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In this paper, we present two approaches to the error analysis of a semidiscrete mass-preserving
discontinuous Galerkin method, introduced by Lu, Huang and Liu (2015, Mass preserving direct
discontinuous Galerkin methods for Schrodinger equations. J. Comp. Phys., 282, 210-226), for the
solution of multi-dimensional Schrodinger equations. The first approach is based on an explicit global
projection using tensor product polynomials on rectangular meshes. The L2 error bound obtained is
optimal, independent of the size of the flux parameter. The second approach is based on an implicit global
projection using standard polynomials on arbitrary shape-regular meshes. The L2 error bound obtained
for this method is also optimal, but it is valid only when the flux parameter is sufficiently large. Numerical
experiments are presented to demonstrate the theoretical results.
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1. Introduction

In this paper we prove the optimal L? error estimates of the mass-preserving discontinuous Galerkin
(MPDG) method for solving linear Schrédinger equations,

i, + Au—dWu=0, (x.0)exI[0,T], (1.1a)

M()C, 0) = MO()C), (1lb)
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where £2 is a bounded rectangular domain in R¢, ug(x) is a given smooth complex function and @
is a real smooth potential function. We assume periodic boundary conditions for simplicity, although
this is not essential for the analysis; other boundary conditions can also be considered along the same
lines.

The MPDG method studied here was introduced in the study by Lu ez al. (2015) for solving both
linear and nonlinear Schrodinger equations. As for the semidiscrete MPDG method in one-dimensional
setting, the optimal L? error estimates was obtained in Lu ez al. (2015). The key idea, following Liu
(2015) and Liu & Ploymaklam (2015), was to introduce a global L? projection dictated by the choice
of numerical fluxes, with which the troublesome terms are eliminated in the error equation, leading
therefore to optimal L? error estimates. However, such a technique is no longer directly applicable in
the multi-dimensional setting.

Our main objective in this work is to obtain optimal L? error estimates for semidiscrete MPDG
schemes in solving (1.1). We present two different approaches to handle both structured and unstructured
meshes. The first approach is a direct extension of the analysis in the study by Lu ez al. (2015) based
on the tensor product of polynomials for rectangular meshes, yet the troublesome terms from interfaces
cannot be completely eliminated in the multi-dimensional case. A superconvergence result is established
by taking advantage of the Cartesian structure of the grid; using this superconvergence result we are
able to obtain the optimal L2 error estimate. Moreover, the obtained result is valid with or without a flux
parameter.

The second approach is to handle unstructured shape-regular meshes. The semidiscrete MPDG
scheme with penalty using standard polynomials is shown to admit the optimal L? error estimate.
Here we follow some error estimate techniques in the discontinuous Galerkin (DG) method for elliptic
problems (see Arnold ef al., 2002). The main novelty is the global projection defined by

/ (u—Hu)yvdx+A(u — ITu,v) =0,
2

for cell-wise polynomials v and the corresponding global bilinear operator A(:, -). The existence of such
a projection and the corresponding projection error are obtained by using the coercivity property of the
bilinear operator A(-, -). In the analysis of the projection error both the energy error and the L? error
are carefully derived through two coupled inequalities. For the MPDG approximation we split the error
between the exact solution u and the numerical solution u, into two parts: u;, — I1u and ITu — u, which
enables us to control both cell integrals and the inter-element jump terms simultaneously. The obtained
result is shown to be valid only when the flux parameter is suitably large, even though MPDG methods
also give an optimal convergence rate in numerical tests for 8 small or zero.

In the study by Xu & Shu (2005), a local discontinuous Galerkin (LDG) method was developed
to solve the generalized nonlinear Schrodinger equation. For the linearized Schrodinger equation, the
authors proved the error estimate of order k + 1/2 for polynomials of degree k . The optimal error
estimate was further verified in the study by Xu & Shu (2012) by using special local projections.
In the study by Lu ef al. (2004), an LDG method was presented for solving one-dimensional linear
Schrodinger equations so that the mass is preserved numerically. In the study by Zhang ef al. (2012a),
a mass-preserving DG method was presented for the one-dimensional coupled nonlinear Schrédinger
equation, and in the study by Zhang et al. (2012b) for both one- and two-dimensional nonlinear
Schrodinger equations. In the studies by Zhang er al. (2012a,b), the authors adopted a numerical
flux for the solution gradient as the diffusive flux proposed in the study by Liu & Yan (2010).
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In the study by Zhang er al. (2012b) the conservation property is verified, and further validated by
some long-time simulation results.

For simulating solutions of Schrodinger equations, both linear and nonlinear, various kinds of numer-
ical methods can be found in the literature. For instance, the finite difference method (Delfour et al.,
1981; Taha & Ablowitz, 1984; Chang & Xu, 1986; Chang & Wang, 1990; Chang et al., 1999;
Kurtinaitis & Ivanauskas, 2004; Becerril et al., 2008), the finite element method (Levin & Shertzer,
1985; Chang & Wang, 1990; Robinson, 1991; Karakashian & Makridakis, 1998), the spectral method
(Feit et al., 1982; Feit & Fleck, 1983; Hermann & Fleck, 1988; Pathria & Morris, 1990) and the splitting
method (Bao et al., 2002; Gradinaru, 2007). The MPDG method falls into the category of direct DG
(DDG) methods for higher-order PDEs, as introduced in the studies by Liu & Yan (2009, 2010) for
diffusion. The feature in the DDG schemes proposed in the studies by Liu & Yan (2009, 2010) lies in
numerical flux choices for the solution gradient, which involve higher-order derivatives evaluated when
crossing interfaces, motivated by a trace formula for the derivatives of the heat solution (see Liu &
Yan, 2009). With this choice, the schemes obtained are provably stable and optimally convergent (Liu,
2015). In contrast, the numerical flux for the solution gradient in the MPDG method (Lu et al., 2015) to
Schrodinger equations is much simpler, clearly indicating that the MPDG method provides an attractive
alternative for solving the Schrodinger equations.

