected through full-chip lithography

simulations which compute the aerial images and contours of

printed patterns [1], [2]; though, at a tremendous computational

cost [3].

Pattern matching and machine learning based techniques have

been proposed for early and quick detection of lithography

hotspots during physical verification [4]. Pattern matching is a

direct and fast method for hotspot detection [5], [6]. However,

pattern matching, including fuzzy pattern matching [7], [8], is

still insufficient to handle never-before-seen hotspot patterns. On

the other hand, machine learning approaches have demonstrated

good generalization capability to recognize unseen hotspot pat-

terns [9]–[17]. In these approaches, a labeled dataset is used to

train a machine learning model capable of detecting hotspots in

new layout patterns with high accuracy. The primary objective

is to achieve high accuracy while minimizing false alarms.

Practically, accuracy is given the highest priority; hence, a

moderate number of false alarms is typically tolerated for the

sake of achieving better accuracy. This is due to the fact that

missing any hotspot may result in significant yield degradation.

Recently, deep learning techniques have been actively explored

to improve the accuracy of hotspot detection [18]–[23].

Nonetheless, most of the proposed machine learning ap-

proaches are not yet able to answer one critical question: how

much a hotspot predicted from a machine learning model can

be trusted? With efforts mainly tailored towards achieving better

accuracy, little attention has been given to this confidence issue.

In practice, addressing this concern requires machine learning

models to provide confidence guarantees alongside the label

predictions. For example, in a deep learning model, the results

of the softmax are usually interpreted as probability estimates.

However, it has been shown that these probability estimates

do not match the correct likelihood [24]; in fact, networks are

often too confident about their predictions. In other words, in

a classification problem, the output of the softmax can lead to

correct labeling of samples; however, the values of the softmax

is not a good uncertainty measure.

Bayesian-based methods are the typical option when confi-

dence estimation is needed. In this work, we adopt a Gaussian

Process (GP) based classification that can provide a confidence

metric for each predicted instance. In practice, a GP prediction

is used as a final label only when the confidence level matches

a user-defined metric, otherwise, the prediction is marked as

untrusted and lithography simulation can be used to further

verify the results.

On the other hand, learning based approaches usually require

a large amount of training data to obtain models with good

generalization, especially for imbalanced datasets, as in the case

of the hotspot detection task. This imbalance increases the cost

of data preparation and slows down the design closure. This is

mainly because each training data sample requires lithography

simulation to obtain its label and hotspot samples appear much

less often than non-hotspot ones. Therefore, we also propose

an active learning scheme with a sequence of weak classifiers

to reduce the turnaround time and the cost of data preparation.

The combination of GP and active learning scheme is not only

able to achieve high accuracy, but also provides a confidence

estimation for predictions, with a small amount of training data.

Our main contributions in the proposed Litho-GPA framework

can be summarized as follows:

• A Gaussian Process based hotspot detection technique is

proposed with the capability of providing the confidence

level associated with the predicted label.

• A novel hotspot detection flow is proposed in which the

accuracy of prediction can be improved by examining the

confidence of prediction.

• An active learning selection scheme based on weak classi-

fiers is developed to reduce the cost of data preparation.

• Experimental results demonstrate Litho-GPA is able to
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achieve comparable accuracy to the state-of-the-art deep

learning approaches while obtaining on average 28% re-

duction in false alarms.

The rest of this paper is organized as follows. Section II

reviews the challenges in hotspot detection and gives the problem

formulation. Section III provides a detailed explanation of the

proposed approach. Section IV demonstrates the effectiveness

of our approaches with comprehensive results, followed by the

conclusion in Section V.

II. PRELIMINARIES

Figure 1 shows an example of two clips where one encompasses

lithography hotspot marked by the red rectangle region (a) while

the other does not (b). The hotspot detection task to be solved

by machine learning techniques can be formulated as a two-

class image classification problem; a classical problem which

has been studied extensively in literature. However, the problem

at hand has its unique characteristics that should be taken into

account. First, despite the fact that the lithography defects are

critical, their relative number is significantly small across the

whole chip. This poses a major challenge when formulating the

task as a learning problem because the two classes are highly

imbalanced which necessitates a proper handling to remove the

inherent bias in the data.

Second, with such imbalanced data, the number of false

alarms is usually comparable to, or even higher than, the number

of true hotspots. In practice, the number of false alarms is among

the most important metrics to evaluate hotspot detection methods

[20]. Accuracy (i.e., true positive rate [25]) and the number of

false alarms (i.e., false positives) are the two prevailing metrics

used for detection evaluation. However, to make use of these

models, a new criterion should be considered which is trust.

