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In this paper, we present two approaches to the error analysis of a semidiscrete mass-preserving
discontinuous Galerkin method, introduced by Lu, Huang and Liu (2015, Mass preserving direct
discontinuous Galerkin methods for Schrödinger equations. J. Comp. Phys., 282, 210–226), for the
solution of multi-dimensional Schrödinger equations. The first approach is based on an explicit global
projection using tensor product polynomials on rectangular meshes. The L2 error bound obtained is
optimal, independent of the size of the flux parameter. The second approach is based on an implicit global
projection using standard polynomials on arbitrary shape-regular meshes. The L2 error bound obtained
for this method is also optimal, but it is valid only when the flux parameter is sufficiently large. Numerical
experiments are presented to demonstrate the theoretical results.
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1. Introduction

In this paper we prove the optimal L2 error estimates of the mass-preserving discontinuous Galerkin
(MPDG) method for solving linear Schrödinger equations,

iut + Δu − Φ(x)u = 0, (x, t) ∈ Ω × [0,T], (1.1a)

u(x, 0) = u0(x), (1.1b)

© The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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ON ACCURACY OF DG METHOD TO SCHRÖDINGER EQUATIONS 761

where Ω is a bounded rectangular domain in R
d, u0(x) is a given smooth complex function and Φ

is a real smooth potential function. We assume periodic boundary conditions for simplicity, although
this is not essential for the analysis; other boundary conditions can also be considered along the same
lines.

The MPDG method studied here was introduced in the study by Lu et al. (2015) for solving both
linear and nonlinear Schrödinger equations. As for the semidiscrete MPDG method in one-dimensional
setting, the optimal L2 error estimates was obtained in Lu et al. (2015). The key idea, following Liu
(2015) and Liu & Ploymaklam (2015), was to introduce a global L2 projection dictated by the choice
of numerical fluxes, with which the troublesome terms are eliminated in the error equation, leading
therefore to optimal L2 error estimates. However, such a technique is no longer directly applicable in
the multi-dimensional setting.

Our main objective in this work is to obtain optimal L2 error estimates for semidiscrete MPDG
schemes in solving (1.1). We present two different approaches to handle both structured and unstructured
meshes. The first approach is a direct extension of the analysis in the study by Lu et al. (2015) based
on the tensor product of polynomials for rectangular meshes, yet the troublesome terms from interfaces
cannot be completely eliminated in the multi-dimensional case. A superconvergence result is established
by taking advantage of the Cartesian structure of the grid; using this superconvergence result we are
able to obtain the optimal L2 error estimate. Moreover, the obtained result is valid with or without a flux
parameter.

The second approach is to handle unstructured shape-regular meshes. The semidiscrete MPDG
scheme with penalty using standard polynomials is shown to admit the optimal L2 error estimate.
Here we follow some error estimate techniques in the discontinuous Galerkin (DG) method for elliptic
problems (see Arnold et al., 2002). The main novelty is the global projection defined by

∫
Ω

(u − Πu)v dx + A(u − Πu, v) = 0,

for cell-wise polynomials v and the corresponding global bilinear operator A(·, ·). The existence of such
a projection and the corresponding projection error are obtained by using the coercivity property of the
bilinear operator A(·, ·). In the analysis of the projection error both the energy error and the L2 error
are carefully derived through two coupled inequalities. For the MPDG approximation we split the error
between the exact solution u and the numerical solution uh into two parts: uh − �u and �u − u, which
enables us to control both cell integrals and the inter-element jump terms simultaneously. The obtained
result is shown to be valid only when the flux parameter is suitably large, even though MPDG methods
also give an optimal convergence rate in numerical tests for β small or zero.

In the study by Xu & Shu (2005), a local discontinuous Galerkin (LDG) method was developed
to solve the generalized nonlinear Schrödinger equation. For the linearized Schrödinger equation, the
authors proved the error estimate of order k + 1/2 for polynomials of degree k . The optimal error
estimate was further verified in the study by Xu & Shu (2012) by using special local projections.
In the study by Lu et al. (2004), an LDG method was presented for solving one-dimensional linear
Schrödinger equations so that the mass is preserved numerically. In the study by Zhang et al. (2012a),
a mass-preserving DG method was presented for the one-dimensional coupled nonlinear Schrödinger
equation, and in the study by Zhang et al. (2012b) for both one- and two-dimensional nonlinear
Schrödinger equations. In the studies by Zhang et al. (2012a,b), the authors adopted a numerical
flux for the solution gradient as the diffusive flux proposed in the study by Liu & Yan (2010).
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762 H. LIU ET AL.

In the study by Zhang et al. (2012b) the conservation property is verified, and further validated by
some long-time simulation results.

For simulating solutions of Schrödinger equations, both linear and nonlinear, various kinds of numer-
ical methods can be found in the literature. For instance, the finite difference method (Delfour et al.,
1981; Taha & Ablowitz, 1984; Chang & Xu, 1986; Chang & Wang, 1990; Chang et al., 1999;
Kurtinaitis & Ivanauskas, 2004; Becerril et al., 2008), the finite element method (Levin & Shertzer,
1985; Chang & Wang, 1990; Robinson, 1991; Karakashian & Makridakis, 1998), the spectral method
(Feit et al., 1982; Feit & Fleck, 1983; Hermann & Fleck, 1988; Pathria & Morris, 1990) and the splitting
method (Bao et al., 2002; Gradinaru, 2007). The MPDG method falls into the category of direct DG
(DDG) methods for higher-order PDEs, as introduced in the studies by Liu & Yan (2009, 2010) for
diffusion. The feature in the DDG schemes proposed in the studies by Liu & Yan (2009, 2010) lies in
numerical flux choices for the solution gradient, which involve higher-order derivatives evaluated when
crossing interfaces, motivated by a trace formula for the derivatives of the heat solution (see Liu &
Yan, 2009). With this choice, the schemes obtained are provably stable and optimally convergent (Liu,
2015). In contrast, the numerical flux for the solution gradient in the MPDG method (Lu et al., 2015) to
Schrödinger equations is much simpler, clearly indicating that the MPDG method provides an attractive
alternative for solving the Schrödinger equations.

Obtaining a priori error estimates for various DG methods has been a major subject of research.
In the literature, there are only a few works on error estimates of the DG method for higher-order
PDEs, while the main technical difficulty in obtaining an optimal error estimate lies in the lack of
control of jump terms on cell interfaces. The first a priori error estimate of order O(hk) for the LDG
method of linear convection–diffusion was obtained in the study by Cockburn & Shu (1998). With a
particular numerical flux, the optimal convergence rate of order O(hk+1) was obtained in the studies
by Castillo (2000) and Castillo et al. (2000, 2002). For the numerical method of Baumann & Oden
(1999) when applied to nonlinear convection–diffusion equations, the optimal error estimate for at least
quadratic polynomials was obtained by Rivière & Wheeler (2000). For the DDG method, the first a
priori error estimate of order O(hk) for linear diffusion was obtained in the study by Liu & Yan (2010).
The optimal order is further obtained in the study by Liu (2015) by the use of a global projection, which
eliminates troublesome jump terms in the error equation and allows for an effective control of nonlinear
convection with the aid of numerical dissipation and projection error bounds. The error analysis using
a global projection also applies well to conservative DG methods for dispersive PDEs, for instance in
the study by Bona et al. (2013) for the generalized Korteweg–de Vries (KdV) equation, in the study by
Liu & Ploymaklam (2015) for the Burgers–Poisson system and in the study by Liu & Yi (2016) for a
Hamiltonian-preserving DG method for the generalized KdV equation.

