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ABSTRACT

Lithography simulation is computationally expensive for hotspot
detection. Machine learning based hotspot detection is a promising
technique to reduce the simulation overhead. However, most learn-
ing approaches rely on a large amount of training data to achieve
good accuracy and generality. At the early stage of developing a
new technology node, the amount of data with labeled hotspots
or non-hotspots is very limited. In this paper, we propose a semi-
supervised hotspot detection with self-paced multi-task learning
paradigm, leveraging both data samples w./w.o. labels to improve
model accuracy and generality. Experimental results demonstrate
that our approach can achieve 2.9-4.5% better accuracy at the same
false alarm levels than the state-of-the-art work using 10%-50% of
training data. The source code and trained models are released on
https://github.com/qwepi/SSL.

1 INTRODUCTIONS

As the technology node continues to shrink, the feature sizes are
getting smaller and smaller. Layout patterns are becoming more
sensitive to process variations in lithography and lead to manufac-
turing defects. It is necessary to detect these patterns before volume
production to ensure yield. These patterns are named as hotspots.

Hotspots are usually detected with lithography simulation [1]. It
is able to achieve high detection accuracy but computationally ex-
pensive. Machine learning [2-7] and pattern matching [8—11] based
approaches are then proposed to speedup the detection efficiency
and meanwhile maintain the high accuracy. Pattern matching based
approaches stores a known hotspot library and search for exact or
similar matches given a new layout clip. Yu et al. [11] extract criti-
cal topological features of hotspots and transform them for design
rule checking (DRC) to locate the hotspot positions. Although it
has high confidence, it cannot handle unseen hotspots. Machine
learning techniques are able to learn the correlation between layout
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features and hotspots/non-hotspots, develop classifiers to differen-
tiate hotspots and non-hotspots, and thus recognize even unseen
hotspots with high accuracy. In addition, hybrid methods[12] of
the above two techniques are proposed to combine both their ad-
vantages.

In machine learning based hotspot detection, both conventional
learning approaches and deep learning approaches are developed
for hotspot detection. Models like Bayesian and bilinear techniques
have been explored with various feature extraction techniques
[13, 14]. Park et al. [15] take lithography imaging into consideration
and train four SVM kernels for different types of hotspots with
the aerial image intensity information to achieve high accuracy.
Conventional learning approaches usually require manual feature
extraction. Deep learning with conventional neural networks (CNN)
has then been explored to avoid the overhead of feature engineering.
Yang et al. [16] identify the label imbalance issue in the datasets
and propose a deep CNN to achieve high classification accuracy.
They then develop a biased learning technique for the unbalanced
dataset with a discrete-cosine transformation (DCT) for feature
tensor generation to further improve accuracy with a less deep
CNN [5].

For machine learning-based hotspot detection, previous work
mostly relies on supervised learning with access to a large amount
of training data available. That is, there are enough data samples
known to be either hotspots or non-hotspots (labeled) for model
training. This condition cannot always hold in the evolution of
technology nodes. At the early stage of a new technology node,
the amount of labeled data samples tends to be limited, while unla-
beled data samples are relatively easy to access [17]. As supervised
learning can only leverage labeled data samples for training, it is
likely to encounter significant performance degradation with a
small amount of labeled training data.

To overcome the limitations of conventional supervised hotspot
detection, we present a self-paced multi-task network for semi-
supervised hotspot detection. Semi-supervised learning can lever-
age both labeled and unlabeled samples to help the model training,
reducing the dependence to a large amount of labeled training data.
It is being actively explored in image recognition, neural language
processing, etc [18, 19]. The main contributions are summarized as
follows.

o A multi-task neural network (MTNN) with classification and
clustering streams is proposed, in which joint model training
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Figure 1: (a) Hotspot and (b) non-hotspot layout clips.

constructs inner relations and alleviates the influence of
labeling error for unlabeled samples.

o A self-paced learning paradigm is developed to gradually in-
corporate pseudo-labeled data samples for training. It avoids
the compromise of ambiguous labeling and improves the
model performance.

o The experimental results show that the framework can achieve
2.9-4.5% better accuracy at the same false alarm levels than
the state-of-the-art work using 10%-50% of training data on
the ICCAD 2012 contest benchmarks [20].