Among the questions we address in this work is should we trust

all predictions from a highly accurate model?

(a) Hotspot (b) Non-hotspot

Fig. 1: An example of lithography hotspot clip (a) and non-

hotspot clip (b).

III. LITHGRAPHY HOTSPOT DETECTION

In this section, we explain the details of the proposed Litho-

GPA framework for lithography hotspot detection. It consists of

two key components: Gaussian Process for hotspot detection and

active learning for data preparation.

A. Hotspot Detection using Gaussian Process

Gaussian Process (GP) classification falls under the category of

probabilistic classification where test predictions take the form of

class probabilities; this contrasts with methods which provide a

class label only [26]. Since generalization to test cases inherently

involves some level of uncertainty, it is natural to attempt to

make predictions in a way that reflects these uncertainties.

For hotspot detection, GP can provide, alongside the label, a

confidence measure about the label which can help judge the

trustworthiness of the obtained classification decision.

In literature, different schemes have been proposed for binary

GP classification. Among the most commonly used are those

based on logistic or probit mapping where Laplace Approx-

imation is used to estimate the posterior distribution [27]. In

other approaches, the binary classification is cast as a regression

problem where the objective is to predict a continuous label

that can be mapped through thresholding to binary labels. In

theory, GP classification with Laplace Approximation (GPC)

uses a Bernoulli likelihood in the Bayesian inference, thus

incorporating the binary labels into the inference. While such

likelihood is an accurate representation of the binary data, it

is not conjugate with GP prior; hence it makes the inference

intractable and requires approximating the posterior distribution.

On the other hand, using a regression based GP for classification

(GPR) moves the binary mapping outside the inference; hence,

preserving the conjugacy that results in a closed form posterior

distribution. In the hotspot detection task, hotspots are assigned

to +1 and non-hotspots are assigned to -1; 0 can be a decision

boundary which maps the continuous quantity output of GPR to

the two discrete classes.

The comparison of GPR and GPC is shown in Figure 2.

Examining the figure, one can notice that, with the same number

of samples, GPR is always achieving higher prediction accuracy

and the number of false alarms resulting from GPR is lower

than that from GPC when it converges. Moreover, the fact that

the posterior distribution can be obtained with no approximation

in GPR is reflected in the computational cost where GPC is

significantly more expensive computationally than GPR. Based

on this comparison, GPR was adopted in this work.
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Fig. 2: Comparison between GPC and GPR on Layout2 where

accuracy (a) and the number of false alarms (b) are shown.

For the hotspot detection task, the class label y is assumed
to be a continuous noisy version of an underlying GP f(x)
with a Radial Basis Function (RBF) kernel. Based on the prior
distribution of f(x), the joint distribution of the observed outputs
y, and the GP function values for the test outputs, the predictive
posterior for the images in the test data p(f∗|y,X,X∗) is given
by [27]:

p(f∗|y,X,X∗) ∼ N(µ,Σ),

µ = K(X∗,X)
[

K(X,X) + σ2I
]

−1
y,

Σ = K(X∗,X∗)−K(X∗,X)
[

K(X,X) + σ2I
]

−1
K(X,X∗),

(1)

where X and X∗ are matrices containing the training and testing

clip data respectively. σ2 represents the level of noise in the
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data, y is a vector representing the labels for training data, f∗ is

a vector representing the function prediction for the testing clip

data, and the matrices K(·, ·) represent the covariance matrices

obtained by evaluating the RBF kernel.

In the GPR approach, the posterior distribution in Equation (1)

represents the distribution of the class label in the continuous

domain. To get a point estimate of the class label, proper

thresholding scheme (usually at 0) is used for the mean of the

posterior distribution. However, we are interested in a predic-

tive distribution that can provide a confidence to judge upon

prediction. This can be achieved by leveraging all information

provided by the posterior distribution; i.e., the distribution of

the continuous class label. To elaborate on this, we consider

the example shown in Figure 3 where the posterior distributions

for two samples x1 and x2 are shown. By looking at the point

estimate, both samples have a mean value greater than 0; hence,

they will be mapped to label 1. However, it is clear that the

uncertainty associated with x2 is much higher compared to that

associated with x1. In other words, there is a higher probability

for the label of x2 to be less than 0.

