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ABSTRACT

With the continuous scaling of integrated circuit (IC) technolo-

gies, electromigration (EM) prevails as one of the major reliability

challenges facing the design of robust circuits. With such aggres-

sive scaling in advanced technology nodes, signal nets experience

high switching frequency, which further exacerbates the signal

EM effect. Traditionally, signal EM fixing approaches analyze EM

violations after the routing stage and repair is attempted via itera-

tive incremental routing or cell resizing techniques. However, these

łEM-analysis-then fixž approaches are ill-equipped when faced with

the ever-growing EM violations in advanced technology nodes. In

this work, we propose a novel signal EM handling framework that (i)

incorporates EM detection and fixing techniques into earlier stages

of the physical design process, and (ii) integrates machine learning

based detection alongside a multistage mitigation. Experimental

results demonstrate that our framework can achieve 15× speedup

when compared to the state-of-the-art EDA tool while achieving

similar performance in terms of EM mitigation and overhead.

1 INTRODUCTION

As integrated circuit (IC) technologies continue to scale, electromi-

gration (EM) comes forth as one of the prominent reliability issues

challenging the design of robust circuits [1]. Complex chip function-

alities have been made possible by virtue of increasing transistor

densities and aggressive scaling of interconnects. However, these

two factors bring along higher current densities in metal wires, a

phenomenon that further exacerbates EM. Particularly, high current

densities lead to the migration of atoms in metal wires resulting

in opens and shorts over time [2]. Hence, the continuous drive

toward extreme scaling will keep compounding the EM problem

especially for signal nets that are expected to switch at gigahertz

speed, making EM design closure a challenging task [3, 4].

Addressing the EM challenge requires a two-step process: (i) vio-

lations detection and (ii) EM mitigation. Conventionally, EM check-

ing tools are invoked after the detailed routing stage [5, 6]. These
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tools compare the current densities in metal wires with technology-

specific design rules to detect EM violations. Next, the violations are

fixed with engineering change order (ECO) efforts [7]. EM checking

tools leverage post-routing information to detect violations, which

consequently limits the efficiency of their mitigation techniques.

In the routing phase, the locations of standard cells and the corre-

sponding current distribution are already fixed and the traditional

fixing approaches such as wire widening and cell resizing are not

effective enough to handle the ever-growing number of violations

in signal wires [4]. In fact, the methodology of łEM-analysis-then-

fixž is becoming obsolete at advanced nodes [8], which makes it of

vital importance to incorporate EM detection and fixing techniques

into earlier stages of physical design (PD).

Two clear benefits are associated with such early stage EM han-

dling. First, the number of EM violations can be decreased as the

result of using a larger set of mitigation techniques. Second, intro-

ducing early stage mitigation techniques can help reduce the re-

sulting overhead when compared to post-routing fixing techniques.

Thus, moving the EM detection and resolving steps to earlier stages

of the physical design can help in reducing runtime or the number

of iterations needed for design closure. Towards this goal, and given

the critical role placement plays in current distribution, we propose

a placement-based EM detection and adjustment framework.

EM failure has been dealt with at different design stages, in-

cluding placement [9] and routing [10ś14]. However, the focus has

been concentrated on applying optimization techniques after EM

violations are already detected, or using approximation methods

to guess possible violations. In this work, we propose a novel EM

hotspot detection and mitigation framework based on information

available at the placement phase. In particular, three main steps

constitute our proposed approach. As a first step, a classification

model is trained through machine learning techniques to detect EM

hotspots based on features extracted from the placement scheme.

This model can be trained using data obtained from designs where

EM hotspots are already known, and then, it can be applied to de-

tect hotspots in new designs. In addition to its main role in hotspot

prediction, the model helps identify the placement-based features

that are critical for hotspot identification. Knowing these features is

fundamental for constructing effective EM adjustment techniques

at the placement stage.