The rest of the paper is organized as follows. Section 2 introduces
basic concepts and provides the problem formulation. Section 3
presents the detailed algorithm for the self-paced semi-supervised
learning. Section 4 validates the proposed framework with experi-
mental results. Section 5 concludes the paper.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we will review the background of hotspot detection
and provide the problem formulation in this work.

2.1 Hotspot Detection

Due to small process margin in the lithography process, hotspot
patterns may cause bridges or broken lines on the wafer after manu-
facturing. Fig. 1 gives examples of hotspot and non-hotspot. The red
regions indicate known hotspot or non-hotspot. hotspots need to
be detected and fixed before mask tape-out. Conventionally, lithog-
raphy simulation [21] is used to do hotspot detection. To implement
lithography simulation, process and optical information are needed
for model calibration. The model is applied to simulate the imaging
contour of layout patterns on the wafer. Problematic locations (a.k.a
hotspot) could be easily recognized from the contour simulation.
Lithography simulation is extremely time-consuming for full-chip
verification and often slows down the design closure. On the other
hand, machine learning technique takes an input layout clip as an
image. The information of whether the clip contains hotspots or not
could be seen as its label. Hotspot detection based on machine learn-
ing can be formulated as an image recognition problem in which
the lithography process information is stored in the correlation
between input samples and their labels.

2.2 Problem Formulation

The performance of a hotspot detector is evaluated with following
metrics [20],

# of correctly predicted hotspots

accuracy = s (1a)

# of hotspots
false alarm = # of incorrectly predicted hotspots. (1b)

In the terminology of statistics, accuracy is equivalent to the true-

positive ratio and the false alarm is the number of false-positive
predictions.

The objective of hotspot detection is maximizing accuracy with
low false alarms. Recently, machine learning based approaches
formulate the hotspot detection problem into a classification task,
in which the labels need to be predicted given input features. Related
terminologies are shown as follows.

Definition 1 (Labeled/unlabeled samples). If the class of a sample
is known, the sample is called a labeled sample; otherwise, it is an
unlabeled sample.

For hotspot detection, a sample can have two classes: hotspot
or non-hotspot. If we are sure whether a layout clip is a hotspot
or non-hotspot, then the clip is a labeled sample; otherwise, it is
unlabeled. We can obtain the label of an unlabeled sample with
lithography simulation and then the sample becomes a labeled
sample.

We then formulate the semi-supervised hotspot detection prob-
lem as follows:

Definition 2 (Semi-supervised hotspot detection). Given a labeled
dataset containing layout clips with known labels and an unlabeled
dataset containing layout clips without known labels, train a classi-
fier to maximize the accuracy with low false alarms over the entire
dataset.

In practice, obtaining large labeled hotspot detection dataset is
very expensive, as numerous lithography simulations are required
to obtain the labels. However, it is relatively inexpensive to access
unlabeled datasets by extracting layout clips from designs without
querying for the labels. Therefore, in most of the cases, it is desired
to build an accurate hotspot detector with a very limited amount
of labeled samples. Whether the unlabeled dataset can be utilized
to assist the model training becomes very meaningful.

