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Abstract— As integrated circuit technologies continue to
scale, variability modeling is becoming more crucial yet, more
challenging. In this paper, we propose a novel performance mod-
eling method based on semi-supervised co-learning. We exploit
the multiple representations of process variation in any analog
and mixed signal circuit to establish a co-learning framework
where unlabeled samples are leveraged to improve the model
accuracy without enduring any simulation cost. Practically, our
proposed method relies on a small set of labeled data, and
the availability of no-cost unlabeled data to efficiently build
accurate performance model for any analog and mixed signals
circuit design. Our numerical experiments demonstrate that the
proposed approach achieves up to 30% reduction in simulation
cost compared to the state-of-the-art modeling technique without
surrendering any accuracy.

I. INTRODUCTION

With the continuous scaling of integrated circuit (IC) tech-
nologies, the challenges associated with retaining robustness
of state-of-art designs continue to exacerbate [1]. At deep
sub-micron technologies, process variation prevails among the
most prominent factors limiting the product yield of analog
and mixed-signal (AMS) circuits [2]. Thus, it is indispensable
to consider this variation in the design flow of modern ICs [1]-
[2]. Conventionally, performance modeling has been adopted
to capture this variability through analytical models that can
be used in various applications such as yield estimation [5]-
[7] and design optimization [8]-[9].

In practice, achieving highly-accurate performance models
is associated with high simulation cost, and as the complexity
and size of the ICs increase, so does this cost [10]. Hence,
it is becoming prohibitively expensive to collect enough sim-
ulation data to be used in traditional performance modeling
frameworks.
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In literature, different performance modeling approaches
have been proposed to address this challenge [11]-[17]. To-
wards reducing the required number of samples, and hence,
the simulation cost, recent performance modeling frame-
works have incorporated knowledge about model coefficients
based on prior assumption and/or historical data into the
modeling framework. For instance, sparse regression exploits
the assumption that most coefficients are close to zero to
effectively build accurate models [11]-[13]. On the other
hand, Bayesian model fusion (BMF) takes advantage of an
early-stage model to efficiently build a model for a later
stage [14]-[17]. Moreover, co-learning BMF proposed in [18]
leverages performance side information to further reduce
modeling cost. In this approach, a set of partially labeled
data, where simulation samples are collected for an alternative
performance metric, are fused with labeled samples collected
for the performance of interest (Pol) to build an accurate
model of the Pol.

From the data learning perspective, all the aforementioned
techniques can be categorized as supervised learning. Par-
ticularly, the performance models are built using labeled, or
partially labeled samples only. Recently, an approach to incor-
porate unlabeled data into the performance modeling frame-
work was proposed in [19]. This approach makes use of the
hierarchical structure of ICs to incorporate unlabeled data via
Bayesian co-learning. The key idea is to partition the circuit
into multiple blocks where block level performance metrics
are defined. Then, low-dimensional performance models for
block-level metrics can be combined with a set of unlabeled
samples, and a small number of labeled samples to efficiently
build accurate performance models.

Despite the fact that this approach can significantly reduce
the modeling cost, its application is limited to hierarchical
circuits where a block-level partitioning is possible. In prac-
tice, even for some hierarchical circuits, such partitioning
may not be intuitive. Hence, and motivated by the important
role the unlabeled data has proven to play, we will show
in this paper that a novel general-purpose semi-supervised
performance modeling framework can be derived without any
assumption about the AMS circuit structure.

We propose a novel co-learning technique that leverages
multiple views of the process variability to efficiently build a
performance model. In fact, one of the interesting features
of this modeling task is the availability of two views or



representations of the variability for each device in the circuit.
The first is the device level variations such as Ay, or A, .,
while the second view is the underlying set of independent
random variables, referred to as process variables (PV), that
are the seed for the device level variation. In particular,
performance modeling targets expressing the Pol as an ana-
Iytical function of PV because of the appealing independence
characteristics and the sparsity feature these variables possess.
In our approach, we capitalize on the information provided by
the device level variability as an alternative view to efficiently
build the performance model for the Pol.