The rest of the paper is organized as follows: in Section 2, we review the semidiscrete MPDG
method for the one-dimensional Schrödinger equation (1.1), and the optimal L2 error estimate result.
In Section 3, we investigate the MPDG method with rectangular meshes. The error estimate of the
semidiscrete MPDG method for solving (1.1) is presented, while an explicit global projection plays
a special role. For unstructured shape-regular meshes, we prove the optimal L2 error estimate for the
MPDG method with penalty (large flux parameter β) in Section 4. We provide numerical examples to
show our theoretical results in Section 5. Finally, concluding remarks are given in Section 6.

Notation. Throughout the paper we denote the L2-norm by ‖·‖, the L∞-norm by ‖ · ‖∞, the Hm-
norm by ‖·‖m and the Hm-seminorm by |·|m. Wm,p with 1 ≤ p ≤ ∞ as the usual Sobolev space, with
Wm,2 =Hm. We may specify the integral domain explicitly if it is a computational cell Ij or K, or a master

domain Î := [−1, 1]. If it is the whole domain Ω , we do not specify the domain unless necessary. We
also denote by ∂Ω the boundary of Ω .
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ON ACCURACY OF DG METHOD TO SCHRÖDINGER EQUATIONS 763

2. The MPDG method for one-dimensional Schrödinger equations

In this section, we review the MPDG method for the one-dimensional problem

iut + uxx − Φ(x)u = 0, (2.1)

subject to initial data

u(x, 0) = u0(x) (2.2)

imposed on Ω = [0, L], with periodic boundary conditions.
Let the mesh be Ij = [xj− 1

2
, xj+ 1

2

]
for j = 1, 2, . . . , N. The center of the cell is xj = (xj− 1

2
+ xj+ 1

2

)
/2

and hj = xj+ 1
2

− xj− 1
2
. We denote the complex piecewise polynomial space Vh as the space of

polynomials of degree at most k in each cell Ij, i.e.,

Vh := {v : v ∈ Pk(Ij), j = 1, 2, . . . ,N}.

Then the semidiscrete DDG scheme of (2.1) is as follows: find uh ∈ Vh such that

i
∫
Ij
uhtv dx −

∫
Ij
uhxvx dx + ûhxv

∣∣∣∣j+
1
2

j− 1
2

+ (uh − ûh)vx

∣∣∣∣j+
1
2

j− 1
2

−
∫
Ij

Φuhv dx = 0 (2.3)

holds for ∀ v ∈ Vh, where

w

∣∣∣∣j+
1
2

j− 1
2

= w(x−
j+1/2) − w(x+

j−1/2),

and the numerical fluxes are

ûhx = β

[
uh
]

h
+ θu+

hx + (1 − θ) u−
hx, ûh = (1 − θ)u+

h + θu−
h , ∀ θ ∈ [0, 1] , (2.4)

where h = 1
2

(
Δxj+1 + Δxj

)
and [w] = w

(
x+
j+1/2

) − w
(
x−
j+1/2

)
when evaluated at the cell interface

xj+1/2. The parameter β is a real number to be selected to tune the scheme for achieving optimal
convergence. At the domain boundary we use a periodic extension to determine the numerical flux.

In the study by Lu et al. (2015) a global projection Pw on Ω is introduced so that Pw|Ij ∈ Pk(Ij) for

k ≥ 1 and w ∈ C1, satisfying

∫
Ij
(Pw − w)v dx = 0 ∀υ ∈ Pk−2(Ij), j = 1, . . . ,N (2.5)

and

P̂w|j+ 1
2

= w
(
xj+ 1

2

)
, P̂wx|j+ 1

2
= wx

(
xj+ 1

2

)
, j = 1, . . . ,N, (2.6)

where

P̂w := (1 − θ)Pw+ + θPw−, P̂wx := β [Pw]

h
+ θPw+

x + (1 − θ)Pw−
x . (2.7)
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764 H. LIU ET AL.

Note that for k = 1, instead of (2.5), we need only (2.6) to define the unique projection. At the
domain boundary the periodic extension is adopted to be consistent with the selected numerical flux.
For a piecewise smooth function w, we need to replace w

(
xj+ 1

2

)
by ŵ|x

j+ 1
2

, and wx

(
xj+ 1

2

)
by ŵx|x

j+ 1
2

,

respectively. Hence the error estimate between the exact solution U and the numerical solution u can be
estimated as

‖uh − u‖ ≤ ‖uh − Pu‖ + ‖u − Pu‖. (2.8)

With this global projection the troublesome terms in the error equation are under control, so that it is
possible to recover the optimal estimate, as long as the projection is well defined and has the desired
approximation properties. Indeed, the following was established in the study by Lu et al. (2015). We
observe that a more refined condition for k is necessary for the general case, so we revisit the proof by
showing the places where the condition is refined.

Lemma 2.1 The projection P is uniquely defined for

β 	= 2kθ(1 − θ) cos(k + 1 + 2j/N)π + k2
(
θ2 + (1 − θ)2

)
, j = 0, . . . ,N − 1, (2.9)

if θ ∈ (0, 1), or for any real β if θ = 0 or θ = 1.

Proof. The global projection Pw may be expressed as

Pw(x)|Ij =
k+1∑
l=1

cjlϕl(ξ), ξ = x − xj
hj/2

, j = 1, . . . ,N, (2.10)

where {ϕl}k+1
1 is the Legendre basis, which is a sequence of orthogonal polynomials on [−1, 1]. Equation

(2.5) and the orthogonality of the Legendre polynomials imply that one may take v = ϕi to get

cji = 2i − 1

2

∫ 1

−1
w

(
xj +

hj
2

ξ

)
ϕi(ξ) dξ , i = 1, . . . , k − 1, (2.11)

where we have used
∫ 1
−1 ϕ2

i (ξ) dξ = 2
2i−1 . It remains to determine both cjk and cjk+1, j = 1, . . . , N.

Condition (2.6) gives

⎧⎪⎪⎨
⎪⎪⎩

θ
k+1∑
l=1

cjlϕl(1) + (1 − θ)
k+1∑
l=1

cj+1
l ϕl(−1) = w

(
xj+ 1

2

)
,

−β
k+1∑
l=1

cjlϕl(1) + β
k+1∑
l=1

cj+1
l ϕl(−1) + 2(1 − θ)

k+1∑
l=1

cjlϕ
′
l(1) + 2θ

k+1∑
l=1

cj+1
l ϕ′

l(−1) = hjwx

(
xj+ 1

2

)
.

(2.12)

Using the periodic boundary condition, the matrix form of equation (2.12) reduces to

D−→c = −→
b , (2.13)
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ON ACCURACY OF DG METHOD TO SCHRÖDINGER EQUATIONS 765

where −→c = (cj) ,
−→
b = (bj), with

cj =
[

cjk
cjk+1

]
, bj =

[
bj1
bj2

]
(2.14)

=

⎡
⎢⎢⎣

w
(
xj+1/2

)
− (1 − θ)

k−1∑
l=1

cj+1
l ϕl(−1) − θ

k−1∑
l=1

cjlϕl(1)

hjwx

(
xj+ 1

2

)
− 2(1 − θ)

k−1∑
l=1

cjlϕ
′
l(1) − 2θ

k−1∑
l=1

cj+1
l ϕ′

l(−1) + β
k−1∑
l=1

cjlϕl(1) − β
k−1∑
l=1

cj+1
l ϕl(−1)

⎤
⎥⎥⎦ ,

for j = 1, . . . , N. The coefficient matrix D is

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

A B 0 · · · · · · 0
0 A B 0 · · · 0
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . A B
B · · · · · · · · · · · · A

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

, (2.15)

where

A =
(

θϕk(1) θϕk+1(1)

−βϕk(1) + 2(1 − θ)ϕ′
k(1) −βϕk+1(1) + 2(1 − θ)ϕ′

k+1(1)

)
,

B =
(

(1 − θ)ϕk(−1) (1 − θ)ϕk+1(−1)

βϕk(−1) + 2θϕ′
k(−1) βϕk+1(−1) + 2θϕ′

k+1(−1)

)
.