Obtaining a priori error estimates for various DG methods has been a major subject of research.
In the literature, there are only a few works on error estimates of the DG method for higher-order
PDEs, while the main technical difficulty in obtaining an optimal error estimate lies in the lack of
control of jump terms on cell interfaces. The first a priori error estimate of order O(h*) for the LDG
method of linear convection—diffusion was obtained in the study by Cockburn & Shu (1998). With a
particular numerical flux, the optimal convergence rate of order O(h**!) was obtained in the studies
by Castillo (2000) and Castillo er al. (2000, 2002). For the numerical method of Baumann & Oden
(1999) when applied to nonlinear convection—diffusion equations, the optimal error estimate for at least
quadratic polynomials was obtained by Riviere & Wheeler (2000). For the DDG method, the first a
priori error estimate of order O(hk) for linear diffusion was obtained in the study by Liu & Yan (2010).
The optimal order is further obtained in the study by Liu (2015) by the use of a global projection, which
eliminates troublesome jump terms in the error equation and allows for an effective control of nonlinear
convection with the aid of numerical dissipation and projection error bounds. The error analysis using
a global projection also applies well to conservative DG methods for dispersive PDEs, for instance in
the study by Bona et al. (2013) for the generalized Korteweg—de Vries (KdV) equation, in the study by
Liu & Ploymaklam (2015) for the Burgers—Poisson system and in the study by Liu & Yi (2016) for a
Hamiltonian-preserving DG method for the generalized KdV equation.

The rest of the paper is organized as follows: in Section 2, we review the semidiscrete MPDG
method for the one-dimensional Schrodinger equation (1.1), and the optimal L? error estimate result.
In Section 3, we investigate the MPDG method with rectangular meshes. The error estimate of the
semidiscrete MPDG method for solving (1.1) is presented, while an explicit global projection plays
a special role. For unstructured shape-regular meshes, we prove the optimal L? error estimate for the
MPDG method with penalty (large flux parameter 8) in Section 4. We provide numerical examples to
show our theoretical results in Section 5. Finally, concluding remarks are given in Section 6.

Notation. Throughout the paper we denote the L?>-norm by |-||, the L®-norm by || - lloo> the H™-
norm by |||, and the H™"-seminorm by |-|,,. W™? with 1 < p < oo as the usual Sobolev space, with
W2 = H™ We may specify the integral domain explicitly if it is a computational cell / ;or K, or a master

domain [ := [—1, 1]. If it is the whole domain £2, we do not specify the domain unless necessary. We
also denote by 052 the boundary of £2.
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2. The MPDG method for one-dimensional Schrodinger equations

In this section, we review the MPDG method for the one-dimensional problem
i, +u, —dx)u=0, 2.1)

subject to initial data
u(x,0) = ug(x) 2.2)

imposed on §2 = [0, L], with periodic boundary conditions.
Let the mesh be /; = [xj_%,xﬂ%] forj=1,2,... , N. The center of the cell is x; = (xj_% +xj+%)/2
and h; = Xl = X1 We denote the complex piecewise polynomial space V) as the space of
2 2
polynomials of degree at most k in each cell /;, i.e.,

Vyi={v:vePU), j=1,2,...,N}.

Then the semidiscrete DDG scheme of (2.1) is as follows: find u;, € V,, such that

1 1
i/uhtvdx—/uhxvxdx—l—ﬁ;;v jf% +(w, — v, 2 —/@uhvdx=0 (2.3)
Jj Jj 2 72y
holds for Vv € V;, where
+3 -
w ]_; = W(,Xfl._’_l/z) - W(.x;—_l/z)5

and the numerical fluxes are

f—ﬁM+9u++(1—9)u— = —0)u +6u, Vo e[0,1] (2.4)

hx — h hx hx® h — h h ’ ’ .

where h = 1 (ij 1+ ij) and [w] = w(x;jrl /2) - w(x;rl /2) when evaluated at the cell interface

Xj+1/2- The parameter § is a real number to be selected to tune the scheme for achieving optimal
convergence. At the domain boundary we use a periodic extension to determine the numerical flux.
In the study by Lu ez al. (2015) a global projection Pw on §2 is introduced so that Pw]| I € pk (Ij) for

k> 1andw e C', satisfying

/(Pw—w)vdx:O VueP2 (1), j=1,....N (2.5)
Ij
and
Puly =w (). Podis =w, (51), j=1...N, (2.6)
where
P = (1 —0)Pw" +0Pw, P, := LIV +0Pw] 4+ (1 —6)Pwy. (2.7)

* h
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Note that for k = 1, instead of (2.5), we need only (2.6) to define the unique projection. At the
domain boundary the periodic extension is adopted to be consistent with the selected numerical flux.

For a piecewise smooth function w, we need to replace w(x;, ) by wlx E and w,(x;, ) by w, | e

respectively. Hence the error estimate between the exact solutlon U and the numerical SOlU.thIl u can be
estimated as

luy, — ull < Ny, — Pull + llu — Pul|. (2.8)

With this global projection the troublesome terms in the error equation are under control, so that it is
possible to recover the optimal estimate, as long as the projection is well defined and has the desired
approximation properties. Indeed, the following was established in the study by Lu er al. (2015). We
observe that a more refined condition for & is necessary for the general case, so we revisit the proof by
showing the places where the condition is refined.