Therefore, for a sample with mean greater than 0, a confidence

metric can be defined based on the probability that the predicted

label is higher than 0. In such case, sample x1 has a probability

of 98% compared to 65% for x2, which implied higher confi-

dence around the prediction of x1. To utilize this information,

a confidence metric α can be defined to judge upon the validity

of the predictions obtained from GPR.

However, while 0 is the intuitive choice for a boundary

between the two labels {−1,+1} in a classification task, the

value of the threshold boundary can be tuned for problems with

special characteristics such as class imbalance in the hotspot

detection task. Hence, the compromise between accuracy and

false alarms can be controlled using a threshold different from

zero. In other words, such thresholding scheme can provide

control over how conservative the model is.
In this hotspot detection task, missing a hotspot can have

much more significant consequences when compared to having
additional false alarms. With this risk assessment in mind, the
threshold can be set to a value κ, where κ < 0, to bias the
prediction towards the hotspot class. Therefore, the labeling
processes can be performed according to the following scheme:

ŷi =











+1, if p(fi > κ) > α

−1, if p(fi < κ) > α

untrusted, otherwise.

(2)

In Equation (2), a class label is given to a particular sample

if it meets the user-defined confidence metric α. Otherwise, the

prediction for the particular sample is set to untrusted reflecting

the low confidence in the model prediction and requiring an

actual simulation run to validate this sample. For example,

considering the two samples in Figure 3 with α = 0.7 and

κ = 0, sample x1 will get a label of +1 while x2 will not

be assigned a label, and a lithography simulation is needed to

get the right label.

B. Active Learning for Data Selection

When formulating the lithography hotspot detection problem as

a learning based classification problem, class imbalance comes

forth among the major challenges characterizing the learning

p(f1 > 0) ≈ 98%

p(f2 > 0) ≈ 65%
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Fig. 3: The posterior distributions obtained through GPR for two

samples are shown. The distributions show higher confidence in

the prediction of f1 compared to that of f2.

task. In practice, there is an abundance in the non-hotspot data

on one end and scarceness in the hotspot data on the other. With

such setup, a large number of samples is needed to guarantee

enough hotspot samples for building accurate classification mod-

els. This translates to an enormous computational cost associated

with running a large number of lithography simulations. The

main reason to endure this cost is based on the fact that given

a set of un-simulated data samples, one cannot tell beforehand

which ones are hotspots. Hence, the trivial way of collecting

data is to randomly select samples for simulation until enough

hotspot samples are available.

To address this issue, we propose an active learning frame-

work with the objective of selecting samples that are likely to

be hotspots and simulating them to get the actual labels. This

way, a balanced training dataset, adequate for model training,

can be constructed with minimal simulation cost. The main

idea is to iteratively select hotspot candidates for simulation

based on labels obtained using trained weak classifiers. As a

first step, a relatively small set of randomly selected samples,

for which simulations are performed and labels are available, is

used to build a weak classifier that can point out tentative hotspot

samples among the un-simulated ones. These selected samples

are then simulated and added to the available training dataset

to help improve the performance of the classifier in the next

iteration. A weak classifier is adequate here because its training

cost is cheaper and the accuracy requirement at this stage is not

high.

Here, a weak classifier is one that relies on a simple model;

hence, it does not require a large number of samples to train.

Although such a classifier may not have a high true positive

rate, it can help guide the sampling scheme, especially that the

nature of the data will result in a relatively high precision value

even with a low true positive rate. Among the possible options,

Support Vector Machine (SVM) is used as the weak classifier

in this active sampling scheme mainly because of its relatively

superior performance and fast training [25]. The details of the

active learning method are summarized in Algorithm 1.

Algorithm 1 takes a pool of unlabeled data samples P and the

maximum allowable size n of final dataset S as input. An initial

training set S is generated by randomly sampling from the pool,

followed by label queries through lithography simulations (line

1). Next, the algorithm builds a sequence of weak classifiers to

seek more hotspots with the knowledge of previous sampled and

simulated hotspots (lines 3 – 8). Each weak classifier is trained

with the obtained labeled dataset S so far (line 5) and is applied
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Algorithm 1 Active Learning for Data Selection

Require: A pool of unlabeled data samples P , n

Ensure: Labeled training dataset S
1: S ← Select m0 samples randomly from P and obtain their

labels through simulation;

2: k ← 0;

3: repeat

4: k ← k + 1;

5: Train the SVM model with the training dataset S;

6: Sk ← Select mk samples from P\S with highest hotspot

probability by SVM and simulate the labels;

7: S ← S ∪ Sk;

8: until No hotspot in Sk or |S| ≥ n

9: return S .

to the remaining unlabeled samples in the pool P , i.e., P\S . The

top mk samples with the high probability of being hotspot are

chosen from P \S , and their labels are obtained by lithography

simulations (line 6). Then, the selected set Sk is added to the

labeled dataset S . Note that the algorithm will return early if

no actual hotspot is detected among the mk samples (line 8).