Recall that

ϕk(±1) = (±1)k−1, k = 1, 2, . . . , ϕ′
k(±1) = 1

2
(±1)kk(k − 1), k = 2, 3, . . . ;

then a direct calculation shows

det(A) = 2θ(1 − θ)
[
φ′
k+1(−1) − φ′

k(−1)
] = 2kθ(1 − θ).

For 0 < θ < 1 and k ≥ 1, A−1 exists; hence the determinant of D can be expressed as

det(D) = |A|N |I + (−1)N−1(A−1B)N |.
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766 H. LIU ET AL.

We want to show det(D) 	= 0. To this end, we let ω satisfy |ω| = 1, and calculate

det
(
A + (−1)k−1ωB

)

=
∣∣∣∣ θ + (1 − θ)ω θ − (1 − θ)ω

β(ω − 1) + k(k − 1)(1 − θ − θω) −β(ω + 1) + k(k + 1)(1 − θ + θω)

∣∣∣∣
= −2ω

(
β − k

[
θ(1 − θ)(ω̄ + ω) + k

(
θ2 + (1 − θ)2

)])
.

One can verify that det (D) = 0 if and only if there exists λ such that

λN = (−1)N ,

where λ denotes an eigenvalue of A−1B, which can be complex. For a fixed ω, if β is selected such that
det(A + (−1)k−1ωB) = 0, then we have λ = (−1)k/ω. We thus determine ω such that

λN = (−1)kN/ωN = (−1)N ,

from which we must have

ω = exp(π(k + 1 + 2j/N)i) , j = 0, 1, . . . ,N − 1.

Hence, in order for det(D) 	= 0 to hold, it is sufficient to select

β 	= 2kθ(1 − θ) cos(k + 1 + 2j/N)π + k2(θ2 + (1 − θ)2).

In addition, when θ = 0 or 1, (2.5)–(2.6) becomes a local projection, whose existence is similar but
easier to verify. In a sentence, for any θ ∈ [0, 1], Pw is uniquely defined with a proper choice of β as
stated in (2.9). �
Remark 2.2 For k ≥ 2, β = 0 suffices to ensure the existence of the projection for any θ ∈ [0, 1]. For
θ = 1

2 , it suffices to choose β 	= k
2 [k + cos(k + 1 + 2j/N) π ] for j = 0, . . . , N − 1.

Lemma 2.3 (Lu et al., 2015). Assume that w ∈ Hm with m ≥ k + 1. If the global projection is uniquely
defined, then we have the projection error

‖w − Pw‖ ≤ Chk+1|w|k+1, (2.16)

where C is independent of h.

All these together lead to the following result.

Theorem 2.4 (Lu et al., 2015). The error between the exact solution u of (2.1) and the numerical
solution u of (2.3), (2.4) with β satisfying (2.9) satisfies

‖u(·, t) − uh(·, t)‖ ≤ Chk+1, 0 < t ≤ T , (2.17)

where C depends on |u|k+1, |ut|k+1, T and the data given, but is independent of h.
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ON ACCURACY OF DG METHOD TO SCHRÖDINGER EQUATIONS 767

Numerical experiments carried out in the study by Lu et al. (2015) indicate that different choices
of θ ∈ [0, 1] yield the same order of accuracy, though numerical errors can be slightly different. We
also observed that both numerical errors and orders of convergence are identical for both θ = α and
θ = 1 − α for α ∈ [0, 1]. Therefore, in the error analysis presented in this work we restrict ourselves to
the case θ = 1

2 .

3. Error estimates for rectangular meshes

In this section we prove the optimal error estimates of MPDG approximation based on tensor-product
polynomials of the multi-dimensional Schrödinger equation

iut + Δu = Φ(x)u, t > 0, (3.1)

posed on x = (x1, . . . , xd) ∈ Ω = �d
i=1[0,Li] ⊂ R

d, subject to both initial data u(x, 0) = u0(x) and
periodic boundary conditions. It is known from the study by Jensen (1986) that if Φ ∈ Wm,∞(m ≥ 0)

is a real-valued function, then the solution operator maps from Hm to Hm for any t > 0. In our error
estimate result, we will assume Φ has required regularity so that the solution has smoothness as needed
in our error estimates.

3.1 Scheme formulation

We partition the domain Ω into rectangular meshes

Ω =
⋃N

α=1
Kα ,

where α = (α1, . . . , αd), N = (N1, . . . , Nd). We use rectangular meshes {K} ⊂ Th, with Kα =
I1
α1

× · · · × Idαd , where Iiαi = [
xiαi−1/2, xiαi+1/2

]
for αi = 1, . . . , Ni. Denote by hi = max1≤αi≤Ni

|Iiαi |,
with h = max1≤i≤d h

i. In what follows we shall take uniform meshes with element size
∏d

i=1 h
i, unless

otherwise stated.
We define the DG space as the space of tensor products of piecewise polynomials of degree at most

k in each variable on every element, i.e.,

Wh = {v : v ∈ Qk(Kα) ∀ x ∈ Kα , α = 1, . . . ,N},

where Qk is the space of tensor products of one-dimensional polynomials of degree up to k. For the
one-dimensional case we have Qk(K) = Pk(K), which is the space of polynomials of degree at most
k defined on K. Hence, the traces of functions in Wh are double valued on Γ 0

h := Γh\∂Ω and single
valued on Γ ∂

h = ∂Ω , where Γh = Γ 0
h ∪ Γ ∂

h .
We also introduce some trace operators that will help us to define the interface terms. Let K1 and K2

be two neighboring cells with a common edge e; for w defined on ∂Ki, i = 1, 2, we define the average
{w} and the jump [w] as

{w} = 1
2 (w1 + w2), [w] = w2 − w1 on e,
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768 H. LIU ET AL.

where the jump is calculated as a forward difference along the normal direction �n, which is defined to
be oriented from K1 to K2, with wi = w|∂Ki . We consider the DG scheme

i
∫

Ω

uhtv dx = A(uh, v) +
∫

Ω

Φ(x)uhv dx, (3.2)

where

A(uh, v) =
∑
K∈Th

∫
K

∇uh · ∇v dx +
∑
e∈Γh

∫
e

(
∂̂nuh[v] + [uh]{∂nv}

)
ds (3.3)

with the numerical flux for ∂nuh taken as

∂̂nuh = βh−1
e

[
uh
]+ {∂nuh}. (3.4)

The characteristic length h for the edge e = ∂K1 ∩ ∂K2 is typically defined as

he = |−−→
C1C2 · �n|, (3.5)

where Ci is the centroid of element Ki, and �n is the unit vector normal to Ki. At the boundary we replace−−→
C1C2 by 2

−−→
C1D where D ∈ e such that

−−→
C1D is perpendicular to e. In the case of uniform rectangular

meshes we have he = hi at each interface xi
αi+1/2

for αi = 1, . . . , Ni. Note that in formulation (3.3),

the choice of �n on the edge e ∈ Γ 0
h (pointing to K1 or K2) does not affect the products [uh]{∂nv} and

∂̂nuh[v]. Hence, both {∂nuh} and {∂nv} may be defined based on a fixed choice of �n on e. However, on
e ∈ Γ ∂

h , we take �n as the usual outside unit normal to ∂Ω ∩ e.
The initial data for the obtained semidiscrete DG scheme is given as

uh = Π0u0, t = 0, (3.6)

where �0 is the standard piecewise L2 projection.

