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Abstract— As integrated circuit technologies continue to

scale, variability modeling is becoming more crucial yet, more

challenging. In this paper, we propose a novel performance mod-

eling method based on semi-supervised co-learning. We exploit

the multiple representations of process variation in any analog

and mixed signal circuit to establish a co-learning framework

where unlabeled samples are leveraged to improve the model

accuracy without enduring any simulation cost. Practically, our

proposed method relies on a small set of labeled data, and

the availability of no-cost unlabeled data to efficiently build

accurate performance model for any analog and mixed signals

circuit design. Our numerical experiments demonstrate that the

proposed approach achieves up to 30% reduction in simulation

cost compared to the state-of-the-art modeling technique without

surrendering any accuracy.

I. INTRODUCTION

With the continuous scaling of integrated circuit (IC) tech-

nologies, the challenges associated with retaining robustness

of state-of-art designs continue to exacerbate [1]. At deep

sub-micron technologies, process variation prevails among the

most prominent factors limiting the product yield of analog

and mixed-signal (AMS) circuits [2]. Thus, it is indispensable

to consider this variation in the design flow of modern ICs [1]-

[2]. Conventionally, performance modeling has been adopted

to capture this variability through analytical models that can

be used in various applications such as yield estimation [5]-

[7] and design optimization [8]-[9].

In practice, achieving highly-accurate performance models

is associated with high simulation cost, and as the complexity

and size of the ICs increase, so does this cost [10]. Hence,

it is becoming prohibitively expensive to collect enough sim-

ulation data to be used in traditional performance modeling

frameworks.
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In literature, different performance modeling approaches

have been proposed to address this challenge [11]-[17]. To-

wards reducing the required number of samples, and hence,

the simulation cost, recent performance modeling frame-

works have incorporated knowledge about model coefficients

based on prior assumption and/or historical data into the

modeling framework. For instance, sparse regression exploits

the assumption that most coefficients are close to zero to

effectively build accurate models [11]-[13]. On the other

hand, Bayesian model fusion (BMF) takes advantage of an

early-stage model to efficiently build a model for a later

stage [14]-[17]. Moreover, co-learning BMF proposed in [18]

leverages performance side information to further reduce

modeling cost. In this approach, a set of partially labeled

data, where simulation samples are collected for an alternative

performance metric, are fused with labeled samples collected

for the performance of interest (PoI) to build an accurate

model of the PoI.

From the data learning perspective, all the aforementioned

techniques can be categorized as supervised learning. Par-

ticularly, the performance models are built using labeled, or

partially labeled samples only. Recently, an approach to incor-

porate unlabeled data into the performance modeling frame-

work was proposed in [19]. This approach makes use of the

hierarchical structure of ICs to incorporate unlabeled data via

Bayesian co-learning. The key idea is to partition the circuit

into multiple blocks where block level performance metrics

are defined. Then, low-dimensional performance models for

block-level metrics can be combined with a set of unlabeled

samples, and a small number of labeled samples to efficiently

build accurate performance models.

Despite the fact that this approach can significantly reduce

the modeling cost, its application is limited to hierarchical

circuits where a block-level partitioning is possible. In prac-

tice, even for some hierarchical circuits, such partitioning

may not be intuitive. Hence, and motivated by the important

role the unlabeled data has proven to play, we will show

in this paper that a novel general-purpose semi-supervised

performance modeling framework can be derived without any

assumption about the AMS circuit structure.

We propose a novel co-learning technique that leverages

multiple views of the process variability to efficiently build a

performance model. In fact, one of the interesting features

of this modeling task is the availability of two views or



representations of the variability for each device in the circuit.

The first is the device level variations such as ∆VTH
or ∆weff

,

while the second view is the underlying set of independent

random variables, referred to as process variables (PV), that

are the seed for the device level variation. In particular,

performance modeling targets expressing the PoI as an ana-

lytical function of PV because of the appealing independence

characteristics and the sparsity feature these variables possess.