Our proposed performance modeling starts from the boot-
strapping co-learning approach originally proposed in [23]
for semi-supervised classification to derive a novel semi-
supervised regression framework that makes use of the two
redundant data representation available at hand. The key idea
is to use a small number of labeled samples to build an initial
model for each of the views of the data, then attempt to
iteratively bootstrap from the initial models using unlabeled
data. In other words, initial models can be used to give pseudo
labels for unlabeled data, then the most confident predictions
from a particular model are used as pseudo samples for the
other model. In each iteration step, highly-confident pseudo
samples are fused with the small number of available labeled
samples to build a new model.

A key component of the proposed framework is estimating
the confidence metric for choosing pseudo samples. While
this task is relatively easy in a classification framework, it
is more challenging in regression. In this work, we derive a
mathematical formulation to compute the confidence metric
through propagation of modeling error [20]-[22].

o We propose an efficient performance modeling frame-
work for AMS circuits based on semi-supervised co-
learning.

« We leverage the multiple views of the variability in the
AMS circuits to generate pseudo sample at almost zero
cost to reduce the number of needed labeled samples.

o« We propose a statistical metric for selecting pseudo
samples based on the modeling error propagation.

o The experimental results demonstrates achieving up to
30% reduction in the simulation cost compared to con-
ventional methods [21] without surrendering any accu-
racy.

The remainder of this paper is organized as follows. In
Section II we review the technical background and then
present the proposed approach in Section III. Section IV
presents numerical results demonstrating the efficacy of our
method, and conclusions are presented in Section V.

II. BACKGROUND

A. Performance Modeling

Mathematically, a performance model approximates a
circuit-level Pol (e.g. gain, power) as an analytical function

of the process variables:

M
y= fl(x) = Z am-b'rn(x) (1)
m=1

where y is the Pol, x is a vector containing the PV, f(x) is
the modeling function, {a,,;m = 1,2,..., M} contains the
model coefficients, {b,,;m = 1,2,..., M} contains the basis
functions, and M denotes the total number of basis functions.

Given a set of samples, the model coefficients in (1) are
usually obtained through least-squares fitting by solving the
following optimization problem [20], [22]:

min|ly — B.o|[3 )

where || || is the Lo—norm of a vector, and
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In (3)-(5), N is the total number of samples, and x(™) and
y(™) are the values of x and y at the n—th sample respectively.

However, least-squares can build accurate models only
when the number of samples is much greater than the number
of unknown coefficients. Thus, given the high dimensionality
of the performance models in complex AMS circuit designs,
the simulation cost for building accurate models can be exor-
bitant. Hence, most recent performance modeling techniques
incorporate additional information about the model to reduce
the number of simulations needed to build accurate models
[11]-[18].

While using unlabeled samples has shown significant re-
duction in modeling cost [19], the application of the proposed
method is limited to AMS circuits with hierarchical structure.
In this paper, we propose a generalized semi-supervised
learning framework for AMS circuits without any assumption
about their structures.

B. Multiple Variability Representation

Our main objective is to exploit the existence of two
representations of the data to make use of the unlabeled
samples in the performance modeling task. While the target is
to build a performance model for the Pol as a function of PV,
we suggest simultaneously building an alternative model that
can be used to assist the original learning task. This is possible
by the virtue of having two representations of variability
for each device: (i) process variables and (ii) device-level
variations.

For each device in the design, a set of independent random
variables are used as a seed to generate all device level
variation for the particular device. Examples of these variables



include change in oxide thickness (A;,,) and random dopant
fluctuations (RDF) among others. In practice, device level
variations are highly dependent and sampling directly from
their joint distribution can be computational expensive espe-
cially that the existence of a closed form of such distribution
is not guaranteed. Hence, it is more convenient to sample
from the joint distribution of independent random variables,
then express the device level variations as a function of these
independent variables.

To further elaborate on this, we consider the process of
generating the n—th simulation sample. First, the vector x(")
containing the independent PV is sampled from its simple
known distribution (typically a standard multivariate Gaussian
distribution), then mapping functions are used to map the
variability to the device level. As an example, the change
in threshold voltage can be expressed as:

AP — g(x™) ©)

where A&};)H is the threshold voltage variation at the n—th
sampling point and g(x) is mapping function that maps the
PV variations to the change in threshold voltage.

