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ABSTRACT

Lithography simulation is computationally expensive for hotspot

detection. Machine learning based hotspot detection is a promising

technique to reduce the simulation overhead. However, most learn-

ing approaches rely on a large amount of training data to achieve

good accuracy and generality. At the early stage of developing a

new technology node, the amount of data with labeled hotspots

or non-hotspots is very limited. In this paper, we propose a semi-

supervised hotspot detection with self-paced multi-task learning

paradigm, leveraging both data samples w./w.o. labels to improve

model accuracy and generality. Experimental results demonstrate

that our approach can achieve 2.9-4.5% better accuracy at the same

false alarm levels than the state-of-the-art work using 10%-50% of

training data. The source code and trained models are released on

https://github.com/qwepi/SSL.

1 INTRODUCTIONS

As the technology node continues to shrink, the feature sizes are

getting smaller and smaller. Layout patterns are becoming more

sensitive to process variations in lithography and lead to manufac-

turing defects. It is necessary to detect these patterns before volume

production to ensure yield. These patterns are named as hotspots.

Hotspots are usually detected with lithography simulation [1]. It

is able to achieve high detection accuracy but computationally ex-

pensive. Machine learning [2ś7] and pattern matching [8ś11] based

approaches are then proposed to speedup the detection efficiency

and meanwhile maintain the high accuracy. Pattern matching based

approaches stores a known hotspot library and search for exact or

similar matches given a new layout clip. Yu et al. [11] extract criti-

cal topological features of hotspots and transform them for design

rule checking (DRC) to locate the hotspot positions. Although it

has high confidence, it cannot handle unseen hotspots. Machine

learning techniques are able to learn the correlation between layout
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features and hotspots/non-hotspots, develop classifiers to differen-

tiate hotspots and non-hotspots, and thus recognize even unseen

hotspots with high accuracy. In addition, hybrid methods[12] of

the above two techniques are proposed to combine both their ad-

vantages.

In machine learning based hotspot detection, both conventional

learning approaches and deep learning approaches are developed

for hotspot detection. Models like Bayesian and bilinear techniques

have been explored with various feature extraction techniques

[13, 14]. Park et al. [15] take lithography imaging into consideration

and train four SVM kernels for different types of hotspots with

the aerial image intensity information to achieve high accuracy.

Conventional learning approaches usually require manual feature

extraction. Deep learning with conventional neural networks (CNN)

has then been explored to avoid the overhead of feature engineering.

Yang et al. [16] identify the label imbalance issue in the datasets

and propose a deep CNN to achieve high classification accuracy.

They then develop a biased learning technique for the unbalanced

dataset with a discrete-cosine transformation (DCT) for feature

tensor generation to further improve accuracy with a less deep

CNN [5].

For machine learning-based hotspot detection, previous work

mostly relies on supervised learning with access to a large amount

of training data available. That is, there are enough data samples

known to be either hotspots or non-hotspots (labeled) for model

training. This condition cannot always hold in the evolution of

technology nodes. At the early stage of a new technology node,

the amount of labeled data samples tends to be limited, while unla-

beled data samples are relatively easy to access [17]. As supervised

learning can only leverage labeled data samples for training, it is

likely to encounter significant performance degradation with a

small amount of labeled training data.

To overcome the limitations of conventional supervised hotspot

detection, we present a self-paced multi-task network for semi-

supervised hotspot detection. Semi-supervised learning can lever-

age both labeled and unlabeled samples to help the model training,

reducing the dependence to a large amount of labeled training data.

It is being actively explored in image recognition, neural language

processing, etc [18, 19]. The main contributions are summarized as

follows.

• Amulti-task neural network (MTNN) with classification and

clustering streams is proposed, in which joint model training





networks to process. We first generate images with 1200× 1200 pix-

els and downscale to 128×128 with the nearest-neighbor algorithm

[22].
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Figure 2: Overall flow of semi-supervised learning.