3 SEMI-SUPERVISED HOTSPOT DETECTION

The major challenge in semi-supervised learning is the accuracy
degradation from the insufficient labeled data and the error in
assigning pseudo-labels for unlabeled data. To improve model per-
formance, we adopt a multi-task network with classification and
clustering model jointly learned to alleviate the negative influence
of inaccurate labeling [19]. The overall flow is shown in Fig. 2. In
MTNN, the classification stream assigns pseudo-labels for unla-
beled samples while the clustering stream measures the confidence
of pseudo-labels with weights. Unlabeled samples with weights for
model training could reduce the influence of errors in labeling. The
weighted unlabeled samples are gradually introduced for training
with a self-paced learning paradigm. This self-paced learning par-
adigm is connected with the data preparation part. The original
layout clip size is 1200 x 1200nm?, which is expensive for neural



networks to process. We first generate images with 1200 x 1200 pix-
els and downscale to 128 x 128 with the nearest-neighbor algorithm

[22].
Labeled Unlabeled
samples samples
Data
preparation

Train the multi-task network
(classification & clustering)

Update data
weights

Converge?

Return model

i

Figure 2: Overall flow of semi-supervised learning.

3.1 Multi-Task Neural Network Architecture

CNN is adopted as the classifier in MTNN for its good performance
in image related tasks [23]. The architecture of MTNN is shown in
Fig. 3. MTNN has two streams, with which models for classification
and clustering are jointly learned. The two streams share layers for
feature extraction at early stages and then split into two branches
[24]. The shared layers include two convolutional layers, one ReLU
layer, and one max pooling layer. The kernel sizes and the number of
kernels are annotated in the figure. The max pooling layer performs
2 X 2 downsampling.

The individual layers for two streams are identical except that the
weights are learned separately and the loss functions are different.
The classification stream behaves like an ordinary hotspot detector
as in other neural network architectures. It can predict labels for
unlabeled samples and its loss function for training is the weighted
cross entropy where the weights come along with data samples.
The loss function is defined as follows,

N K
Lejass = — Z Wi(z yi‘c log Qf)s (2
i=1 k=1

where N is the number of input samples, K is the number of classes,
which is 2 in hotspot detection. Vectors y; and §j; are the one-hot
encoding of actual class labels and the softmax output for i‘# sample,
respectively. Weight w; indicates the confidence of the i*# sample’s
label. The weights for labeled samples are set to 1, while the weights
for unlabeled samples are calculated during the training with the
clustering stream.

The main target of clustering stream is to determine the weights
of unlabeled samples based on their distances to the predicted
clusters. To further alleviate the influence of untrusted labeling,
pairwise constraints [25] are introduced for the loss function of
clustering. A pairwise constraint is a pair of samples with the in-
formation of whether they are similar.
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Figure 3: The architecture of MTNN.

Definition 3 (Similar pair). If the labels of the two samples are
the same, they are a similar pair, vice versa.

For a labeled sample, its actual label is used. For an unlabeled
sample, the pseudo-label predicted from the classification stream is
used.

Pairwise constraints can be generated by enumerating all pairs
from the labeled or pseudo-labeled data samples. Clustering training
with pairwise constraints enables better tolerance on labeling error
for unlabeled data. The loss function for the clustering stream is
built with Kullback-Leibler (KL) divergence from x; to x; with
pairwise constraints.

X 2k
KL(xillxj) = > 2 log(-L), (3)
k=1 Zj

where x; and x; is the i’ h and jth samples, respectively, Z; and Z;
are their corresponding clustering softmax outputs, respectively.
We use this KL-divergence to measure the distance between two
samples, defined as KL-distance for brevity. We now define pairwise
cost function to convert the divergence into a cost as follows,

KL(xillxj), if (x;,x;) is a similar pair,

4)
max(0, M — KL(x;||x})),

Lpair(xi”xj) = {

otherwise,

where M denotes the maximum similarity of samples belonging to
two clusters. It is set to a constant value 2 for better convergence in
training [25]. Therefore, the overall loss function for the clustering



stream considers the pairwise costs of both sides,

N
Letust = Y, 5 pairill) + LpairGgllx). (3)
ij=1

The pseudo-label of an unlabeled sample closer to other samples
within the predicted cluster according to the KL-distance should
have higher confidence due to the correlation between classifica-
tion and clustering streams. Thus the confidence of the i th sample
is defined as its average KL-distance to other samples the same

predicted cluster,

S KL(xillx)S(xi, %)

i (6)
’ ST 8 )
where
1, if (xi,x;) is a similar pair,
S(xi, xi) = 7
(xi. %) {O, otherwise. @

Then weight w; of the i*" sample is defined by normalizing d; for
unlabeled samples,

_d.
. .G
2N exp(-dy)

where N, is the number of unlabeled samples.