In the second step, the placement scheme is adjusted by incor-

porating EM hotspot mitigation mechanism in the cost function

of the placement problem. This mechanism incorporates the detec-

tion model information about critical features to address the EM





Figure 2. Then, for each net, a set of features is defined over all grid

windows containing pins connected to the net.

Using Figure 2 as an example, we consider the feature defined as

the average number of pins. To compute this feature for net A, we

first identify the grid windows containing pins of net A which are

the three windows in the first row, and second and third window in

the second row counting from the left. Then, we average the number

of pins in the five windows counting all pins in the windows, not

only those connected to net A. This results in a feature value equal

to 21
5 for net A. Computing the same feature for nets B and C gives

5 and 2 respectively. The full list of neighborhood related features

used is as follows:

(1) Average number of pins

(2) Average number of cells

(3) Average cell area

(4) Average area capacity (space not occupied by blocks)

(5) Average number of placement sites

It is important to note that all the features mentioned above

can be extracted without any knowledge about the final routing

scheme. Moreover, with the exception of switching activity that can

be obtained through high-level hardware simulation, all features

can be extracted from the placement scheme.

3.2 Data Preparation

Starting from the labeled training set, features defined in the previ-

ous section are extracted resulting in a feature vector with a Boolean

class label for each net in the design. Two important characteristics

of the resulting dataset should be examined. First, the dataset is

significantly imbalanced. In other words, the EM hotspot class (H) is

enormously outnumbered by the non-hotspot class (NH). Secondly,

the different features have different ranges of values. For instance,

HPWL has a wider range of possible values compared to the num-

ber of pins. These two characteristics can affect the training process

and the interpretability of the model, and hence, they should be

addressed before training.

In the scenario where the two classes are imbalanced, the train-

ing is expected to be biased towards the objective of learning the

larger class while neglecting the errors in predicting the smaller

one. Among the methods used to address such bias is class weight-

ing where higher weights are given to instances in the smaller

class when formulating the training objective. This can be done

by associating different costs with mispredicting instances from

different classes; i.e., mispredicting an instance from the smaller

class is associated with higher cost compared to mispredicting an

instance from the larger one.

On the other hand, having features with different ranges of

values can affect both the model training and its interpretability.

During training, numerical issues arising from such case can cause

convergence problems. In addition, in distance-based classification

models, different ranges of values can result in unwanted weighting

for the features. Moreover, having features with different ranges

makes the task of interpreting any model more challenging. For

example, important features in a trained model are usually inferred

from the weight given to each feature after the training phase.

For the case where all features have similar ranges, it suffices to

compare the absolute values of the weights to judge upon the

importance of the features. However, with features taking values in

different ranges, this comparison does not hold anymore. Therefore,

a normalization step is done to map all features to the [0, 1] interval

to ensure they all have the same weight when training the EM

detection model.

3.3 Cascaded Model for False Alarm Avoidance

The EM detection problem can be cast into a classification problem.

In practice, a wide range of classification models are available for

use, and these models vary in their complexity and application

space [15]. Two important characteristics of the EM detection ap-

plication contribute to the decision upon the classification model

to use. First, the problem is a binary classification problem (i.e.,

two class problem) with relatively small number of features. Sec-

ondly, the EM detection model is a part of an EM detection and

mitigation framework. Hence, in addition to the detection task,

we are interested in analyzing the trained model to arrive at the

features contributing the most to the prediction decision. Knowing

these features plays a significant role in the EM mitigation process

described in the next section. Therefore, the interpretability of the

trained model is critical from this perspective.

In practice, as the complexity of the classification model in-

creases, interpretabilty becomes more challenging. And since the

problem at hand is low-dimensional, we choose to use logistic re-

gression [15, 16] as the classification model. Such model is known to

behave well with binary classification problems and its regression

coefficients can be used to interpret the importance of the different

features.

As will be demonstrated in the result section, logistic regression

can achieve high EM detection accuracy at a small false alarm rate.