3.1 Multi-Task Neural Network Architecture

CNN is adopted as the classifier in MTNN for its good performance

in image related tasks [23]. The architecture of MTNN is shown in

Fig. 3. MTNN has two streams, with which models for classification

and clustering are jointly learned. The two streams share layers for

feature extraction at early stages and then split into two branches

[24]. The shared layers include two convolutional layers, one ReLU

layer, and onemax pooling layer. The kernel sizes and the number of

kernels are annotated in the figure. The max pooling layer performs

2 × 2 downsampling.

The individual layers for two streams are identical except that the

weights are learned separately and the loss functions are different.

The classification stream behaves like an ordinary hotspot detector

as in other neural network architectures. It can predict labels for

unlabeled samples and its loss function for training is the weighted

cross entropy where the weights come along with data samples.

The loss function is defined as follows,

Lclass = −

N
∑

i=1

wi (

K
∑

k=1

yki log ŷki ), (2)

where N is the number of input samples, K is the number of classes,

which is 2 in hotspot detection. Vectors yi and ŷi are the one-hot

encoding of actual class labels and the softmax output for ith sample,

respectively. Weightwi indicates the confidence of the i
th sample’s

label. The weights for labeled samples are set to 1, while the weights

for unlabeled samples are calculated during the training with the

clustering stream.

The main target of clustering stream is to determine the weights

of unlabeled samples based on their distances to the predicted

clusters. To further alleviate the influence of untrusted labeling,

pairwise constraints [25] are introduced for the loss function of

clustering. A pairwise constraint is a pair of samples with the in-

formation of whether they are similar.
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ẑi

<latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c="></latexit><latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c="></latexit><latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c="></latexit><latexit sha1_base64="fhPGlcXL9sf7gj/VeINouEhou9c="></latexit>

ŷi
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Figure 3: The architecture of MTNN.

Definition 3 (Similar pair). If the labels of the two samples are

the same, they are a similar pair, vice versa.

For a labeled sample, its actual label is used. For an unlabeled

sample, the pseudo-label predicted from the classification stream is

used.

Pairwise constraints can be generated by enumerating all pairs

from the labeled or pseudo-labeled data samples. Clustering training

with pairwise constraints enables better tolerance on labeling error

for unlabeled data. The loss function for the clustering stream is

built with Kullback-Leibler (KL) divergence from x j to xi with

pairwise constraints.

KL(xi | |x j ) =

K
∑

k=1

ẑki log(
ẑki

ẑkj

), (3)

where xi and x j is the i
th and jth samples, respectively, ẑi and ẑj

are their corresponding clustering softmax outputs, respectively.

We use this KL-divergence to measure the distance between two

samples, defined as KL-distance for brevity. We now define pairwise

cost function to convert the divergence into a cost as follows,

Lpair (xi | |x j ) =

{

KL(xi | |x j ), if (xi ,x j ) is a similar pair,

max(0,M − KL(xi | |x j )), otherwise,
(4)

whereM denotes the maximum similarity of samples belonging to

two clusters. It is set to a constant value 2 for better convergence in

training [25]. Therefore, the overall loss function for the clustering



stream considers the pairwise costs of both sides,

Lclust =

N
∑

i, j=1

1

2
(Lpair (xi | |x j ) + Lpair (x j | |xi )). (5)

The pseudo-label of an unlabeled sample closer to other samples

within the predicted cluster according to the KL-distance should

have higher confidence due to the correlation between classifica-

tion and clustering streams. Thus the confidence of the ith sample

is defined as its average KL-distance to other samples the same

predicted cluster,

di =

∑N
j=1 KL(xi | |x j )δ (xi ,x j )

∑n
j=1 δ (xi ,x j )

, (6)

where

δ (xi ,x j ) =

{

1, if (xi ,x j ) is a similar pair,

0, otherwise.
(7)

Then weightwi of the i
th sample is defined by normalizing di for

unlabeled samples,

wi = Nu
exp(−di )

∑Nu

i=1 exp(−di )
, (8)

where Nu is the number of unlabeled samples.