®)

3.2 Self-Paced Learning Paradigm

MTNN is trained only with labeled data at first. Then pseudo-labels
and weights are assigned to unlabeled samples through predictions.
If the unlabeled data are fed to the model training directly, data with
unconfident predictions will degrade the accuracy. Therefore, a self-
paced paradigm [26] is adopted to gradually introduce unlabeled
data with high confidence for training. The procedure of the self-
paced learning is summarized in Alg. 1. The learning can be repeated
for R rounds with R = 4 in the experiment.

An indicator vector v = (v, vy, . ..,vN) is used to decide which
samples are selected for the next training cycle. Selected samples
will have v; equal to 1; otherwise, they are 0. Labeled samples
always have v; = 1. For unlabeled samples, the selection criteria is
based on following,

: K k nk
v = {l, if —wi X, yy log gy < A,

0, otherwise,

©

where 1 is the threshold to the weighted loss of each sample for
selection. The underlying assumption is that small loss indicates
high confidence.

The threshold A is determined by training an auxiliary network
[26] with the same structure as the classification stream. After
the training of multi-task network, pseudo-labels and weights are
assigned to unlabeled samples. We divide the unlabeled dataset S;, to
m subsets, i.e, {Slll, 5124, ..., S}, equally with ascending order of the
loss in the classification stream. Then we try training the auxiliary
network indepdendently with S}, SLUS2, ..., {SLUS2U- - -US™} as
the training sets, respectively, and use the initially labeled samples
as the testing dataset for validation. Suppose the best validation
accuracy is achieved by subsets SL U - --US" (1 < h < m). Then we
choose the highest loss in the classification stream of the unlabeled
samples in these subsets as the value of A.

Algorithm 1 Self-Paced Semi-Supervised MTNN

Input: Input labeled dataset S; and unlabeled dataset Sy,.
Output: MTNN with maximum accuracy and low false alarm.
1: Define v; as the indicator and w; as the weight for a sample s;
2: Define T as the training set;
3: Define R as the maximum rounds for self-paced learning;
4: vs — 1,wg < 1,Vs € 53
5: vg «— 0,wg «— 0,Vs € Sy;
6: fort =1 — Rdo
7 T « {slvs =1,Vs € S US,};
8 Generate pairwise constraints based on training dataset T;
9 Train MTNN with T and pairwise constraints;
10: Assign pseudo-labels to s € S, using the classification
stream;
11: Compute weight wg, Vs € Sy, according to Eq. (8);
12: Update indicator v, Vs € Sy, according to Eq. (9);
13: end for
14: return MTNN;

4 EXPERIMENTAL RESULTS

This self-paced MTNN is implemented in Python with Tensorflow
1.2.1 [27] on a Linux server with an 8-core 3.4GHz CPU, a Nvidia
GTX 1080 GPU, and 32GB memory. The framework is validated
on 28-nm industrial benchmarks from ICCAD2012 CAD contest
as described in Table 1. The benchmark b1 is omitted as it is too
small. To verify modeling performance with different amount of
labeled data, the network is trained using different ratios of labeled
samples, i.e., {0.1,0.3,0.5,0.7,0.9,1.0}. When randomly generating la-
beled samples from the training datasets, we keep the ratio between
hotspots and non-hotspots the same as that in the original dataset.
The unselected samples are regarded as unlabeled samples. More-
over, to avoid statistical instability in randomness, each experiment
is repeated for five times with different random seeds and the aver-
age results are reported. To handle the imbalanced dataset, biased
learning [5] is adopted in training to increase accuracy and reduce
false alarms. Initial learning rate for training is 0.001 and batch
size is 32. The unlabeled samples are divided into 15 subsets for
auxiliary network training. The self-paced learning paradigm loops
for 4 rounds (R = 4).