3.2 Conservation properties

We now discuss two important conservation properties of the above semidiscrete DG scheme. Note that
for any β ∈ R, the following holds:

A(v, v∗) = A(v∗, v), (3.7)

where v∗ denotes the complex conjugate of v. Therefore total mass is conserved in the sense that

d

dt
‖uh‖2 = 0. (3.8)
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Furthermore, we choose v = u∗
ht, complex conjugate of uht, in (3.2), so that

i
∫

Ω

|uht|2 dx = A(uh, u∗
ht) +

∫
Ω

Φ(x)uhu
∗
ht dx. (3.9)

This, upon adding its conjugate, gives

d

dt

(
A(uh, u∗

h) +
∫

Ω

Φ|uh|2 dx

)
= 0, (3.10)

where

A(uh, u∗
h) =

∑
K∈Th

∫
K

|∇uh|2 dx +
∑
e∈Γh

∫
e
(βh−1|[uh]|2 + 2Re({∂nuh}[u∗

h])) ds.

Hence, (3.10) may be regarded as the discrete approximation of the energy conservation

d

dt

∫
Ω

(
|∇u|2 + Φ(x)|u|2

)
dx = 0,

which is another well-known feature of the Schrödinger equation.

3.3 Projection and projection properties

In order to obtain the estimate for the MPDG scheme (3.2), (3.3) and (3.4) with admissible β using
rectangular meshes, we follow Liu (2015) to use an explicit global projection similar to the one-
dimensional case. Such a projection can be defined as

Pw = P
(
x1
)
⊗ · · · ⊗ P

(
xd
)
w, (3.11)

where the superscripts indicate the application of the one-dimensional operator P
(
xi
)

with respect to the
corresponding variable xi.

In other words, for a given (piecewise) smooth function w, the projection Pw is the unique function
in Wh defined in (3.11), with P

(
xi
)

determined by

∫
Iiαi

(
P
(
xi
)
w(x) − w(x)

)
∂2
xiv(x) dxi = 0 ∀ v ∈ Pk

(
Iiαi

)
, αi = 1, . . . ,Ni, (3.12a)

βh−1
[
P
(
xi
)
w
]

+
{
∂xi

(
P
(
xi
)
w
)} ∣∣∣∣xiαi+1/2

= wxi

∣∣∣∣ xiαi+1/2
, (3.12b)

{
P
(
xi
)
w
} ∣∣∣∣xiαi+1/2

= w

∣∣∣∣ xiαi+1/2
, (3.12c)

where periodic extensions are used at the domain boundary.
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Similarly to the one-dimensional case, there is an approximation result for the above multi-
dimensional projection:

‖Pw − w‖ ≤ Chk+1|w|k+1, (3.13)

where C is independent of h.
Finally, we list some inverse properties of the finite element space Wh that will be used in our error

analysis. For any function wh ∈ Wh, the following inverse inequalities hold (Ciarlet, 1978):

‖∂ lxwh‖ ≤ Ch−l‖wh‖, (3.14a)

‖wh‖Γh
≤ Ch−1/2‖wh‖, (3.14b)

‖wh‖∞ ≤ Ch−d/2‖wh‖, (3.14c)

where d is the spatial dimension, and Γh denotes the boundary sets of all elements Kα .

3.4 Error estimates

Let us first present two technical lemmas, which will be used in the proof of the main result.

Lemma 3.1 For k ≥ 1 and η ∈ Wh, the linear functional w → Ai(Pw − w, η∗) is continuous on Hk+2

with norm bounded by C‖η‖, where C is independent of h.

Proof. Let us use the notation
∫
Γh

:=∑e∈Γh

∫
e and set ξ := Pw − w; we have

A(ξ , η∗) =
∑
K∈Th

∫
K

∇ξ · ∇η∗ dx +
∫

Γh

(
∂̂nξ
[
η∗]+ [ξ ]

{
∂nη

∗}) ds,

which can be written as

A
(
ξ , η∗) =

d∑
i=1

Ai

(
ξ , η∗) ,

where

Ai

(
ξ , η∗) =

N∑
α=1

(∫
Kα

ξxiη
∗
xi dx +

∫
Kα/Iiαi

(
∂̂xiξ

[
η∗]+ [ξ ]

{
∂xiη

∗})
xiαi+1/2

dx̂i
)

with dx̂i = ∏
j	=i dxj. The proof of the approximation results for Ai, i = 1, . . . , d are analogous;

therefore, we present only the one for A1. Here we use an argument similar to the one in the proof of
Cockburn et al. (2001, Lemma 3.6) for a local projection.

Using integration by parts we have

A1(ξ , η∗) = −
∑
α

(∫
Kα

ξη∗
x1x1 dx +

∫
Kα/I1

α1

(−ξ̂x1 [η∗] + {ξ}[η∗
x1 ]
)
x1
α1+1/2

dx̂1

)
;

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/39/2/760/4959865 by PPD
 D

evelopm
ent LP user on 13 August 2019



ON ACCURACY OF DG METHOD TO SCHRÖDINGER EQUATIONS 771

then

∣∣A1(ξ , η∗)
∣∣ ≤∑

α

∣∣∣∣∣
∫
Kα

ξη∗
x1x1 dx +

∫
Kα/I1

α1

(−ξ̂x1 [η∗] + {ξ}[η∗
x1 ]
)
x1
α1+1/2

dx̂1

∣∣∣∣∣

≤ ‖ξ‖‖ηx1x1‖ +
∑
α

∫
Kα/I1

α1

∣∣∣∣
(−ξ̂x1 [η∗] + {ξ}[η∗

x1 ]
)
x1
α1+1/2

∣∣∣∣ dx̂1. (3.15)

Set I = I1
α1

∪ I1
α1+1; we use the trace inequality to obtain

∣∣∣∣
(−ξ̂x1 [η∗]

)
x1
α1+1/2

∣∣∣∣ ≤ |[η∗]|
(

β

h
|[ξ ]| + |{ξx1}|

)

≤ Ch−1/2‖η‖0,I(h
−1−1/2‖ξ‖0,I + h−1/2‖ξx1

‖0,I + h1−1/2‖ξx1x1
‖0,I)

≤ C‖η‖0,I(h
−2‖ξ‖0,I + h−1‖ξx1

‖0,I + ‖ξx1x1
‖0,I).

Similarly,

∣∣∣∣
({ξ}[η∗

x1 ]
)
x1
α1+1/2

∣∣∣∣ ≤ Ch−1/2‖ηx1‖0,I(h
−1/2‖ξ‖0,I + h1/2‖ξx1

‖0,I)

≤ Ch‖ηx1‖0,I(h
−2‖ξ‖0,I + h−1‖ξx1

‖0,I).