However, by examining the overall flow of the EM detection and mi-

gration framework and the relative number of H and NH instances,

false alarm rate should be addressed from a different perspective.

Technically, in a general classification problem, correctly labeling

99% of the target group (H in our case) with 3% false alarm rate can

be acceptable. However, given that the two groups are unbalanced,

even a 3% false alarm rate can result in a number of false alarms

that is a multiple of that of H instances.

Hence, with such number of false alarms, mitigation techniques

will perform a large number of unnecessary changes to the place-

ment and routing schemes; thus, introducing additional overheads.

To address this issue, we introduce the two-stage detection ap-

proach shown in Figure 3. In the first stage, a classification model

M1 is trained to detect EM hotspots using all the nets in the training

dataset. After the first stage, all nets with NH prediction will be

labeled as NH without further processing. For nets labeled H by M1,

a new model, M2, is trained to prune out false alarms. M2 is trained

using nets in the training dataset labeled H by M1. For those nets

going through the second stage, the final label will be the prediction

of M2.

In practice, when two models are trained, inference for new nets

can be done in a way analogous to the training process. First, an

initial prediction is obtained by applying M1, and if the prediction

is NH the net is given that as the final label. Otherwise, a new

prediction is obtained from M2, and the final label is that generated

by M2.







Table 4: Comparison of EM violation reduction, metal wirelength and area overhead, and timing impact for the designs pro-

duced by the conventional EM fixing flow and our proposed methodology using machine learning trained model.

Design Flow #EM Vio. Wirelength (um) Area (um2) Runtime (s) WNS (ns) TNS (ns)

Initial 302 2,242,990 165,284 943.4 -0.11 -0.85

b19 PD fixing 104 2,260,090 188,171 33,865.1 -0.09 -3.83

Nets: 219,289 M1 116 2,368,201 221,096 1,293.5 -0.09 -0.61

M1+M2 120 2,248,412 174,432 935.5 -0.10 -0.77

Initial 225 873,557 63,050 274.1 -0.17 -81.00

ecg PD fixing 3 874,541 63,420 1,470.1 -0.17 -81.97

Nets: 48,337 M1 3 996,912 67,072 420.6 -0.23 -83.2

M1+M2 9 884,589 65,727 270.7 -0.20 -91.88

Initial 2,154 1,823,239 132,646 471.8 -0.15 -9.43

mmm PD fixing 1,637 1,824,374 138,799 3,663.9 -0.15 -9.43

Nets: 158,526 M1 1,245 1,872,680 191,545 724.4 -0.16 -10.52

M1+M2 1,364 1,847,248 143,328 556.5 -0.16 -10.83

Initial 252 2,638,638 190,443 504.3 -0.19 -135.53

med PD fixing 6 2,642,620 199,231 3,124.5 -0.19 -141.38

Nets: 133,222 M1 11 2,746,344 260,535 12,971.9 -0.23 -161.12

M1+M2 11 2,655,013 207,188 635.2 -0.22 -148.43

Initial 396 3,169,437 227,432 633.7 -0.21 -116.74

vga PD fixing 80 3,227,050 268,042 25,529.2 -0.23 -144.39

Nets: 164,975 M1 84 3,306,214 300,918 1,113.9 -0.17 -84.71

M1+M2 87 3,228,308 272,295 1,038.8 -0.18 -86.02

Ratio wrt initial

PD fixing 0.269 1.006 1.083 19.10 0.983 1.760

M1 0.246 1.062 1.307 6.38 1.052 0.955

M1+M2 0.267 1.011 1.093 1.21 1.087 1.004

placement-stage mitigation are addressed through the NDR scheme

in the routing stage. Contrary to conventional EM mitigation flows,

the proposed approach addresses the EM problem at an earlier stage

in the PD process resulting in faster closure and versatile mitigation

techniques.
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