In our approach, we capitalize on the information provided by

the device level variability as an alternative view to efficiently

build the performance model for the PoI.

Our proposed performance modeling starts from the boot-

strapping co-learning approach originally proposed in [23]

for semi-supervised classification to derive a novel semi-

supervised regression framework that makes use of the two

redundant data representation available at hand. The key idea

is to use a small number of labeled samples to build an initial

model for each of the views of the data, then attempt to

iteratively bootstrap from the initial models using unlabeled

data. In other words, initial models can be used to give pseudo

labels for unlabeled data, then the most confident predictions

from a particular model are used as pseudo samples for the

other model. In each iteration step, highly-confident pseudo

samples are fused with the small number of available labeled

samples to build a new model.

A key component of the proposed framework is estimating

the confidence metric for choosing pseudo samples. While

this task is relatively easy in a classification framework, it

is more challenging in regression. In this work, we derive a

mathematical formulation to compute the confidence metric

through propagation of modeling error [20]-[22].

• We propose an efficient performance modeling frame-

work for AMS circuits based on semi-supervised co-

learning.

• We leverage the multiple views of the variability in the

AMS circuits to generate pseudo sample at almost zero

cost to reduce the number of needed labeled samples.

• We propose a statistical metric for selecting pseudo

samples based on the modeling error propagation.

• The experimental results demonstrates achieving up to

30% reduction in the simulation cost compared to con-

ventional methods [21] without surrendering any accu-

racy.

The remainder of this paper is organized as follows. In

Section II we review the technical background and then

present the proposed approach in Section III. Section IV

presents numerical results demonstrating the efficacy of our

method, and conclusions are presented in Section V.

II. BACKGROUND

A. Performance Modeling

Mathematically, a performance model approximates a

circuit-level PoI (e.g. gain, power) as an analytical function

of the process variables:

y ≈ f1(x) =
M
∑

m=1

αm.bm(x) (1)

where y is the PoI, x is a vector containing the PV, f1(x) is

the modeling function, {αm;m = 1, 2, . . . ,M} contains the

model coefficients, {bm;m = 1, 2, . . . ,M} contains the basis

functions, and M denotes the total number of basis functions.

Given a set of samples, the model coefficients in (1) are

usually obtained through least-squares fitting by solving the

following optimization problem [20], [22]:

min
α

||y −B.α||22 (2)

where || • ||2 is the L2−norm of a vector, and

B =







b1(x
(1)) b2(x

(1)) . . . bM (x(1))
...

...
. . .

...

b1(x
(N)) b2(x

(N)) . . . bM (x(N))






(3)

α =
[

α1 α2 . . . αM

]T
(4)

y =
[

y(1) y(2) . . . y(N)
]T

. (5)

In (3)-(5), N is the total number of samples, and x(n) and

y(n) are the values of x and y at the n−th sample respectively.

However, least-squares can build accurate models only

when the number of samples is much greater than the number

of unknown coefficients. Thus, given the high dimensionality

of the performance models in complex AMS circuit designs,

the simulation cost for building accurate models can be exor-

bitant. Hence, most recent performance modeling techniques

incorporate additional information about the model to reduce

the number of simulations needed to build accurate models

[11]-[18].

While using unlabeled samples has shown significant re-

duction in modeling cost [19], the application of the proposed

method is limited to AMS circuits with hierarchical structure.

In this paper, we propose a generalized semi-supervised

learning framework for AMS circuits without any assumption

about their structures.

B. Multiple Variability Representation

Our main objective is to exploit the existence of two

representations of the data to make use of the unlabeled

samples in the performance modeling task. While the target is

to build a performance model for the PoI as a function of PV,

we suggest simultaneously building an alternative model that

can be used to assist the original learning task. This is possible

by the virtue of having two representations of variability

for each device: (i) process variables and (ii) device-level

variations.