That is because, after several iterations, the trained SVM model

is expected to have good accuracy, hence, if no hotspot can be

detected by the latest classifier, it is likely that none are still

present in the pool. Besides, the algorithm can exit from the

iterations of weak classifier building if there are enough samples

for the Gaussian Process in Section III-A (line 8).

C. Overall Flow

The proposed Litho-GPA framework is illustrated in Figure 4.

We first leverage the iterative weak classifier-based sampling

scheme to prepare a training set containing enough hotspots

(Section III-B). A GPR model is trained with the selected data

samples. We then apply the GPR model to make predictions

with confidence estimation on the testing set (Section III-A). If

GPR gives the predicted label with high confidence, the result

is trusted; otherwise, the unsure testing samples will be verified

with lithography simulations.

Train SVM

Clip pool

New H 
detected?

Training set

True

Select samples

Run simulation Predict using GPR

Confident?

Output H/NH

Run simulation

Train GPR model

True

False

False

Fig. 4: Overall flow including data preparation with active

sampling and hotspot detection with Gaussian process.

IV. EXPERIMENTAL RESULTS

Our Litho-GPA framework is implemented in Python with the

scikit-learn library [28] and validated on the ICCAD 2012 CAD

contest benchmark set [29]. Layout1 is not used because it

contains only a few clips and has a different technology node

from the rest of the four benchmarks. Layout5 has a small

number of hotspots, and hence we merge it with Layout4.

Table I summarizes the benchmark information, the number of

all the clips (#All) and the number of hotspot clips (#H) in

the training set (Train) and testing set (Test). The input image

is downsized to 128×128 by a nearest-neighbor reduction to

improve SVM and GPR training time. We run ten experimental

trials for each evaluation, each with a different random seed, and

report the average results. It is important to note that, although

all samples in the training sets are already labeled in these

benchmarks, to validate our framework we assume that they

are not labeled at the beginning and obtain the labels through

simulations in the framework.

TABLE I: ICCAD 2012 contest benchmark statistics [21].

Design
Train Test

#All #H #All #H

Layout2 5,459 174 41,796 498

Layout3 5,552 909 48,141 1,808

Layout4&5 7,289 121 51,435 218

A. Active Learning for Data Selection

The purpose of the proposed active sampling approach in Section

III-B is to balance the dataset by selectively choosing tentative

hotspots to be included in the training set. Here, we compare

random data selection and the proposed data selection scheme. In

the experiments, we set m0 to 300 and mk to 100 in Algorithm 1.

SVM takes 22.3s at each iteration on average. Table II displays

the number of total sampled data (columns “#All”) and the

number of hotspots (columns “#H”) selected by the two schemes

when setting 1400 as the maximum allowable size of training

samples for both schemes. It is observed that the active learning

scheme converges before reaching the size limit for Layout2

and Layout4&5.

TABLE II: Comparison of different sampling strategies.

Design
Random Active

#All (%) #H (%) #All (%) #H (%)

Layout2 1,400.0 25.6 44.0 25.3 1,050.0 19.2 172.7 99.3

Layout3 1,400.0 25.2 222.3 24.5 1,400.0 25.2 886.3 97.5

Layout4&5 1,400.0 19.2 23.4 19.3 1,190.0 16.3 101.5 83.9

Varying the maximum training set size n in Algorithm 1, the

comparison of the two sampling schemes is shown in Figure 5.

The figure shows that, with the same number of training samples,

the proposed approach can achieve higher accuracy compared

to the random sampling. Note that the accuracy is based on the

GPR direct prediction results without lithography simulations.

This is in fact due to the higher number of hotspots available

in the training data when using the active sampling scheme

compared to the random sampling strategy as demonstrated also

in Figure 5. Moreover, one can easily notice that the iterative

SVM evaluations are capable of detecting most of the hotspots

in the dataset within a few iterations.

B. Validation of Gaussian Process

We demonstrate the effectiveness of the proposed GPR with

validation simulations for hotspot detection. Table III shows the

comparison between the state-of-the-art method [21] and our

method, in terms of accuracy (ACC) and the number of false

alarms (#FA). In this table, “All” denotes model training uses
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Fig. 5: The number of selected hotspots and testing accuracy (without validation simulations) for different sampling techniques are

shown. “All” represents the total number of hotspots in the entire training set.