Therefore, one or more device level variation parameters
can be used to form an alternative model in the proposed
co-learning process. Our main objective is to build the per-
formance model in (1) that expresses Pol as a function of
the process variables that fully describe the device variability.
However, the alternative model need not be comprehensive
especially considering the tradeoff between model accuracy
and dimensionality when labeled data is scarce. In other
words, the model can consider only a subset of the device
level variation parameters that are expected to be the most
important. In practice, we define our alternative model for the
Pol as a function of only one device level variation parameter,
which is the Ay, ,:

K
y= fo(v) =Y Bcr(v) 7
k=1

where v is a vector containing the change in threshold voltage
for all devices in the circuit, fo(v) is the modeling func-
tion, {Bk;k = 1,2,..., K} contains the model coefficients,
{ek;k = 1,2,..., K} contains the basis functions, and K
denotes the total number of basis functions.

The choice of the alternative model in (7) is motived by
two key points. The first is that the dimensionality of this
model is much lower than that of the model in (1). In fact,
instead of representing each device by a set of PVs in (1),
only one variable is used per device in (7). The second
point is that, given the high correlation between the device
level variation parameters, including only one of them in the
model guarantees the independence of all variables in the
vector v. Meanwhile, it is important to note that the proposed
framework can be easily extended to include multiple device-
level variation parameters.

Therefore, we can define two models for the Pol starting
from the two representations of data. Also, it is important

to note that while obtaining labeled samples for the Pol
in an AMS circuit requires expensive simulation, the two
representations for unlabeled samples can be obtained at
almost no cost by simply populating sample points using the
simulator without performing any simulations.

III. PROPOSED APPROACH

A. Co-Learning Framework

The semi-supervised co-learning approach proposed in this
work is based upon three main pillars: (i) a diverse represen-
tation of the data, (ii) a small set of labeled samples, and
(iii) the availability of cheap unlabeled samples. Initially, the
set of labeled data points are used to build initial models
while considering the prior information about the model
coefficients. At each iteration, using the two available models,
pseudo predictions for unlabeled samples can be obtained.
Then, using an appropriate confidence metric, the highly-
confident samples from one model are used by the other
model as pseudo samples in the next iteration [23]-[24].

As a first step, two regression problems are formulated to
obtain the two initial models using the set of labeled data
{yL,vL,xr} while incorporating the prior information about
the model coefficients. In this work, we assume the models
coefficients are sparse, hence, the modeling tasks can be
formulated mathematically as two constrained optimization
problems:

min llyr — Br.o|[3
p (3
subject to  ||ex||o < s
and,
min llyr — Cr.Bl3
B ) )
subject to  [|Blo < Ay

In (8)-(9), || ®||o is the “Lo—norm” of a vector, By, is the
evaluation of (3) based on x;, Cp, is defined for vy in a
way analogous to By, and A\, and )\, are upper bounds on
the number of non-zero confections in « and 3 respectively.
We denote by Q, = {yr,x1} and Q, = {y, v} the initial
sets of training data used in fitting the two models.

The optimization problems in (8)-(9) are NP-hard [21];
hence, several heuristics have been proposed to efficiently find
the sub-optimal solutions o*, and B* respectively. Among
them, Orthogonal Matching Pursuit (OMP) is one of the
sparse regression methods that has been extensively used in
literature [9], [12], [13], [19], [21]. OMP assumes that there
exists few dominant basis functions and most coefficients
corresponding to other non-dominant basis functions are close
to zero. Hence, it iteratively chooses a small number of impor-
tant basis functions to include in the model by examining the
correlation between the basis function and the performance
values. Practically, the sparsity metrics A\, and A, can be
obtained using cross-validation [22], [20], [21]. Details about
OMP are not shown due to page limit, however, reader can
refer to [13], [19], [21] for more details.
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Fig. 1. The flow of one co-learning iteration is shown. Starting from
training sets €2, and €2, performance models are built. Then, the training
data set is updated to include confident pseudo samples for the next
iteration.

Using the initial models, pseudo labels for the unlabeled
data set ©, = {xy} and ©, = {vy} are obtained as follows:

(10)
(1D

where yy, and yy,, are the pseudo labels for unlabeled sam-
ples ©, and ©, using models f;(x) and f2(v) respectively,
and By and Cy are analogous to By and Cp respectively
for unlabeled samples x;; and v.