LEMMA 2.1 The projection P is uniquely defined for
ﬂ¢2wa—9nmm+1+ymmr+ﬁQﬂ+a—ﬂﬂy j=0,...,N—1, (2.9)

if 8 € (0, 1), or for any real B if 0 =0or6 = 1.
Proof. The global projection Pw may be expressed as
k+1

. X X
Pl =3 o). E=555  j=LN, (2.10)
=1 J

where {<pl}]1‘+1 is the Legendre basis, which is a sequence of orthogonal polynomials on [—1, 1]. Equation
(2.5) and the orthogonality of the Legendre polynomials imply that one may take v = ¢, to get

J 2i—1 (! h; .
=2 /_lw(xj+3§)<pi(§)d§, =1 ... k-1, 2.11)

where we have used [’ L 0PE) dE = . It remains to determine both c’ and C;<+l’ j=1,... ,N.
Condition (2.6) gives

k+1 . k+1 i1
03 e+ =0 S o =w (xj+l) :

k+l . i1 . i1
ORY: z (=1 +2(1—6) Z (1) +26 z o= =, (x11) -

2

(2.12)

Using the periodic boundary condition, the matrix form of equation (2.12) reduces to

e =1, (2.13)
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D = (), with

: c |
o= “k , Y = 1 2.14)
P

k—1 i1 k—1 .
w (412) = (1 =) T dMe=0 =0 3 do

where @ = (),

bl

k—1 . , k—1 1 k—1 . k—1 i1
hw, (1) =20 = 0) z cgl(1) =26 > Alg(=1) + B P (1) — B P Ao (=1)

forj=1, ..., N. The coefficient matrix D is
A B 0 - ... 0
0 A B O 0
D= . e , (2.15)
: A B
B - A NxN
where
A= ( 0(1) 0941 (1) )
—Ber (D) +2(1 = D () =By (D +2(1 =g, (D) )°
B:( (1= 0)g(- 1) (1= 0)g41 (=) )
B (=1) + 209, (—1) Bor (=D + 29(,0k+1 (=D
Recall that

o (ED = ED, k=1,2,..., (£ = %(il)kk(k -1, k=23,...;
then a direct calculation shows
det(A) =20(1 — ) [¢r (—1) — Pp(=D] = 2k6(1 — 6).
For0 <6 < 1and k > 1, A~! exists; hence the determinant of D can be expressed as

det(D) = |AIN|I + (—=DNLATIB)N).
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We want to show det(D) # 0. To this end, we let w satisfy lwl = 1, and calculate

det (A + (—1)k_1a)B)

B 0+(1-0o 0—(1-0)w
Tl Bw=1)+k(k—1)(1 =0 —0w) —Bw+1)+k(k+1)(1—0+0w)

= =20 (- k[0 = 0)@+) + (07 + (1 =07)]).
One can verify that det (D) = 0 if and only if there exists A such that
W= (=D,

where X denotes an eigenvalue of A~1B, which can be complex. For a fixed w, if B is selected such that
det(A + (=) 'wB) = 0, then we have A = (—1)*/w. We thus determine  such that

W= =D = DY,
from which we must have
w=exp(rk+1+2j/N)yy, j=0,1,...,N—1.
Hence, in order for det(D) # 0 to hold, it is sufficient to select
B # 2k0(1 — 0) cos(k + 1 + 2j/N) + k26 + (1 — 0)?).
In addition, when 8 = 0 or 1, (2.5)—(2.6) becomes a local projection, whose existence is similar but

easier to verify. In a sentence, for any 6 € [0, 1], Pw is uniquely defined with a proper choice of 8 as
stated in (2.9). O

REMARK 2.2 For k > 2, § = 0 suffices to ensure the existence of the projection for any 8 € [0, 1]. For
0 = %, it suffices to choose 8 # 15‘ [k +cos(k+1+4+2j/N)rx]forj=0,...,N—1.

LEmMA 2.3 (Lu et al., 2015). Assume that w € H™ with m > k + 1. If the global projection is uniquely
defined, then we have the projection error

lw = Pwll < CHH wly (2.16)

where C is independent of 4.
All these together lead to the following result.

THEOREM 2.4 (Lu et al., 2015). The error between the exact solution u of (2.1) and the numerical
solution u of (2.3), (2.4) with B satisfying (2.9) satisfies

lu( ) — w0l < CHHY, 0<r<T, 2.17)

where C depends on lul, 1, lul; ¢, T and the data given, but is independent of 4.
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Numerical experiments carried out in the study by Lu e al. (2015) indicate that different choices
of 6 € [0, 1] yield the same order of accuracy, though numerical errors can be slightly different. We
also observed that both numerical errors and orders of convergence are identical for both § = « and
0 =1 — « for o € [0, 1]. Therefore, in the error analysis presented in this work we restrict ourselves to
the case 0 = %

3. Error estimates for rectangular meshes

In this section we prove the optimal error estimates of MPDG approximation based on tensor-product
polynomials of the multi-dimensional Schrédinger equation

i, + Au=@x)u, t>0, (3.1)

posed on x = oo e = Hf’zl [0,L;] C RY, subject to both initial data u(x, 0) = uy(x) and
periodic boundary conditions. It is known from the study by Jensen (1986) that if ® € W™ (m > 0)
is a real-valued function, then the solution operator maps from H” to H™ for any ¢t > 0. In our error
estimate result, we will assume @ has required regularity so that the solution has smoothness as needed
in our error estimates.

3.1  Scheme formulation

We partition the domain £2 into rectangular meshes

N
Q= Uo[:l K,
where o = (ety, ..., ay), N = (Ny, ..., Ny). We use rectangular meshes {K} C Ty, with K, =
Iolt1 X oo X Igd, where [, = [x&[_l/z,x&iﬂ/z] fora; =1, ..., N;. Denote by h' = max;_, -, I,

with & = max ;4 hi. In what follows we shall take uniform meshes with element size H?: 1 R, unless
otherwise stated.

We define the DG space as the space of tensor products of piecewise polynomials of degree at most
k in each variable on every element, i.e.,

W,={v:veQK, VxekK, a=1,...,N},

where QF is the space of tensor products of one-dimensional polynomials of degree up to k. For the
one-dimensional case we have Q%(K) = PX(K), which is the space of polynomials of degree at most
k defined on K. Hence, the traces of functions in W, are double valued on I hO = I\0£2 and single
valued on Fha = 052, where I, = Fho U Fha.