TABLE III: Comparison of different flows in terms of accuracy and false alarms. The results are averaged over ten runs.

Design
All + [21] Random + [21] Active + [21] Active + [21] + VS Active + GPR Active + GPR + VS #Sim

#FA ACC (%) #FA ACC (%) #FA ACC (%) #FA ACC (%) #FA ACC (%) #FA ACC (%) (%)

Layout2 234.1 97.4 370.9 91.3 1,030.7 99.4 733.3 99.6 502.8 99.1 71.4 99.4 16.4

Layout3 3,064.1 98.3 3,333.4 97.7 6,716.3 99.1 5,189.7 99.5 4,443.2 98.3 2,463.4 99.0 17.2

Layout4&5 443.4 91.7 512.5 64.2 1,598.4 96.3 1,162.3 98.9 1,130.2 91.2 177.5 99.1 26.8

Average 1,247.2 95.8 1,405.6 84.4 3,115.1 98.2 2,361.8 99.3 2,025.4 96.2 904.1 99.2 20.1

Ratio 1.0 1.0 — — — — 1.89 1.04 — — 0.72 1.04 —

all the training samples in the benchmark, while “Random”

and “Active” denote the training data obtained from random

sampling and the proposed active sampling scheme in Table II.

For the method [21], we strictly use its DCT representation and

CNN structure for the comparison. To further demonstrate that

softmax output of CNN is not a good uncertainty measure, we

compare the performance of CNN and GPR after performing

the same number of validation simulations (VS). For GPR,

threshold κ in Equation (2) is set to -0.2; the confidence metric

α is set to 0.682, which is equivalent to one standard deviation

confidence interval for a Gaussian distribution. According to

this criterion, any untrusted sample needs to be further verified

through lithography simulation. Since there is no well-defined

metric to quantify confidence interval for CNN, to ensure fair-

ness, we perform the same number of validation simulations to

the test samples which has nearly the same softmax probability

of being hotspot/non-hotspot and then compare the accuracy and

the number of false alarms; that is, we choose the samples which

minimize |softmax(NH) − softmax(H)|. Column “#Sim” gives

the ratio of the number of validation simulations to the testing

data size.

Table III shows that the state-of-the-art work [21] using all the

training dataset (All + [21]) achieves 95.8% accuracy on average.

Our proposed active learning data selection further improves

the accuracy of its model to 98.2% (Active + [21]). However,

the average number of false alarms of this flow increases from

1247.2 to 3115.1. Active data selection together with our GPR

method (Active + GPR) gives a similar accuracy (96.2%) as the

state-of-the-art result. Moreover, given the strength of providing

confidence of GPR, the accuracy (Active + GPR + VS) is

improved to 99.2% after performing validation simulations, and

meanwhile, it reduces the number of false alarms by 28%

compared with the All + [21] flow. Compared with the Active +

[21] + VS flow, the Active + GPR + VS flow obtains comparable

accuracy and 2.6× false alarm reduction, which demonstrates

the effectiveness of employing confidence measure provided by

GPR. In the experiments, GPR training takes 296.6s, 1490.5s

and 235.4s on average for the three benchmarks while testing

takes 579.4s, 1342.2s and 586.7s.

C. Control of Prediction Confidence

Lastly, we explore the effect of α to control the desired pre-

diction confidence. Figure 6 plots the testing accuracy after

validation simulations and the percentage of simulated testing

samples using different values of α. The accuracy reflects that

of the trusted GPR predictions in addition to the instances

validated through simulation. As one would expect, larger α

values translate to better results in terms of accuracy and false

alarms at the expense of higher simulation cost. It is important

to note that the choice of α gives the user the flexibility to

control the trade-off between the overall detection quality and

the number of simulations needed.

V. CONCLUSION

In this work, we present Litho-GPA, a hotspot detection frame-

work with Gaussian Process assurance to provide confidence

in classifier prediction. The prediction accuracy is improved by

exploring both the mean and confidence of prediction. Besides,

an active data selection scheme based on weak classifiers is

developed to reduce the computational cost in data preparation.

Experimental results demonstrate Litho-GPA can achieve com-

parable accuracy to the state-of-the-art deep learning approaches

while obtaining on average 28% reduction in false alarms.
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Fig. 6: The testing accuracy, number of false alarms and percentage of simulated testing samples for different α are shown.
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