In the next step, the sets of training data 2, and 2, are
updated to include the most confident samples among y,,
and y ., respectively. Meanwhile, these samples are removed
from the unlabeled data sets ©,, and ©,,. The update equation
are given by:

.
Yu: = By.«

yu. =Cu.p"

Qo = U{yp.,. X0} ©0 =06, —{vy} (12)
Q, =0 U {YI*J,zaV*U}§ O, =0, — {x7} (13)

where y7; . and y7;, are the most confident pseudo labels
from models fi(x) and fo(v) respectively, and xj; and vj;
are their corresponding x and v values.

After this update, new models can be obtained by solving
the optimization problems in (8)-(9) with the updated training
data sets. This process continues iteratively until reaching a
user defined stopping criterion. Fig.1 shows one iteration of
the co-learning method. Starting from the training data sets
Q. and Q,, OMP is used to solve for the models f;(x) and
fa(v). If the exit criterion is not yet met, the unlabeled data
sets O, and O, are evaluated using the trained model and the
most confident samples y7; . and y;;, are selected. Finally,
the selected samples are moved from O, and ©, alongside
their pseudo labels to £2, and €2, respectively.

The intuition behind this approach comes from the very
basic concept of learning from noisy data; which is the case

in most regression problems. In [23], the authors show that,
given a function that is learnable from noisy labeled data
fa(v), with two redundant representations x and v, then a
weak initial model for fs can generate noisy labels for x. In
other words, given an unlabeled sample v(1), the data point
{xW)] f2(v(1))} can be used to learn f;(x) and vice versa.

B. Confidence Estimation

One critical point in this approach is deciding upon the met-
ric used to choose the pseudo samples to be included in the
training set. In classification, this is relatively straightforward
because confidence about class label is provided along the
label by many classifiers [23]-[24]. However, such confidence
is not readily available to be used in regression. Therefore,
a key contribution of this work is estimating the confidence
level for pseudo labels corresponding to unlabeled samples.

To illustrate the approach used for confidence estimation,
we will start from the simple regression problem defined
in (2). This approach can be easily extended to the OMP
framework used in this work since, at its core, OMP is
simply solving a similar problem for a select subset of basis
functions.

While confidence level has been extensively studied in the
field of statistics [20]-[22], most contributions address the
challenge of estimating the confidence level on the model
coefficients, usually referred to as confidence on estimator.
However, the proposed co-learning framework presented in
the previous subsection requires computing the confidence
on each sample in the unlabeled data set to choose the most
confident ones.

To address this challenge, we propose propagating the
confidence from the estimator level to the sample level. To do
so, we start by rewriting the expression for the performance
model in (1) as:

M
Y= fl(X) +e= Z a7rb-b7rb(x) +e€ (14)
m=1

where € is a a zero mean residual term with variance equal to
o2, Intuitively, one can see that the confidence on the model
coefficients in (14) increases as the value of o2 moves closer
to zero.

In practice, the confidence level on the model coefficients
can be obtained starting from the closed form solution, &, of
the optimization problem in (2) [20]-[22]:

a=(BTB)"'BTy. (15)

In statistics community, the standard deviation of the model
coefficients, referred to as standard error, is the most widely
used confidence metric. Using (14)-(15), the covariance ma-

trix of the model coefficients can be expressed as:
cov(&) = cov(a + (BTB) " 'BTe). (16)

In (16), & and B are both constants. Therefore, cov(&) can
be expressed as:

cov(&) = (BTB) 102 17)
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Fig. 2. The relative modeling error of the circuit is shown as a function of
the labeled samples.

As defined in (14), o2 represents the variance of the
residuals, hence it can be approximated by the unbiased
estimator o2:

2
AQ — ||y_ B'(XHQ 18
TN_M (18)
and eventually, cov(&) can be computed as:
cov(&) = (BTB) 102, (19)

Once the standard error on the model coefficients is com-
puted, it can be propagated to the regression prediction for
the unlabeled samples. Using a prediction equation similar
to (10), the variance of the predicted label for a the ¢-th
unlabeled sample can be expressed as:

var(§) = var(b®W&) = (b)) cov(a)b?,  (20)

where (V) and b(®) are respectively the prediction and vector
of basis functions of the i-th sample.

The variance value computed in (20) represents a mea-
sure of the confidence on the prediction for all samples.
Particularly, in each iteration of the co-learning framework,
the samples with the smallest variance values, i.e., highest
prediction confidence, are included in the training sets for
the next iteration.