We also introduce some trace operators that will help us to define the interface terms. Let K! and K>
be two neighboring cells with a common edge e; for w defined on 3K, i = 1, 2, we define the average
{w} and the jump [w] as

wh= 30w, +wy). [wl=w,—w, one,
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768 H. LIU ET AL.

where the jump is calculated as a forward difference along the normal direction 7, which is defined to
be oriented from K' to K2, with w; = w|,x. We consider the DG scheme

i/ uh,vdsz(uh,v)—i—/ D (x)uy,v dx, (3.2)
2 2
where
Auy,v) = Z / Vu, - Vvdx + Z/(Bn/ﬁh[v] + [, ){9,v}) ds (3.3)
KeTy K ecl, V€

with the numerical flux for 9, u,, taken as
ity = B [uy] + (8, (3.4)
The characteristic length £ for the edge e = 0K | N 9K}, is typically defined as
hy = 161Gy - il, (3.5)
where C; is the centroid of element K, and 7 is the unit vector normal to K. At the boundary we replace

clifz by 267) where D € e such that Cﬁ is perpendicular to e. In the case of uniform rectangular

meshes we have h, = K at each interface xfxi+1/2 fora; =1, ..., N;. Note that in formulation (3.3),

the choice of n on the edge e € T hO (pointing to K; or K,) does not affect the products [u,]{d,v} and
d,uy,[v]. Hence, both {d,u;} and {d,v} may be defined based on a fixed choice of n on e. However, on
e c I’ha, we take 7 as the usual outside unit normal to 952 N e.

The initial data for the obtained semidiscrete DG scheme is given as

where I is the standard piecewise L, projection.

3.2 Conservation properties

We now discuss two important conservation properties of the above semidiscrete DG scheme. Note that
for any 8 € R, the following holds:

A(v,v") = A0, ), (3.7)

where v* denotes the complex conjugate of v. Therefore total mass is conserved in the sense that

d
g7 1tall” = 0. (3-8)
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Furthermore, we choose v = ”Zt’ complex conjugate of uy,, in (3.2), so that

i/ |uh,|2dx=A(uh,u;;,)+/ @ (X)uyul, dr. (3.9)
2 2

This, upon adding its conjugate, gives

d
— (A(uh,u;;) +/ ¢|uh|2dx) =0, (3.10)
dr Q

where
Ay up) = > /K|Vuh|2dx+ Z/(ﬁh—‘|[uh]|2+2Re({anuh}[u;]))ds.
KeTy ecl}, V€

Hence, (3.10) may be regarded as the discrete approximation of the energy conservation

d 2 2 _
5/9(IVMI T+ oWlP) dr =0,

which is another well-known feature of the Schrodinger equation.

3.3 Projection and projection properties

In order to obtain the estimate for the MPDG scheme (3.2), (3.3) and (3.4) with admissible 8 using
rectangular meshes, we follow Liu (2015) to use an explicit global projection similar to the one-
dimensional case. Such a projection can be defined as

Pw =P ®...@ Py, (3.11)

where the superscripts indicate the application of the one-dimensional operator P) with respect to the
corresponding variable x'.
In other words, for a given (piecewise) smooth function w, the projection Pw is the unique function

in W), defined in (3.11), with P®) determined by

/p' (PWIw@ —we) 2v@ i =0 vve P (1), a;=1.....N, (3.122)
gn-! [p(xf)w] n {3xi (p(xf)w)} o =W (3.12b)
{p(xf)w} oo =" (3.12¢)

where periodic extensions are used at the domain boundary.
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Similarly to the one-dimensional case, there is an approximation result for the above multi-
dimensional projection:

1Pw —wll < CHH wly (3.13)
where C is independent of 4.

Finally, we list some inverse properties of the finite element space W), that will be used in our error
analysis. For any function w, € W, the following inverse inequalities hold (Ciarlet, 1978):

8w, < Ch ™! [lwy, I, (3.14a)
Iwyllr, < Ch 2wy, (3.14b)
Wy lloo < ChH=2{lw, I, (3.14¢)

where d is the spatial dimension, and I, denotes the boundary sets of all elements K ,.

3.4 Error estimates
Let us first present two technical lemmas, which will be used in the proof of the main result.

LemMa 3.1 For k > 1 and n € W, the linear functional w — A;(Pw — w, n*) is continuous on H*+2
with norm bounded by C||n||, where C is independent of .

Proof. Let us use the notation th = Zeefh fe and set £ := Pw — w; we have

AGE.n") = Z/vs Vn* dx+/ (3,8 [n*] + 161 {a,n"}) ds

KeTy

which can be written as

d
Alen) =D A (En"),
i=1

A; (EY) (/ gx,nx,dx—i-/ e (948 [n*] + (61 {8,in })x:'yiﬂ/zdx)

a

where

with dif = Hj ” dx/. The proof of the approximation results for A;, i = 1,...,d are analogous;
therefore, we present only the one for A;. Here we use an argument similar to the one in the proof of
Cockburn et al. (2001, Lemma 3.6) for a local projection.

Using integration by parts we have

A1(§”7*)=— (/ snlldx—l—/

(=& [n" ]+ (E}n5]) dfcl);
1 ay+1/2

’11
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then
Ay E D] <D /K En'y o dx+ / 1 (—Ealn*1+ {E)n"0) o ds'!
o o allg o]
< —E.[n* * di'. 3.15
< €Ml + Z /K " (=& "1+ (Y ])X«wal/Z‘ (3.15)
Setl = It}” U I;l 415 We use the trace inequality to obtain
ook * ,3
(=&aln ) | < I U =IEN + [
ap+1 h
< Ch P2 il (W 2N E g, 4+ R Y218 Nlo g + A T8 o)
< Clinllo, &Ny + B 1 o + 16, lo.)-
Similarly,
‘({s}[njgll)xl e Ch™ 2 nallo (=218, + B2 1E, o)
o]

< Chllngillo (2118 Nlg, + h 116, lo)-
Substitution of these estimates into (3.15) yields
AL 1) < Clml + hling, |+ B2 o IDGT2NEN + A7 E I + 15, D (3.16)

By Liu (2015, Corollary 7.2), we have form =0, 1, 2,

6l =D D 105(Pw —w)llgg, < CHE= iz, . (3.17)

o |¢|=m
Putting (3.17) into (3.16) and using the inverse inequalities for n we obtain
AL E 0] < CHwlp Il < CliwllgalInll- (3.18)