Substitution of these estimates into (3.15) yields

∣∣A1(ξ , η∗)
∣∣ ≤ C(‖η‖ + h‖ηx1

‖ + h2‖ηx1x1
‖)(h−2‖ξ‖ + h−1‖ξx1

‖ + ‖ξx1x1
‖). (3.16)

By Liu (2015, Corollary 7.2), we have for m = 0, 1, 2,

|ξ |2m =
∑
α

∑
|ζ |=m

‖∂ζ
x (Pw − w)‖0,Kα

≤ Ch2(k+1−m)|w|2k+1. (3.17)

Putting (3.17) into (3.16) and using the inverse inequalities for η we obtain

∣∣A1(ξ , η∗)
∣∣ ≤ Chk−1|w|k+1‖η‖ ≤ C‖w‖k+2‖η‖. (3.18)

The proof of Lemma 3.1 is complete. �
Lemma 3.2 Let A be defined in (3.3). For ξ = Pw − w with w ∈ Hk+2 and η ∈ Wh we have

|A(ξ , η∗) − A(ξ∗, η)| ≤ Chk+2|w|k+2‖η‖, (3.19)

where the constant C is independent of h.
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Proof. We first claim that

A1(ξ , η∗) = 0 ∀w|Kα
∈ Pk+1(Kα), η ∈ Wh. (3.20)

To prove this claim, we fix η∗∈ Wh. Since P is a polynomial-preserving operator, (3.20) holds true for
every w ∈ Wh. Therefore, we need to consider only the cases

w(x)|Kα
= aα(xj)k+1,

where the constant aα may vary from element to element. Below we shall use the notation wi = w(xi) to
denote dependence only on variable xi.

For j = 1, we integrate by parts and obtain

A1(ξ , η∗) = −
∑
α

(∫
Kα

ξη∗
x1x1 dx +

∫
Kα/I1

α1

(−∂̂x1ξ
[
η∗]+ {ξ} [∂x1η

∗])
x1
αi+1/2

dx̂1

)
;

we have Pw = P(x1)w1 and η∗
x1x1 is a polynomial of degree at most k − 2 in x1 and we obtain

∑
α

∫
Kα

(Pw − w)η∗
x1x1 dx =

∑
α

∫
Kα

(
P
(
x1
)
w1 − w1

)
η∗
x1x1 dx = 0.

In addition, we have

{Pw} = {P
(
x1
)
w1} = {w}, ̂∂x1(Pw) = ̂

∂x1P(x1)w1 = ∂̂x1w.

Thus, A1 (ξ , η∗) = 0 for w|Kα
= aα

(
x1
)k+1

.
In the case j 	= 1, due to the special form of ξ we have ∂x1ξ = ∂x1(Pw − w) = 0 and

Pw = P
(
xj
)
wj

on the interface x1 = x1
α1+1/2, where ∂̂x1ξ = 0 and [ξ ] = 0 by a direct check. We thus conclude that

A1(ξ , η∗) = 0 for w|Kα
= aα(xj)k+1. This completes the proof of (3.20).

Due to (3.20), A1(ξ , η∗) vanishes over Ps for any 0 ≤ s ≤ k + 1 when restricted to each Kα . Note
that for w = wχKα

, we have Pw = (Pw)χKα
, hence ξ = ξχKα

, where χK is the usual indicator function
of K. By applying the Bramble–Hilbert lemma combined with the standard scaling argument on the
restriction to Kα , we obtain

Ai(ξ , η∗) ≤ Chk+2|w|k+2,Kα
‖η‖0,K̃α

,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/39/2/760/4959865 by PPD
 D

evelopm
ent LP user on 13 August 2019



ON ACCURACY OF DG METHOD TO SCHRÖDINGER EQUATIONS 773

where K̃α includes Kα and its immediate neighboring cells. In general, for w ∈ Hk+2, we have w =
w
∑

χKα
, hence ξ = ξ

∑
χKα

. Therefore

Ai(ξ , η∗) =
∑

Ai(ξχKα
, η∗) ≤ Chk+2

∑
|w|k+2,Kα

‖η‖0,K̃α

≤ Chk+2

[∑
α

|w|2k+2,Kα

]1/2 [∑
α

‖η|20,Kα

]1/2

.

Applying this to all Ai, we proceed with

|A(ξ , η∗)| ≤ Chk+2|w|k+2‖η‖.

Hence we have proved Lemma 3.2. �
We are now ready to present the error estimate result in the following.

Theorem 3.3 Let uh be the solution to the semidiscrete DG scheme (3.2), (3.3), (3.4) with any β except
for k(k + cos(k + 1 + 2j/N)π)/2 with j running from 0 to Ni − 1 for each fixed i = 1, . . . , d, and u a
smooth solution to (3.1). Then we have the error estimate

‖uh(·, t) − u(·, t)‖ ≤ Chk+1, 0 ≤ t ≤ T , (3.21)

where C depends on ‖u‖k+2, ‖ut‖k+1, ‖Φ‖∞, T linearly and the data given, but is independent of h.

Remark 3.4 In the multi-dimensional case, the proof of Theorem 3.3 requires stronger smoothness
assumptions on the exact solution than those in the one-dimensional case.

Proof. The choice of β in the case θ = 1
2 is explained in Remark 2.2. The scheme consistency implies

that for the exact solution u,

i
∫

Ω

utv dx = A(u, v) +
∫

Ω

Φuv dx, (3.22)

which when subtracted from equation (3.2) yields the error equation

i
∫

Ω

(u − uh)tv dx = A(u − uh, v) +
∫

Ω

Φ(u − uh)v dx. (3.23)

Let Pu ∈ Wh be the projection of u defined in (3.12), and set

η = Pu − uh, ξ = Pu − u, (3.24)

so that u − uh = η − ξ , with which the error equation is written as

i
∫

Ω

ηtv dx = i
∫

Ω

ξtv dx + A(η − ξ , v) +
∫

Ω

Φ(η − ξ)v dx.
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We take v = η∗ to obtain

i
∫

Ω

ηtη
∗ dx = i

∫
Ω

ξtη
∗ dx + A(η − ξ , η∗) +

∫
Ω

Φ(η − ξ)η∗ dx. (3.25)

Since the numerical fluxes have been made so that

A(η, η∗) = A(η∗, η). (3.26)

Hence

i
d

dt
‖η‖2 = 2i Re

(∫
Ω

ξtη
∗ dx

)
− 2i Im

(∫
Ω

Φξη∗ dx

)
+ A(ξ , η∗) − A(ξ∗, η). (3.27)

In the multi-dimensional case, A(ξ , η∗) or A(ξ∗, η) is not necessarily zero, but still controllable with the
superconvergence result in Lemma 3.2.

Putting (3.19) into equality (3.27), we obtain

d

dt
‖η‖2 ≤ 2(‖ξt‖ + ‖Φ‖∞‖ξ‖)‖η‖ + C|u|k+2h

k+2‖η‖. (3.28)

Hence

d

dt
‖η‖ ≤ ‖ξt‖ + ‖Φ‖∞‖ξ‖ + C|u|k+2h

k+2

≤ Chk+1(1 + ‖Φ‖∞ + |u|k+2h), (3.29)

where we have used (3.13) so that ‖ξ t‖ + ‖ξ‖≤ C(|ut|k+1 + |u|k+1)hk+1. Hence integration of (3.29)
gives

‖η(·, t)‖ ≤ ‖η(·, 0)‖ + C(1 + ‖Φ‖∞ + |u|k+2h)h
k+1 ≤ Chk+1, (3.30)

where we have used

‖η(·, 0)‖ = ‖Pu0 − Π0u0‖ ≤ ‖Pu0 − u0‖ + ‖u0 − Π0u0‖ ≤ Chk+1. (3.31)

Upon using the triangle inequality with (3.13) we obtain the desired error estimate (3.21). �

4. Error estimates for unstructured meshes with penalty

In this section we still consider equation (3.1) posed on Ω = �d
i=1[0,Li] ⊂ R

d subject to both initial
data u(x, 0) = u0(x) and periodic boundary conditions. Here we derive the optimal error estimates for
the DG method with penalty using unstructured meshes. Let Th be a shape-regular triangulation of Ω
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ON ACCURACY OF DG METHOD TO SCHRÖDINGER EQUATIONS 775

such that Ω̄ = ∪K∈Th K̄. For any element K ∈ Th, we assume that

diam(K)

ρK
≤ γ ∀K ∈ Th,

where diam(K) is the diameter of K, ρK denotes the diameter of the maximum ball included in K.
The method in its global form is

i
∫

Ω

uhtv dx = A(uh, v) +
∫

Ω

Φuhv dx, (4.1)

where

A(uh, v) =
∑
K∈Th

∫
K

∇uh · ∇v dx +
∑
e∈Γh

∫
e

(
β

he

[
uh
]

[v] + {∂nuh}[v] + [uh]{∂nv}
)

ds, (4.2)

where on boundary faces both [·] and {·} are evaluated using periodic boundary conditions, and he is
defined as in (3.5). The initial data for the resulting ordinary differential equation (4.1) is chosen as
defined in (3.6).