IV. EXPERIMENTAL RESULTS

In this section, two circuit examples implemented using
TSMC-40nm technology are used to demonstrate the efficacy
of the proposed method. All numerical experiments are per-
formed on a server with 3.4GHz and 32GB memory.

A. Comparator Design

To demonstrate the proposed approach we consider a Stron-
gARM latch comparator circuit with power being the Pol.
This comparator, which serves as an interface between the
analog and digital domains, is among the most used designs
thanks to its positive feedback which enables fast decisions,
and the fully dynamic structure which eliminates static power.

TABLE I
MODELING ERROR AND COST FOR COMPARATOR

OMP [13]|Proposed

Number of Simulations 70 50
Relative Error 2.50% 2.53%
Simulation Cost (Sec.) | 84000 60000

Modeling Cost (Sec.) 2 123
Total Cost (Sec.) 84002 60123

In total, 1280 random variables are used to model the process
variations for the circuit, whereas 44 device level parameters
(Avy.,,) are used in the alternative model.

To generate the labeled dataset, circuit simulations are per-
formed based on Monte Carlo sampling. However, unlabeled
data is obtained without running any simulations. To show the
efficacy of the proposed method, two performance modeling
approaches are implemented and compared: (i) OMP [13],
and the proposed method. Fig. 2 shows the modeling error
as a function of the number of labeled samples. Throughout
this section, the error metric used is the relative absolute error
(%).

In the proposed framework, 20 unlabeled samples are used
in addition to the labeled samples to build the performance
model. In practice, the co-learning is implemented such that
only one sample is added to the training set in each iteration;
i.e., only the most confident sample is used in each iteration.
Table I further summarizes the computational cost for the two
approaches which includes both simulation cost and modeling
cost. In fact, the total cost is dominated by the simulation
cost which is the time needed to collect the labeled samples.
The results show that the proposed approach achieves 30%
reduction in the modeling cost compared to OMP for the same
target accuracy.

One important observation from Fig. 2 is that the behavior
of the modeling error versus the number of labeled samples
when using the proposed approach is more consistent with
the expected behavior compared to OMP. The modeling error
is expected to decrease with the increase of labeled samples.
However, when the number of samples is small, the random
fluctuation associated with random sampling can cause a non-
monotonic pattern in modeling error. Hence, it is clear from
the two trends in Fig. 2 that the use of the unlabeled samples
can help in reducing such random fluctuations resulting in a
monotonic behavior.

B. Voltage Controlled Oscillator Design

In this example, a voltage controlled oscillator (VCO) is
considered where the Pol is the frequency. VCO is a common
block in a frequency synthesizer. In recent years, ring VCO
has replaced traditional Operational Transconductance Ampli-
fier (OTA) where it demonstrated superior power efficiency. In
total, 4620 random variables are used to model the process
variations for this circuit and 148 device level parameters
(Av,.,,) are used in the alternative model.
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Fig. 3. The relative modeling error of the VCO is shown as a function of
the labeled samples.

TABLE II
MODELING ERROR AND COST FOR VCO

OMP [13]|Proposed

Number of Simulations 50 40
Relative Error 1.55% 1.6%
Simulation Cost (Sec.) | 45000 36000

Modeling Cost (Sec.) 1.5 95
Total Cost (Sec.) 45002 36095

Using a setup similar to the previous example, performance
modeling is performed and the modeling accuracy of both
OMP and the proposed approach are summarized in Fig.
3. The error trends in Fig. 3 demonstrate the superiority of
the proposed approach when compared to OMP. Moreover,
Table II presents the modeling cost for both approaches which
shows 20% reduction in the modeling cost when using the
proposed method.

V. CONCLUSION

In this paper, a novel semi-supervised performance model-
ing approach is presented. The proposed approach relies on a
co-learning framework that makes use of the two redundant
data representation available at hand to incorporate unlabeled
samples in the modeling process. Iteratively, two models are
built based on the two representations and the most confident
samples from one model are used as pseudo samples for the
other in a co-learning scheme while taking into account the
prior information of the model coefficients. As shown by our
experimental results, the proposed approach can achieve up
to 30% reduction in the stimulation cost when compared to
state-of-the-art method.
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