3.2 Self-Paced Learning Paradigm

MTNN is trained only with labeled data at first. Then pseudo-labels

and weights are assigned to unlabeled samples through predictions.

If the unlabeled data are fed to the model training directly, data with

unconfident predictions will degrade the accuracy. Therefore, a self-

paced paradigm [26] is adopted to gradually introduce unlabeled

data with high confidence for training. The procedure of the self-

paced learning is summarized inAlg. 1. The learning can be repeated

for R rounds with R = 4 in the experiment.

An indicator vector v = (v1,v2, . . . ,vN ) is used to decide which

samples are selected for the next training cycle. Selected samples

will have vi equal to 1; otherwise, they are 0. Labeled samples

always have vi = 1. For unlabeled samples, the selection criteria is

based on following,

vi =

{

1, if −wi
∑K
k=1

yki log ŷki < λ,

0, otherwise,
(9)

where λ is the threshold to the weighted loss of each sample for

selection. The underlying assumption is that small loss indicates

high confidence.

The threshold λ is determined by training an auxiliary network

[26] with the same structure as the classification stream. After

the training of multi-task network, pseudo-labels and weights are

assigned to unlabeled samples.We divide the unlabeled dataset Su to

m subsets, i.e, {S1u , S
2
u , . . . , S

m
u }, equally with ascending order of the

loss in the classification stream. Then we try training the auxiliary

network indepdendently with S1u , S
1
u∪S

2
u , . . . , {S

1
u∪S

2
u∪· · ·∪S

m
u } as

the training sets, respectively, and use the initially labeled samples

as the testing dataset for validation. Suppose the best validation

accuracy is achieved by subsets S1u ∪ · · · ∪S
h
u (1 ≤ h ≤ m). Then we

choose the highest loss in the classification stream of the unlabeled

samples in these subsets as the value of λ.

Algorithm 1 Self-Paced Semi-Supervised MTNN

Input: Input labeled dataset Sl and unlabeled dataset Su .

Output: MTNN with maximum accuracy and low false alarm.

1: Define vs as the indicator andws as the weight for a sample s ;

2: Define T as the training set;

3: Define R as the maximum rounds for self-paced learning;

4: vs ← 1,ws ← 1,∀s ∈ Sl ;

5: vs ← 0,ws ← 0,∀s ∈ Su ;

6: for t = 1→ R do

7: T ← {s |vs = 1,∀s ∈ Sl ∪ Su };

8: Generate pairwise constraints based on training dataset T ;

9: Train MTNN with T and pairwise constraints;

10: Assign pseudo-labels to s ∈ Su using the classification

stream;

11: Compute weightws ,∀s ∈ Su according to Eq. (8);

12: Update indicator vs ,∀s ∈ Su according to Eq. (9);

13: end for

14: return MTNN;

4 EXPERIMENTAL RESULTS

This self-paced MTNN is implemented in Python with Tensorflow

1.2.1 [27] on a Linux server with an 8-core 3.4GHz CPU, a Nvidia

GTX 1080 GPU, and 32GB memory. The framework is validated

on 28-nm industrial benchmarks from ICCAD2012 CAD contest

as described in Table 1. The benchmark b1 is omitted as it is too

small. To verify modeling performance with different amount of

labeled data, the network is trained using different ratios of labeled

samples, i.e., {0.1,0.3,0.5,0.7,0.9,1.0}. When randomly generating la-

beled samples from the training datasets, we keep the ratio between

hotspots and non-hotspots the same as that in the original dataset.

The unselected samples are regarded as unlabeled samples. More-

over, to avoid statistical instability in randomness, each experiment

is repeated for five times with different random seeds and the aver-

age results are reported. To handle the imbalanced dataset, biased

learning [5] is adopted in training to increase accuracy and reduce

false alarms. Initial learning rate for training is 0.001 and batch

size is 32. The unlabeled samples are divided into 15 subsets for

auxiliary network training. The self-paced learning paradigm loops

for 4 rounds (R = 4).