The proof of Lemma 3.1 is complete. t

LEMMA 3.2 Let A be defined in (3.3). For £ = Pw —w withw € H*t? and € W, we have

JAGE, ™) — AGE*, )| < CH 2wl linll, (3.19)

where the constant C is independent of /.
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Proof. We first claim that
Ay, n") =0 Vwlg, € PkH(Ka), new,. (3.20)

To prove this claim, we fix n*e W,,. Since P is a polynomial-preserving operator, (3.20) holds true for
every w € W,,. Therefore, we need to consider only the cases

i\k+1
W(x)lKa = aa (xj) + s

where the constant a, may vary from element to element. Below we shall use the notation w; = w(x') to
denote dependence only on variable x’.
For j = 1, we integrate by parts and obtain

Al@,n*):—z( /K Enty de+ /K p (—0, [n*]+{€}[3x1n*])xé_+l/2d£1);

we have Pw = P("l)wl and n;xl is a polynomial of degree at most k — 2 in x! and we obtain

Z/{( (Pw —win},, dx = Z/ (P(Xl)wl — wl) na dx = 0.

In addition, we have
(Pw) = (P} = (w), 90 (Pw) = P w, = daw.

Thus, Ay (§,7") = 0 forw|g = a, (xl)k+l.
In the case j # 1, due to the special form of § we have 9,1 = 9,1 (Pw —w) = 0 and

on the interface x! = xél 41720 where 8:1\5 = 0 and [£] = O by a direct check. We thus conclude that
A&, n")=0forwlg =a, (@)kt1 . This completes the proof of (3.20).

Due to (3.20), A, (&, n™) vanishes over P* for any 0 < s < k 4+ 1 when restricted to each K ,. Note
that forw = wyxy , we have Pw = (Pw) xg . hence § = & xx , where x g is the usual indicator function
of K. By applying the Bramble—Hilbert lemma combined with the standard scaling argument on the
restriction to K, we obtain

AE ) < CHP Wl ke, Inllg £,
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where f(a includes K, and its immediate neighboring cells. In general, for w € H**2, we have w =
w2 Xk, hence § =§ > Xk, - Therefore

AE ) =D AiExg,n") < CHP2 D Iwlio kil &,

1/2 1/2
< CH+? [Z |w|£+m} [Z ||n|%,,<a] :
o o

Applying this to all A;, we proceed with

IAGE, ") < CH 2wl s lInll.

Hence we have proved Lemma 3.2. (I
We are now ready to present the error estimate result in the following.

THEOREM 3.3 Let u;, be the solution to the semidiscrete DG scheme (3.2), (3.3), (3.4) with any 8 except
for k(k 4 cos(k + 1 + 2j/N)m)/2 with j running from O to N; — 1 for each fixedi=1,...,d,andu a
smooth solution to (3.1). Then we have the error estimate

luy G0y —uC 0l < CHFYL 0<1<T, (3.21)

where C depends on [|ull; 1, lltll;11> @l T linearly and the data given, but is independent of /.

REMARK 3.4 In the multi-dimensional case, the proof of Theorem 3.3 requires stronger smoothness
assumptions on the exact solution than those in the one-dimensional case.

Proof. The choice of § in the case 6 = % is explained in Remark 2.2. The scheme consistency implies
that for the exact solution u,

i/ u,vdx = A(u,v) +/ Duvdx, (3.22)
2 2
which when subtracted from equation (3.2) yields the error equation
i/ (u—uy),vdx =A(u — uy,v) —I—/ D (u — uy)vdx. (3.23)
2 2

Let Pu € W), be the projection of u defined in (3.12), and set
n=Pu—u,, &=Pu-—u, (3.24)

so that u — u;, = n — &, with which the error equation is written as

i/ n,vdx:i/ Etvdx+A(n—$,v)+/ Dd(n—&)vdx.
Q Q Q
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We take v = n* to obtain

i/ o dx = i/ En* de+ AQy — &,17) +/ Sy — )" dr. (3.25)
Q Q Q
Since the numerical fluxes have been made so that

A(m,n™) =Am*,n). (3.26)

Hence
d
id—llnll2 = 2iRe (/ gn* dX) —2ilm (/ Pén* dx) +AE,n") —AE", ). (3.27)
1 0 2

In the multi-dimensional case, A(§, n*) or A(§*, n) is not necessarily zero, but still controllable with the
superconvergence result in Lemma 3.2.
Putting (3.19) into equality (3.27), we obtain

d
Ennu2 < 2l& Il + 12 o IEID Il + Clulg B Il (3.28)
Hence
d k+2
1< IEN + 1@l IE ] + Clulyof
< CHY 1+ 1Dl oo + lulynh), (3.29)

where we have used (3.13) so that ||§,]| + §]|< Cllul, + Iulk+1)hk+1. Hence integration of (3.29)
gives

INCOI < 190+ C + [Pl + Ul AT < CHFF, (3.30)
where we have used
InC, 0l = Puy — Houpll < 1Pug — upll + llug — Myugll < CH. (3.31)

Upon using the triangle inequality with (3.13) we obtain the desired error estimate (3.21). g

4. Error estimates for unstructured meshes with penalty

In this section we still consider equation (3.1) posed on 2 = Hﬁl: [0, L] C R4 subject to both initial
data u(x, 0) = uy(x) and periodic boundary conditions. Here we derive the optimal error estimates for
the DG method with penalty using unstructured meshes. Let 7, be a shape-regular triangulation of £2
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such that 2 = U Ke’ﬁ,k . For any element K € 7, we assume that

diam(K) -

VK eT,
Pk

where diam(K) is the diameter of K, py denotes the diameter of the maximum ball included in K.
The method in its global form is

i/ uhlvdsz(uh,v)—l—/ Duyv dx, 4.1)
2 2
where
Awv) = > / Vuy, - Vvdx + Z/( V1 4 {8,u,} V] + [, 149, v}) ds, 42)
KeTy, eely

where on boundary faces both [-] and {-} are evaluated using periodic boundary conditions, and A, is
defined as in (3.5). The initial data for the resulting ordinary differential equation (4.1) is chosen as
defined in (3.6).