4.1 Boundedness and stability

We first discuss the boundedness and stability of the bilinear form A(·, ·). Following the study by
Arnold et al. (2002), we define the DG norm for v ∈ V = Vh + H2(Ω):

|||v|||2 =
∑
K∈Th

|v|21,K +
∑
K∈Th

h2|v|22,K +
∑
e∈h

h−1
e |[v]|2e . (4.3)

It is easy to verify that

|A(w, v)| ≤ Λ|||w||| · |||v||| ∀ w, v ∈ V , (4.4)

where Λ is called the continuous constant. We also denote

‖v‖2
E :=

∑
K∈Th

|v|21,K +
∑
e∈Γh

h−1
e |[v]|2e .

Lemma 4.1 There exist Γ > 0 and α > 0 such that if β > Γ , then

A(v, v∗) ≥ α|||v|||2 ∀ v ∈ Vh, (4.5)

where α is called the coercive constant of A(·, ·) on Vh.
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Proof. A direct calculation gives

A(v, v∗) =
∑
K∈Th

∫
K

|∇v|2 dx +
∑
e∈Γh

β

he

∫
e
|[v]|2 ds + 2

∑
e∈Γh

Re
∫
e
({∂nv∗}[v]) ds

≥
∑
K∈Th

∫
K

|∇v|2 dx +
∑
e∈Γh

β

he

∫
e
|[v]|2 ds −

⎛
⎝∑

e∈Γh

∫
e
|{∂nv}|2 ds

⎞
⎠

1/2⎛
⎝∑

e∈Γh

∫
e
|[v]|2 ds

⎞
⎠

1/2

≥
∑
K∈Th

∫
K

|∇v|2 dx − εhe
2

∑
e∈Γh

∫
e
|{∂nv}|2 ds +

(
β − 1

2
ε−1
)∑

e∈Γh

h−1
e

∫
e
|[v]|2 ds.

Set

Γ ≥ 1

4
sup
v∈Vh

he
∑
e∈Γh

∫
e |{∂nv}|2 ds

∑
K∈Th

∫
K |∇v|2 dx

. (4.6)

We have

A(v, v∗) ≥ (1 − 2εΓ )
∑
K∈Th

∫
K

|∇v|2 dx +
(

1 − 1

2βε

)∑
e∈Γh

βh−1
e

∫
e
|[v]|2 ds ≥ α1‖v‖2

E,

where α1 = (1 − 2εΓ ) min{1, β} with

1 − 2εΓ = 1 − 1

2βε
= 1 −

√
Γ

β
> 0,

provided ε = 1
2 (Γβ)−1/2 and β > Γ . Finally, using inverse inequalities, we have

α1‖v‖2
E ≥ α|||v|||2, v ∈ Vh.

This completes the proof. �
Remark 4.2 We remark that the right-hand side of (4.6) is a finite number due to scaling and the fact
that Vh is a finite-dimensional space. In some cases we can derive a sharper bound on Γ . For example,
for rectangular meshes satisfying

min
i

hi

h
≥ σ > 0,

we fix a cell K = Kα and recall the estimate for any v ∈ Pm[(a, b)],

max{|v(a)|2, |v(b)|2} ≤ (m + 1)2

b − a

∫ b

a
v2(x) dx,
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which is obtained in the study by Warburton & Hesthaven (2003), so that we have

∫
∂K

|∂nv|2 ds =
d∑

i=1

∫
Kα/Iiαi

|∂xiv|2xi=xiαi±1/2
dx̂i

≤
d∑

i=1

2k2

hi

∫
K

|∂xiv|2 dx

≤ 2k2

hσ

∫
K

|∇xv|2 dx,

where dx̂i =∏j	=i dxj. Therefore, using he = hi ≤ h, we have

he
∑
e∈Γh

∫
e
|{∂nv}|2 ds ≤ he

2

∑
K∈Th

∫
∂K

|∂nv|2 ds ≤ k2

σ

∑
K∈Th

∫
K

|∇v|2 dx.

This indicates that Γ can be taken as k2

4σ
; therefore it suffices to choose β such that β > k2

4σ
.

4.2 Projection and approximation properties

We first introduce a projection and then present the approximation properties. Define the projection �

of a function w into space Vh as
∫

Ω

(w − Πw)v dx + A(w − Πw, v) = 0 ∀ v ∈ Vh. (4.7)

This projection is uniquely defined since for w = 0 with v = −�w we have

0 = ‖v‖2 + A(v, v) ≥ ‖v‖2 + α|||v|||2 ∀ v ∈ Vh,

where we have used (4.5). Thus ensures uniqueness for v ≡ 0.

Theorem 4.3 For w ∈ Hk+1 and h suitably small, we have the following projection error:

‖w − Πw‖ ≤ Chk+1|w|k+1 and |||w − Πw||| ≤ Chk|w|k+1, (4.8)

where C depends on k, d, 1/α, Λ and the shape parameter γ of meshes.

Proof. We carry out the proof in two steps:
Step 1. We first bound the projection error R := w − �w in the following way: for any v ∈ Vh, we have

α|||v − Πw|||2 ≤ A(v − Πw, v − Πw)

= A(v − w, v − Πw) +
∫

Ω

(Πw − w)(v − Πw) dx

≤ Λ|||v − w||| · |||v − Πw||| + ‖R‖ · ‖v − Πw‖.
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By the triangle inequality we obtain

|||R|||2 ≤ 2 inf
v∈Vh

(|||v − w|||2 + |||v − Πw|||2)

≤ C inf
v∈Vh

(|||v − w|||2 + |||v − w||| · |||v − Πw||| + ‖R‖ · ‖v − Πw‖)

≤ C(|||Qw − w|||2 + |||Qw − w||| · |||Qw − Πw||| + ‖R‖ · ‖Qw − Πw‖)

for C denoting 2 max{1, Λ/α, 1/α}. Here we have taken v = Qw ∈ Vh to be the usual interpolant
polynomial such that

‖∂mx (w − Qw)‖K ≤ Chk+1−m|w|k+1,K ,

where C depends on k, d and γ (Ciarlet, 1978).
This, when combined with the estimate

|w|20,∂K ≤ C(h−1|w|20,K + h|w|21,K),

yields

|||w − Qw|||2 ≤ Ch2k|w|2k+1,Ω . (4.9)

Therefore

|||R|||2 ≤ C(h2k|w|2k+1 + hk|w|k+1|||R||| + hk+1|w|k+1‖R‖ + ‖R‖2)

≤ (C + 1/2)h2k|w|2k+1 + 1

2
|||R|||2 + C

2
h2k+2|w|2k+1 + 3C

2
‖R‖2.