General runtime for training the self-paced MTNN is around

60 minutes. The prediction time for each test case with several

thousands of clips in Table 1 is around 2minutes, which could enable

huge time savings compared with lithography simulation. Thus we

will not separately report runtime in the following discussion.

We compare accuracy and false alarm on the testing dataset with

one machine learning based detector, as shown in Table 2. łDACž

denotes the deep biased learning approach with DCT [5], and łSSLž

denotes our self-paced semi-supervised learning algorithm. The

classification stream of žSSLž has the same structure as the CNN-

based detector in žDACž. At a lower selected ratio like 0.1, 0.3, 0.5,

0.7, our framework achieves better hotspot detection accuracy on

average of 65.94%, 77.50%, 90.63% and 94.23% with slight false alarm

compromise, respectively. At a higher ratio like 0.9 and 1.0, there

is no significant difference between the average accuracy between

the two detectors, since enough labeled training data is available.





Table 2: Accuracy and False Alarm Comparison for Different Amount of Labeled Training Data.

Ratio
b2 b3 b4 b5 Average

DAC SSL DAC SSL DAC SSL DAC SSL DAC SSL

0.1
Accuracy 89.44% 97.99% 97.94% 98.47% 35.14% 52.66% 8.29% 14.63% 57.70% 65.94%

#FA 700 1643 4288 5130 230 536 3 11 1305 1830

0.3
Accuracy 93.33% 98.11% 98.34% 98.43% 65.99% 73.45% 27.32% 40.00% 71.24% 77.50%

#FA 383 643 3569 3593 315 342 39 73 1076 1163

0.5
Accuracy 96.51% 97.67% 98.04% 98.26% 78.19% 81.69% 75.12% 84.88% 86.97% 90.63%

#FA 297 425 3098 3083 359 379 86 104 960 998

0.7
Accuracy 97.11% 97.87% 98.17% 98.15% 77.85% 84.29% 90.73% 96.59% 90.97% 94.23%

#FA 294 265 3001 2740 261 261 72 141 907 852

0.9
Accuracy 97.79% 97.51% 98.22% 98.24% 90.73% 88.81% 93.66% 94.71% 95.10% 94.82%

#FA 287 211 2780 2665 387 317 79 100 883 823

1.0
Accuracy 97.19% 97.75% 98.22% 98.27% 91.75% 90.62% 95.61% 95.12% 95.69% 95.44%

#FA 239 231 2878 2854 309 306 90 94 879 871

Table 3: Accuracy Comparison at the Same Numbers of False Alarm as the DAC work [5].

Ratio b2 b3 b4 b5 Average

#FA Accuracy #FA Accuracy #FA Accuracy #FA Accuracy Accuracy

DAC DAC SSL DAC DAC SSL DAC DAC SSL DAC DAC SSL DAC SSL

0.1 700 89.44% 93.11% 4288 97.94% 98.30% 230 35.14% 42.71% 3 8.29% 10.67% 57.70% 61.20%

0.3 383 93.33% 97.03% 3569 98.34% 98.52% 315 65.99% 73.36% 39 27.32% 34.21% 71.24% 75.78%

0.5 297 96.51% 97.19% 3098 98.04% 98.25% 359 78.19% 80.82% 86 75.12% 83.24% 86.97% 89.87%

0.7 294 97.11% 98.00% 3001 98.17% 98.24% 261 77.85% 84.43% 72 90.73% 93.17% 90.97% 93.46%

0.9 287 97.79% 98.38% 2780 98.22% 98.27% 387 90.73% 89.87% 79 93.66% 94.15% 95.10% 95.17%

1.0 239 97.19% 98.20% 2878 98.22% 98.26% 309 91.75% 90.96% 90 95.61% 95.61% 95.69% 95.76%
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