4.1 Boundedness and stability

We first discuss the boundedness and stability of the bilinear form A(:, -). Following the study by
Arnold et al. (2002), we define the DG norm forv € V =V, + H*(£2):

IIP = D" Mg+ D0 VB + D b I (4.3)

KeTy, KeTy, €€y
It is easy to verify that
[Aw, | < Afwll - IIvIl vV w,v eV, (4.4)

where A is called the continuous constant. We also denote

WIE = D Mg+ D AV

KeTy, ecly,

LEMMA 4.1 There exist I > 0 and « > 0 such that if 8 > I, then
AW > albll> Vv eV, (4.5)

where « is called the coercive constant of A(-, -) on V.

6102 1snBNy €. uo Jasn 47 Juswdolersd add Aq G98656+/09//2/6€A0BNSqE-0oILE/RUlRWIWOD dNO"dIWSpEoR)/:SAY WO} PAPEOJUMOQ



776 H. LIU ET AL.

Proof. A direct calculation gives

A =] /K|VV|2dx+ > hﬁ/|[v]|2ds+2ZRe/({an*}[v])ds

KeTy, eely eel}
1/2 1/2
> > / |Vv[? dx + Zhﬁ/uvuzds— Z/|{a,,v}|2ds Z/|[v]|2ds
KeTy K ecl;, €7¢ ecl;, V¢ ecl}, V¢
€h 1 _ _
> > /K|Vv|2dx— = Z/gl{anv}lzds—l— (ﬂ— 3€ 1) Zhel/el[v]lzds.
KeTy, el eely
Set
h, > [, 1{8,v}*ds
eel}
I > - sup (4.6)
4veV;, Z fK|VV|2dx
KeT,
We have
* 1 -
AW =2 (1=2e) > /K|Vv|2dx+ (1 - 276) > B! /euvuzds > oy vz,
KeT, eely

where oy = (1 — 2¢I") min{1, B} with

1 r
1-2e=1-—=1-_[=>0,
2pe B

provided € = %(F,B)‘l/ 2and B > I'. Finally, using inverse inequalities, we have
a VI = alvll®, veV,

This completes the proof. O

REMARK 4.2 We remark that the right-hand side of (4.6) is a finite number due to scaling and the fact
that V,, is a finite-dimensional space. In some cases we can derive a sharper bound on I". For example,
for rectangular meshes satisfying
i
L 0.
min - 2 0 >

we fix a cell K = K, and recall the estimate for any v € P"[(a, b)],

2 b
max{|v(@ 2, V(b)) < % / () dx,
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which is obtained in the study by Warburton & Hesthaven (2003), so that we have

/a B ds = z/ Ko /T, % |XI_xi1H/2
ok s
27 K|ax1v| dx

i=1

< — \Y 2d.x,
- I’lO’ KI XV|

where dt' = [Tz d¥'. Therefore, using h, = h' < h, we have

hZ/l{av}l ds<—Z/ 19, v| ds<—Z/|Vv|dx

eely

2
This indicates that I" can be taken as ;—; therefore it suffices to choose 8 such that 8 > —J.

4.2 Projection and approximation properties

We first introduce a projection and then present the approximation properties. Define the projection IT
of a function w into space V, as

/(w—Hw)vdx+A(w—Hw,v):0 vVveV,. 4.7
Q

This projection is uniquely defined since for w = 0 with v = —ITw we have
0=IPI* +AW.v) > V> +alvl>  YveV,

where we have used (4.5). Thus ensures uniqueness for v = 0.

THEOREM 4.3 For w € H**! and h suitably small, we have the following projection error:
lw = Iwl < CH** Yl and  flw = ITwll < CHlwlg.y, (4.8)

where C depends on k, d, 1/a, A and the shape parameter y of meshes.

Proof. We carry out the proof in two steps:
Step 1. We first bound the projection error R := w — Ilw in the following way: for any v € V,, we have

allv = Iw|l? < A(v — Tw,v — [Tw)
=A(v—w,v—17w)+/ (ITw — w)(v — ITw) dx
2

< Aflv =wll - llv = Iwll + [[R]| - v = ITw].
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By the triangle inequality we obtain
IRIZ < 2 inf (v = wii* + llv — Twll?)
veVy,
< Cvien‘f v = wil* + llv = wil - llv = Iwll + [IR]| - Ilv — ITwl])
h
< CUIQw — wil* + 10w — wll - 1Qw — IIwll + |IRI - |Qw — ITw|)

for C denoting 2max{l, A/, 1/a}. Here we have taken v = Qw € V,, to be the usual interpolant
polynomial such that

8 (w — Ow) I < CHF " wl ks

where C depends on k, d and y (Ciarlet, 1978).
This, when combined with the estimate

2 -1 2 2
|W|0,8K < C(h |W|0,K + h|W|1,K),

yields
w — Owll* < Ch¥|wiZ, | o (4.9)
Therefore
IRI? < CO* wIE .y + KWl IR+ H il IRI + RN
1 C 3C
< (C+ 12 wit, | + EmRm2 + 5h2k+2|w|,§+1 + 7||R||2.
Hence

IRI? < (14 2C + ChH)R*|wit,, + 3CIR|>. (4.10)

Step 2. We proceed to obtain ||R|| by coupling with a duality argument. Define the auxiliary function y
as the solution of the adjoint problem

{x// — Ay =R inf,
4.11)

Y satisfies the periodic boundary condition on 952.

This problem has a unique solution and admits the following regularity estimate for i € H>(£2):

I¥ill, < IIRII. 4.12)
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‘We then have

IRI> =D /KR*wf — AY) dx

KeT,
3 [rvan s [oe e [ etta
keT, 'K ke, 7K ke "0k "
=Y [rvar 3 [ vr vy
Sk i K (4.13)
£y / (% / [R*1IY] + (8,R* 1] + [R*]{a,,vf}) ds
el ¢ €

= [ Ryvarar.y)
Q
=/ RYy*dx+ AR, ¥").
Q
For k > 1, we take ¥, € V,, to be a piecewise linear interpolant of ¥ so that
197 (¥ = Yl < CR* |l m=0,1,2.