General runtime for training the self-paced MTNN is around
60 minutes. The prediction time for each test case with several
thousands of clips in Table 1 is around 2 minutes, which could enable
huge time savings compared with lithography simulation. Thus we
will not separately report runtime in the following discussion.

We compare accuracy and false alarm on the testing dataset with
one machine learning based detector, as shown in Table 2. “DAC”
denotes the deep biased learning approach with DCT [5], and “SSL”
denotes our self-paced semi-supervised learning algorithm. The
classification stream of ”SSL” has the same structure as the CNN-
based detector in "DAC”. At a lower selected ratio like 0.1, 0.3, 0.5,
0.7, our framework achieves better hotspot detection accuracy on
average of 65.94%, 77.50%, 90.63% and 94.23% with slight false alarm
compromise, respectively. At a higher ratio like 0.9 and 1.0, there
is no significant difference between the average accuracy between
the two detectors, since enough labeled training data is available.



Table 1: Statistics on ICCAD2012 28nm Benchmarks

Train Test
Dataset

#HS #NHS | #HS #NHS

b2 174 5285 498 41298
b3 909 4643 | 1808 46333
b4 95 4452 177 31890

b5 26 2716 41 19327

Fig. 4 plots the average testing accuracy and the standard devia-
tions of five random seeds with different amounts of training data.
When the ratio increases, the accuracy of DAC has a rising trend
while the accuracy of SSL stays high and fluctuates within a small
range. With different random seeds, the accuracy of SSL is more
stable compared with that of DAC, as the deviations are smaller.
Result of SSL on benchmark5 shows a difference from other bench-
marks with a similar uptrend as DAC instead of keeping stable at a
higher accuracy. This may due to the limited hotspot samples of
benchmark5. In the case of ratio 1.0 with all labeled training data
selected, SSL trains MTNN once without the self-paced learning
paradigm and realizes better performance on benchmark 2 and
3. It indicates that forcing similar pairs to become closer in the
clustering stream of MTNN can help the generalization of the dis-
criminative model, especially for the less imbalanced training set.
Furthermore, for a fair comparison with the DAC work, we adjust
the decision boundary of each model to achieve the same number
of false alarms and compare the accuracy, as shown in Table 3. Our
approach is able to achieve higher accuracy with the same false
alarms, especially when the amount of training data is small.
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Figure 4: Comparison of testing accuracy versus ratio of
training dataset. Both average and standard deviation values
are drawn for different runs.

We further explore the efficacy of the self-paced learning par-
adigm for different ratios of training data in Fig. 5. As unlabeled

samples are gradually introduced into training, the model is essen-
tially training from “easy” to “mature” through each round [28].
From the showing results, we can see that through each iteration,
the accuracy is gradually increased. This uptrend is sharper espe-
cially when the selected ratio is low. We can see that for low ratios
like 0.1 and 0.3, there is an obvious trend of gradually increasing
accuracy with different rounds. For high ratios like 0.7 and 0.9, more
fluctuation at high accuracy is observed.
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Figure 5: Accuracy in training rounds of SSL for one random
seed. Curves for different ratios of training dataset from
benchmarks b2-b5 are plotted.

5 CONCLUSION

A semi-supervised hotspot detection framework with self-paced
multi-task learning is presented. With the joint learning of a classi-
fication model and a clustering model, MTNN is able to leverage
unlabeled data samples for training. By gradually incorporating
the unlabeled samples through a self-paced learning paradigm, the
model can achieve 2.9-4.5% better accuracy at the same false alarm
levels than the state-of-the-art work using 10%-50% of training data.
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