For each device in the design, a set of independent random

variables are used as a seed to generate all device level

variation for the particular device. Examples of these variables



include change in oxide thickness (∆tox) and random dopant

fluctuations (RDF) among others. In practice, device level

variations are highly dependent and sampling directly from

their joint distribution can be computational expensive espe-

cially that the existence of a closed form of such distribution

is not guaranteed. Hence, it is more convenient to sample

from the joint distribution of independent random variables,

then express the device level variations as a function of these

independent variables.

To further elaborate on this, we consider the process of

generating the n−th simulation sample. First, the vector x(n)

containing the independent PV is sampled from its simple

known distribution (typically a standard multivariate Gaussian

distribution), then mapping functions are used to map the

variability to the device level. As an example, the change

in threshold voltage can be expressed as:

∆
(n)
VTH

= g(x(n)) (6)

where ∆
(n)
VTH

is the threshold voltage variation at the n−th

sampling point and g(x) is mapping function that maps the

PV variations to the change in threshold voltage.

Therefore, one or more device level variation parameters

can be used to form an alternative model in the proposed

co-learning process. Our main objective is to build the per-

formance model in (1) that expresses PoI as a function of

the process variables that fully describe the device variability.

However, the alternative model need not be comprehensive

especially considering the tradeoff between model accuracy

and dimensionality when labeled data is scarce. In other

words, the model can consider only a subset of the device

level variation parameters that are expected to be the most

important. In practice, we define our alternative model for the

PoI as a function of only one device level variation parameter,

which is the ∆VTH
:

y ≈ f2(v) =
K
∑

k=1

β.ck(v) (7)

where v is a vector containing the change in threshold voltage

for all devices in the circuit, f2(v) is the modeling func-

tion, {βk; k = 1, 2, . . . ,K} contains the model coefficients,

{ck; k = 1, 2, . . . ,K} contains the basis functions, and K

denotes the total number of basis functions.

The choice of the alternative model in (7) is motived by

two key points. The first is that the dimensionality of this

model is much lower than that of the model in (1). In fact,

instead of representing each device by a set of PVs in (1),

only one variable is used per device in (7). The second

point is that, given the high correlation between the device

level variation parameters, including only one of them in the

model guarantees the independence of all variables in the

vector v. Meanwhile, it is important to note that the proposed

framework can be easily extended to include multiple device-

level variation parameters.

Therefore, we can define two models for the PoI starting

from the two representations of data. Also, it is important

to note that while obtaining labeled samples for the PoI

in an AMS circuit requires expensive simulation, the two

representations for unlabeled samples can be obtained at

almost no cost by simply populating sample points using the

simulator without performing any simulations.

III. PROPOSED APPROACH

A. Co-Learning Framework

The semi-supervised co-learning approach proposed in this

work is based upon three main pillars: (i) a diverse represen-

tation of the data, (ii) a small set of labeled samples, and

(iii) the availability of cheap unlabeled samples. Initially, the

set of labeled data points are used to build initial models

while considering the prior information about the model

coefficients. At each iteration, using the two available models,

pseudo predictions for unlabeled samples can be obtained.

Then, using an appropriate confidence metric, the highly-

confident samples from one model are used by the other

model as pseudo samples in the next iteration [23]-[24].

As a first step, two regression problems are formulated to

obtain the two initial models using the set of labeled data

{yL,vL,xL} while incorporating the prior information about

the model coefficients. In this work, we assume the models

coefficients are sparse, hence, the modeling tasks can be

formulated mathematically as two constrained optimization

problems:

min
α

||yL −BL.α||
2
2

subject to ||α||0 ≤ λx

(8)

and,
min
β

||yL −CL.β||
2
2

subject to ||β||0 ≤ λv

. (9)

In (8)-(9), || • ||0 is the “L0−norm” of a vector, BL is the

evaluation of (3) based on xL, CL is defined for vL in a

way analogous to BL, and λx and λv are upper bounds on

the number of non-zero confections in α and β respectively.

We denote by Ωx = {yL,xL} and Ωv = {yL,vL} the initial

sets of training data used in fitting the two models.