From (4.7) it follows that f_q Rvdx + A(R,v) = 0 for any v € V. Using this formula with v = v we
obtain

||R||2=/9Rw*dx+A<R,w*)=/QR(w*—w,:>dx+A<R,w*—w;>

<IRI- 1Y = ¥l + AIRI - WY — ¥l @.14)
<CR*|Y|,|IR|l + ChI¥ |, IRl
<C(R*||R|| + hIIRID IRII,

where we have used (4.12). Hence
IRl < Ch(hlIR| + NIRID- (4.15)
For h < 1/4/2C, (4.15) yields
Ch
R|| € —— IRl < 2Ch|IR]|-
IRIl < = IRIl < IR

This upon substitution into (4.10) gives

(1= 12C3 )R < (1 +2C + CKH)R*wli,,.
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: 2 1
Further taking 7° < 3ac3 e have

IRI? < B+ 4O h* |wii,,.
Hence for £ suitably small,
IR < CR Y wlyy  and RN < CH¥ Wy

The proof is now complete. 0

4.3 A priori error estimate

We are left to carry out the error analysis for the DG method by using the projection result (4.8). The
consistency of the DG method requires that the exact solution u satisfies

i/ uyvdx =Au,v) +/ Puvdx VveV, (4.16)
Q 2
Hence we have the error equation
i/ (U, —up)vdx = A(u — uy,v) +/ P —uy)vdx VveV, 4.17)
2 2
Set & = IMu — u, n = Iu — u;,; we get
i/ nvdx = i/ Evdx+A(m,v) —AE,v) +/ d(n—&)vdx. (4.18)
2 2 Q
Take v = n*; we have
i/ nm*dx = i/ En*dx+Am,n*) —AE,n") +/ Q(n—&)n*dx. (4.19)
2 Q Q
Thus
d 2 * * E3
d—||;7|| =2Re gn*dx) —2Im(A¢,n")) —2Im dEn*dx). 4.20)
t Q Q
Note that A(§, %) = — [, €n* dx; we thus have

d
allnll2 <20 - Nnll + 2081 Inll + 201l IEN - linll

< QI + 211 + 211D [ IE DI @.21)
< CH* |,
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where C depends on lul |, lul, | and ||@]|,. A direct integration gives
InC.oll < InG 0l + CTRH! < ca+ ik, 1< T. (4.22)

Here we have used the fact ||5(-, 0)|| = |[TTuy — Mgugll < CH1. The L? optimal error estimate is thus
verified.
The main result can now be summarized as follows.

THEOREM 4.4 Let u;, be the solution to the semidiscrete DG scheme (4.1), (4.2) with 8 > I', which
depends on the degree k of the polynomial elements, and u be the smooth solution of (3.1). Then we
have the error estimate

luC, 0 — w0l < CHYY, 0<i<T,
where C depends on lul; y, lul; 1, 1P|, T linearly, 8 and ||ug ||, |, but is independent of /.

ReEMARK 4.5 The analysis above and accuracy results can be generalized to the case with other boundary
conditions. For example, for the Dirichlet boundary condition with u(x, r) = g for x € 952, the
corresponding DG scheme becomes

i/ uhtvdsz(uh,v)—{—/ D (xX)uy,vdx + L(v),
Q Q

where

A(uh,v)=Z/KVuh-Vvdx

KeTy,

+ Z /((ﬂhe_l[”h]+{8n“h})[v]+[uh]{8nv}) ds

0 e
e

- / ((ﬂh;l(o — ) + B,u,)v + (1, — O)an) ds,
etha ¢
L(v) =— Z /(,Bhe_lgv — ganv) ds.

aJe
ecl

Here the boundary condition is weakly enforced in such a way that the boundary data are used whenever
available, otherwise the trace of the numerical solution in corresponding boundary faces will be used.
Our numerical tests (see Example 5.4) on the case with Dirichlet boundary data indeed show similar
convergence behavior to the examples with periodic boundary conditions.

5. Numerical examples

In this section, we present numerical examples to verify our theoretical findings, based on the MPDG
formulation (3.2) with (3.4). In order to preserve mass at the fully discrete level, we follow Lu et al.
(2015) to adopt the Crank—Nicolson method in the time discretization for linear Schrodinger equations,
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and the Strang splitting method for nonlinear Schrodinger equations. Both methods are second order
in time.
Here numerical examples are mainly in a two-dimensional setting, and we refer to the study by
Lu et al. (2015) for extensive one-dimensional numerical examples.

The L? errors are defined by

172

2 12 2
||uR —uf || = (/ (uR(-, T) — uf(-, T)) dx) s ||u1 —u;, H = (/ (u1(~, T) — u2(~, T)) dx) ,
Q Q

where u® and ! denote the real part and imaginary parts of u, respectively.

ExaMPLE 5.1 We consider the (27, 27)-periodic initial value problem for the two-dimensional linear
Schrodinger equation

i, + Au— @ (x,y)u = f(x,y,1), O<x,y<2m, 0<t<T,

where the potential @ (x,y) = sin(x + y), and f(x, y, f) = —(1 + sin(x + y))el®tY=0_ The exact solution
to this problem is

u(x,y, 1) = P70,

We test this example using the P¥ polynomials with k = 1, 2, 3, 4 on a uniform mesh with N x N
cells of equal mesh sizes, h, = h, = ZW” The second-order Crank—Nicolson time discretization

with At ~ hI"51 is used so that the error from the spatial discretization dominates. Our numerical
experiments show that the optimal order of accuracy can be achieved for P, k = 1, 3, 4 approximations
with different 8 and 6. In Table 1, we report the [? errors and orders of accuracy for Pk, k=1,3,4
polynomials with only 8 =0 and 6 = % For the P? approximation, the convergence rate in terms of L?

errors appears to rely on the choice of § when 8 = % Table 2 shows that the order of accuracy for P>
polynomials is oscillating for (8,6) = (0, %), but the optimal order of accuracy is achieved by taking

suitably large 8 such as (8,60) = (15, %). Alternatively, the optimal third order of accuracy can also be
achieved for 8 =01if 6 = 1.