Hence

|||R|||2 ≤ (1 + 2C + Ch2)h2k|w|2k+1 + 3C‖R‖2. (4.10)

Step 2. We proceed to obtain ‖R‖ by coupling with a duality argument. Define the auxiliary function ψ

as the solution of the adjoint problem

{
ψ − Δψ = R in Ω ,

ψ satisfies the periodic boundary condition on ∂Ω .
(4.11)

This problem has a unique solution and admits the following regularity estimate for ψ ∈ H2(Ω):

‖ψ‖2 ≤ ‖R‖. (4.12)
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We then have

‖R‖2 =
∑
K∈Th

∫
K
R∗(ψ − Δψ) dx

=
∑
K∈Th

∫
K
R∗ψ dx +

∑
K∈Th

∫
K

∇R∗ · ∇ψ dx +
∑
K∈Th

∫
∂K

−R∗ ∂ψ

∂n
ds

=
∑
K∈Th

∫
K
R∗ψ dx +

∑
K∈Th

∫
K

∇R∗ · ∇ψ dx

+
∑
e∈Γh

∫
e

(
β

h

∫
e
[R∗][ψ] + {∂nR∗}[ψ] + [R∗]{∂nψ}

)
ds

=
∫

Ω

R∗ψ dx + A(R∗, ψ)

=
∫

Ω

Rψ∗ dx + A(R, ψ∗).

(4.13)

For k ≥ 1, we take ψh ∈ Vh to be a piecewise linear interpolant of ψ so that

‖∂mx (ψ − ψh)‖ ≤ Ch2−m|ψ |2, m = 0, 1, 2.

From (4.7) it follows that
∫
Ω
Rv dx + A(R, v) = 0 for any v ∈ Vh. Using this formula with v = ψ∗

h we
obtain

‖R‖2 =
∫

Ω

Rψ∗ dx + A(R, ψ∗) =
∫

Ω

R(ψ∗ − ψ∗
h ) dx + A(R, ψ∗ − ψ∗

h )

≤‖R‖ · ‖ψ − ψh‖ + Λ|||R||| · |||ψ − ψh|||
≤Ch2|ψ |2‖R‖ + Ch|ψ |2|||R|||
≤C(h2‖R‖ + h|||R|||)‖R‖,

(4.14)

where we have used (4.12). Hence

‖R‖ ≤ Ch(h‖R‖ + |||R|||). (4.15)

For h ≤ 1/
√

2C, (4.15) yields

‖R‖ ≤ Ch

1 − Ch2
|||R||| ≤ 2Ch|||R|||.

This upon substitution into (4.10) gives

(1 − 12C3h2)|||R|||2 ≤ (1 + 2C + Ch2)h2k|w|2k+1.
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Further taking h2 ≤ 1
24C3 we have

|||R|||2 ≤ (3 + 4C)h2k|w|2k+1.

Hence for h suitably small,

‖R‖ ≤ Chk+1|w|k+1 and |||R||| ≤ Chk|w|k+1.

The proof is now complete. �

4.3 A priori error estimate

We are left to carry out the error analysis for the DG method by using the projection result (4.8). The
consistency of the DG method requires that the exact solution u satisfies

i
∫

Ω

utv dx = A(u, v) +
∫

Ω

Φuv dx ∀ v ∈ Vh. (4.16)

Hence we have the error equation

i
∫

Ω

(ut − uht)v dx = A(u − uh, v) +
∫

Ω

Φ(u − uh)v dx ∀ v ∈ Vh. (4.17)

Set ξ = �u − u, η = �u − uh; we get

i
∫

Ω

ηtv dx = i
∫

Ω

ξtv dx + A(η, v) − A(ξ , v) +
∫

Ω

Φ(η − ξ)v dx. (4.18)

Take v = η∗; we have

i
∫

Ω

ηtη
∗ dx = i

∫
Ω

ξtη
∗ dx + A(η, η∗) − A(ξ , η∗) +

∫
Ω

Φ(η − ξ)η∗ dx. (4.19)

Thus

d

dt
‖η‖2 = 2 Re

(∫
Ω

ξtη
∗ dx

)
− 2 Im(A(ξ , η∗)) − 2 Im

(∫
Ω

Φξη∗ dx

)
. (4.20)

Note that A(ξ , η∗) = − ∫
Ω

ξη∗ dx; we thus have

d

dt
‖η‖2 ≤ 2‖ξt‖ · ‖η‖ + 2‖ξ‖ · ‖η‖ + 2‖Φ‖∞‖ξ‖ · ‖η‖

≤ (2‖ξt‖ + 2‖ξ‖ + 2‖Φ‖∞‖ξ‖)‖η‖
≤Chk+1‖η‖,

(4.21)
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where C depends on |u|k+1, |ut|k+1 and ‖Φ‖∞. A direct integration gives

‖η(·, t)‖ ≤ ‖η(·, 0)‖ + CThk+1 ≤ C(1 + T)hk+1, t ≤ T . (4.22)

Here we have used the fact ‖η(·, 0)‖ = ‖�u0 − �0u0‖ ≤ Chk+1. The L2 optimal error estimate is thus
verified.

The main result can now be summarized as follows.

Theorem 4.4 Let uh be the solution to the semidiscrete DG scheme (4.1), (4.2) with β > Γ , which
depends on the degree k of the polynomial elements, and u be the smooth solution of (3.1). Then we
have the error estimate

‖u(·, t) − uh(·, t)‖ ≤ Chk+1, 0 ≤ t ≤ T ,

where C depends on |u|k+1, |ut|k+1, ‖Φ‖∞, T linearly, β and ‖u0‖k+1, but is independent of h.

Remark 4.5 The analysis above and accuracy results can be generalized to the case with other boundary
conditions. For example, for the Dirichlet boundary condition with u(x, t) = g for x ∈ ∂Ω , the
corresponding DG scheme becomes

i
∫

Ω

uhtv dx = A(uh, v) +
∫

Ω

Φ(x)uhv dx + L(v),

where

A(uh, v) =
∑
K∈Th

∫
K

∇uh · ∇v dx

+
∑
e∈Γ 0

h

∫
e

((
βh−1

e [uh] + {∂nuh}
)
[v] + [uh]{∂nv}

)
ds

−
∑
e∈Γ ∂

h

∫
e

((
βh−1

e (0 − uh) + ∂nuh
)
v + (uh − 0)∂nv

)
ds,

L(v) = −
∑
e∈Γ ∂

h

∫
e

(
βh−1

e gv − g∂nv
)

ds.

Here the boundary condition is weakly enforced in such a way that the boundary data are used whenever
available, otherwise the trace of the numerical solution in corresponding boundary faces will be used.
Our numerical tests (see Example 5.4) on the case with Dirichlet boundary data indeed show similar
convergence behavior to the examples with periodic boundary conditions.

5. Numerical examples

In this section, we present numerical examples to verify our theoretical findings, based on the MPDG
formulation (3.2) with (3.4). In order to preserve mass at the fully discrete level, we follow Lu et al.
(2015) to adopt the Crank–Nicolson method in the time discretization for linear Schrödinger equations,
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782 H. LIU ET AL.

and the Strang splitting method for nonlinear Schrödinger equations. Both methods are second order
in time.
Here numerical examples are mainly in a two-dimensional setting, and we refer to the study by
Lu et al. (2015) for extensive one-dimensional numerical examples.

The L2 errors are defined by

∥∥uR−uRh
∥∥ :=

(∫
Ω

(
uR(·, T) − uRh (·, T)

)2
dx

)1/2

,
∥∥uI −uIh

∥∥ :=
(∫

Ω

(
uI(·, T) − uIh(·, T)

)2
dx

)1/2

,

where uR and uI denote the real part and imaginary parts of u, respectively.