ExaMPLE 5.2 We consider the linear Schrodinger equation
i, + Au=0, u(x,y,0)=e ) (x,y) € [0,27]%, >0,

with periodic boundary condition. The exact solution to this problem is

u(x,y, ) = iy +20)

We test this example using P¥ polynomials with k = 1, 2 on a uniform mesh with N x N cells. The
flux parameter is taken as 8 = 10. For the P! and P? approximations, we take (N, Ar) = (80, 0.005) and
(N, At) = (40, 0.002), respectively. The time histories of errors and mass are shown in Fig. 1. Here the
L? error is defined by

172
) = w0l = (100 = wf G012 + 1 () = w011
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FiG. 1. L2 errors and mass history with 8 = 10, P k=12 approximation.

It shows that the L? error of the P> approximation is much smaller than that of the P! approximation,
and the scheme preserves the mass as expected.

ExAMPLE 5.3 We consider the two-dimensional linear Schrédinger equation

i, + Au+ @(x,y)u=0, (xy) e =[-20,20]x[-20,20], 0<t<1,

i
b 9 O = 9
u(x.y,0) 2 coshxcoshy

subject to the Dirichlet boundary condition u(x, y, t) = g on the domain boundary 92. Consider the
potential

@ (x,y) = 3 — 2tanh® x — 2 tanh? y,
and appropriate g so that the exact solution becomes a plane wave solution

i elt

H ’t - 5 < 4 -
u(®.y.1) 2 coshxcoshy

Here g is taken as the trace of u.

We test this example using PX polynomials with k = 1, 2 in the DG scheme given in Remark 4.5, on
a uniform mesh of N x N cells. Again the Crank—Nicolson time discretization is used. The results in
Table 3 show that the order of convergence of the L? error achieves the expected (k + 1)th order of accu-
racy. We have also observed the oscillation in errors for the P? approximation with 6 = % and 8 =0,
yet the optimal third order of accuracy can be achieved for larger 8. These are similar to the results for
the DG method with a periodic boundary condition.

ExamPLE 5.4 We consider the two-dimensional nonlinear Schrédinger equation

i, + Au+ 2Jul*u =0,
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TABLE 3 Errors for Example 5.3 when using P* polynomials on a uniform mesh of N x N cells and
0 = 4. Final time is T = 1

k=1 At 1.0e-01 50e-02 25e-02 At 1.0e-01 5.0e-02 2.5¢-02
N 80 160 320 N 80 160 320
B=0 |uR—ul| 430e-02 7.76e-03 1.82¢-03 |[lu —ul|| 3.82e-02 6.76 ¢-03 1.52¢-03
order — 2.47 2.09 order — 2.50 2.15
k=2 At 1.0e-01 2.5¢-02 625¢-03 At 1.0e-01 25602 6.25¢-03
N 80 160 320 N 80 160 320
B=0 |uf—uf| 3.13e-03 7.12e-04 9.69¢-05 |lu —ul|| 3.47 e-03 6.44 ¢-04 8.62¢-05
order — 2.14 2.88 order — 2.43 2.90
k=2 At 1.0e-01 25602 625¢-03 At 1.0e-01 2.5¢-02 6.25¢-03
N 80 160 320 N 80 160 320
B=15 |uf —uf| 9.28¢-04 820e-05 1.21e-05 |[lu’ —ul|l 1.16e-03 1.15¢-04 1.71¢-05
order — 3.50 2.76 order — 3.33 2.75
k=2 At 1.0e-01 2502 6.25¢-03 At 1.0e-01 25602 6.25¢-03
N 80 160 320 N 80 160 320
B=20 |uf —uf| 9.69e-04 837¢-05 1.01e-05 [uf —ulll 1.19¢-03 9.40e-05 8.23 06
order — 3.53 3.05 order — 3.66 3.51

over the domain [0, 2712, subject to initial condition
u(x,y,0) = V266
and a periodic boundary condition. The exact solution is a plane wave solution
u(x,y, 1) = ﬁ ei(x+y+2t).

We test this example using Pk polynomials with k = 1, 2, 3, 4 with different 6 and B, on a uniform
mesh of N x N cells. The convergence results are similar to those for linear equations. In Tables 4-5, we
list the L? errors and order of accuracy of P* approximations, respectively. We see that the optimal k + 1
order of accuracy is achieved for P, k = 1, 3, 4 polynomials with 8 = 0, while for the P> approximation,
the order of accuracy appears oscillating for § = 0 with 6 = % and again we can obtain the optimal

order of accuracy by taking (8,60) = (10, %) or (8,60)=1(0,1).

6. Concluding remarks

In this paper, optimal L? error estimates for mass-preserving DG methods applied to multi-dimensional
linear Schrédinger equations are proved. Our analysis is carried out for both uniform Cartesian meshes
using tensor-product polynomial spaces, and arbitrary shape-regular meshes using regular polynomial
spaces, and is valid for arbitrary polynomial degrees. The main ingredients in the proof are the
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construction and analysis of explicit global projections for the former setting, and implicit global
projections for the latter setting if the flux parameter is suitably large. We also give numerical examples
to verify the results of our theoretical analysis. We observe that the scheme for polynomials of even
degree (k = 2, 4) shows peculiar convergence behavior when using the central numerical flux 6 = %,

i.e., oscillation in L? errors for k = 2, and superconvergence for k = 4. For P> polynomials the optimal
order of accuracy can be achieved by either using larger 8 if 0 = %, or using biased fluxes 6 75%
with 8 = 0. Such peculiar convergence behavior has also been observed for hyperbolic wave equations
(see, e.g., Meng et al. 2016; Yi & Liu 2018) for odd-degree polynomials. Extension of this work to
superconvergence results particularly for even-degree polynomials is interesting, and constitutes our

future work.
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