Example 5.1 We consider the (2π , 2π )-periodic initial value problem for the two-dimensional linear
Schrödinger equation

iut + Δu − Φ(x, y)u = f (x, y, t), 0 < x, y < 2π , 0 < t ≤ T ,

where the potential Φ(x, y) = sin(x + y), and f (x, y, t) = −(1 + sin(x + y))ei(x+y−t). The exact solution
to this problem is

u(x, y, t) = ei(x+y−t).

We test this example using the Pk polynomials with k = 1, 2, 3, 4 on a uniform mesh with N × N
cells of equal mesh sizes, hx = hy = 2π

N . The second-order Crank–Nicolson time discretization

with Δt ∼ h� k+1
2 � is used so that the error from the spatial discretization dominates. Our numerical

experiments show that the optimal order of accuracy can be achieved for Pk, k = 1, 3, 4 approximations
with different β and θ . In Table 1, we report the L2 errors and orders of accuracy for Pk, k = 1, 3, 4
polynomials with only β = 0 and θ = 1

2 . For the P2 approximation, the convergence rate in terms of L2

errors appears to rely on the choice of β when θ = 1
2 . Table 2 shows that the order of accuracy for P2

polynomials is oscillating for (β, θ) = (0, 1
2 ), but the optimal order of accuracy is achieved by taking

suitably large β such as (β, θ) = (15, 1
2 ). Alternatively, the optimal third order of accuracy can also be

achieved for β = 0 if θ = 1.

Example 5.2 We consider the linear Schrödinger equation

iut + Δu = 0, u(x, y, 0) = e−i(x+y), (x, y) ∈ [0, 2π ]2, t > 0,

with periodic boundary condition. The exact solution to this problem is

u(x, y, t) = e−i(x+y+2t).

We test this example using Pk polynomials with k = 1, 2 on a uniform mesh with N × N cells. The
flux parameter is taken as β = 10. For the P1 and P2 approximations, we take (N, Δt) = (80, 0.005) and
(N, Δt) = (40, 0.002), respectively. The time histories of errors and mass are shown in Fig. 1. Here the
L2 error is defined by

‖u(·, t) − uh(·, t)‖L2 =
(
‖uR(·, t) − uRh (·, t)‖2

L2 + ‖uI(·, t) − uIh(·, t)‖2
L2

)1/2
.
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Fig. 1. L2 errors and mass history with β = 10, Pk, k = 1, 2 approximation.

It shows that the L2 error of the P2 approximation is much smaller than that of the P1 approximation,
and the scheme preserves the mass as expected.

Example 5.3 We consider the two-dimensional linear Schrödinger equation

iut + Δu + Φ(x, y)u = 0, (x, y) ∈ Ω = [−20, 20] × [−20, 20], 0 < t < 1,

u(x, y, 0) = i

2 cosh x cosh y
,

subject to the Dirichlet boundary condition u(x, y, t) = g on the domain boundary ∂Ω . Consider the
potential

Φ(x, y) = 3 − 2 tanh2 x − 2 tanh2 y,

and appropriate g so that the exact solution becomes a plane wave solution

u(x, y, t) = ieit

2 cosh x cosh y
.

Here g is taken as the trace of u.

We test this example using Pk polynomials with k = 1, 2 in the DG scheme given in Remark 4.5, on
a uniform mesh of N × N cells. Again the Crank–Nicolson time discretization is used. The results in
Table 3 show that the order of convergence of the L2 error achieves the expected (k + 1)th order of accu-
racy. We have also observed the oscillation in errors for the P2 approximation with θ = 1

2 . and β = 0,
yet the optimal third order of accuracy can be achieved for larger β. These are similar to the results for
the DG method with a periodic boundary condition.

Example 5.4 We consider the two-dimensional nonlinear Schrödinger equation

iut + Δu + 2|u|2u = 0,
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786 H. LIU ET AL.

Table 3 Errors for Example 5.3 when using Pk polynomials on a uniform mesh of N × N cells and
θ = 1

2 . Final time is T = 1

k = 1 Δt 1.0 e–01 5.0 e–02 2.5 e–02 Δt 1.0 e–01 5.0 e–02 2.5 e–02
N 80 160 320 N 80 160 320

β = 0 ‖uR − uRh‖ 4.30 e–02 7.76 e–03 1.82 e–03 ‖uI − uIh‖ 3.82 e–02 6.76 e–03 1.52 e–03
order — 2.47 2.09 order — 2.50 2.15

k = 2 Δt 1.0 e–01 2.5 e–02 6.25 e–03 Δt 1.0 e–01 2.5 e–02 6.25 e–03
N 80 160 320 N 80 160 320

β = 0 ‖uR − uRh‖ 3.13 e–03 7.12 e–04 9.69 e–05 ‖uI − uIh‖ 3.47 e–03 6.44 e–04 8.62 e–05
order — 2.14 2.88 order — 2.43 2.90

k = 2 Δt 1.0 e–01 2.5 e–02 6.25 e–03 Δt 1.0 e–01 2.5 e–02 6.25 e–03
N 80 160 320 N 80 160 320

β = 15 ‖uR − uRh‖ 9.28 e–04 8.20 e–05 1.21 e–05 ‖uI − uIh‖ 1.16 e–03 1.15 e–04 1.71 e–05
order — 3.50 2.76 order — 3.33 2.75

k = 2 Δt 1.0 e–01 2.5 e–02 6.25 e–03 Δt 1.0 e–01 2.5 e–02 6.25 e–03
N 80 160 320 N 80 160 320

β = 20 ‖uR − uRh‖ 9.69 e–04 8.37 e–05 1.01 e–05 ‖uI − uIh‖ 1.19 e–03 9.40 e–05 8.23 e–06
order — 3.53 3.05 order — 3.66 3.51

over the domain [0, 2π ]2, subject to initial condition

u(x, y, 0) = √
2ei(x+y),

and a periodic boundary condition. The exact solution is a plane wave solution

u(x, y, t) = √
2ei(x+y+2t).

We test this example using Pk polynomials with k = 1, 2, 3, 4 with different θ and β, on a uniform
mesh of N × N cells. The convergence results are similar to those for linear equations. In Tables 4–5, we
list the L2 errors and order of accuracy of Pk approximations, respectively. We see that the optimal k + 1
order of accuracy is achieved for Pk, k = 1, 3, 4 polynomials with β = 0, while for the P2 approximation,
the order of accuracy appears oscillating for β = 0 with θ = 1

2 , and again we can obtain the optimal
order of accuracy by taking (β, θ) = (10, 1

2 ) or (β, θ ) = (0, 1).

6. Concluding remarks

In this paper, optimal L2 error estimates for mass-preserving DG methods applied to multi-dimensional
linear Schrödinger equations are proved. Our analysis is carried out for both uniform Cartesian meshes
using tensor-product polynomial spaces, and arbitrary shape-regular meshes using regular polynomial
spaces, and is valid for arbitrary polynomial degrees. The main ingredients in the proof are the
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construction and analysis of explicit global projections for the former setting, and implicit global
projections for the latter setting if the flux parameter is suitably large. We also give numerical examples
to verify the results of our theoretical analysis. We observe that the scheme for polynomials of even
degree (k = 2, 4) shows peculiar convergence behavior when using the central numerical flux θ = 1

2 ,
i.e., oscillation in L2 errors for k = 2, and superconvergence for k = 4. For P2 polynomials the optimal
order of accuracy can be achieved by either using larger β if θ = 1

2 , or using biased fluxes θ 	= 1
2

with β = 0. Such peculiar convergence behavior has also been observed for hyperbolic wave equations
(see, e.g., Meng et al. 2016; Yi & Liu 2018) for odd-degree polynomials. Extension of this work to
superconvergence results particularly for even-degree polynomials is interesting, and constitutes our
future work.
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