The optimization problems in (8)-(9) are NP-hard [21];

hence, several heuristics have been proposed to efficiently find

the sub-optimal solutions α∗, and β
∗ respectively. Among

them, Orthogonal Matching Pursuit (OMP) is one of the

sparse regression methods that has been extensively used in

literature [9], [12], [13], [19], [21]. OMP assumes that there

exists few dominant basis functions and most coefficients

corresponding to other non-dominant basis functions are close

to zero. Hence, it iteratively chooses a small number of impor-

tant basis functions to include in the model by examining the

correlation between the basis function and the performance

values. Practically, the sparsity metrics λx and λv can be

obtained using cross-validation [22], [20], [21]. Details about

OMP are not shown due to page limit, however, reader can

refer to [13], [19], [21] for more details.
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Fig. 2. The relative modeling error of the circuit is shown as a function of
the labeled samples.

As defined in (14), σ2 represents the variance of the

residuals, hence it can be approximated by the unbiased

estimator σ̂2:

σ̂2 =
||y −B.α||22

N −M
, (18)

and eventually, cov(α̂) can be computed as:

cov(α̂) = (BTB)−1σ̂2. (19)

Once the standard error on the model coefficients is com-

puted, it can be propagated to the regression prediction for

the unlabeled samples. Using a prediction equation similar

to (10), the variance of the predicted label for a the i-th

unlabeled sample can be expressed as:

var(ŷ(i)) = var(b(i)α̂) = (b(i))T cov(α̂)b(i), (20)

where ŷ(i) and b(i) are respectively the prediction and vector

of basis functions of the i-th sample.

The variance value computed in (20) represents a mea-

sure of the confidence on the prediction for all samples.

Particularly, in each iteration of the co-learning framework,

the samples with the smallest variance values, i.e., highest

prediction confidence, are included in the training sets for

the next iteration.

IV. EXPERIMENTAL RESULTS

In this section, two circuit examples implemented using

TSMC-40nm technology are used to demonstrate the efficacy

of the proposed method. All numerical experiments are per-

formed on a server with 3.4GHz and 32GB memory.

A. Comparator Design

To demonstrate the proposed approach we consider a Stron-

gARM latch comparator circuit with power being the PoI.

This comparator, which serves as an interface between the

analog and digital domains, is among the most used designs

thanks to its positive feedback which enables fast decisions,

and the fully dynamic structure which eliminates static power.

TABLE I
MODELING ERROR AND COST FOR COMPARATOR

OMP [13] Proposed

Number of Simulations 70 50

Relative Error 2.50% 2.53%

Simulation Cost (Sec.) 84000 60000

Modeling Cost (Sec.) 2 123

Total Cost (Sec.) 84002 60123

In total, 1280 random variables are used to model the process

variations for the circuit, whereas 44 device level parameters

(∆VTH
) are used in the alternative model.

To generate the labeled dataset, circuit simulations are per-

formed based on Monte Carlo sampling. However, unlabeled

data is obtained without running any simulations. To show the

efficacy of the proposed method, two performance modeling

approaches are implemented and compared: (i) OMP [13],

and the proposed method. Fig. 2 shows the modeling error

as a function of the number of labeled samples. Throughout

this section, the error metric used is the relative absolute error

(%).
In the proposed framework, 20 unlabeled samples are used

in addition to the labeled samples to build the performance

model. In practice, the co-learning is implemented such that

only one sample is added to the training set in each iteration;

i.e., only the most confident sample is used in each iteration.

Table I further summarizes the computational cost for the two

approaches which includes both simulation cost and modeling

cost. In fact, the total cost is dominated by the simulation

cost which is the time needed to collect the labeled samples.

The results show that the proposed approach achieves 30%

reduction in the modeling cost compared to OMP for the same

target accuracy.
One important observation from Fig. 2 is that the behavior

of the modeling error versus the number of labeled samples

when using the proposed approach is more consistent with

the expected behavior compared to OMP. The modeling error

is expected to decrease with the increase of labeled samples.

However, when the number of samples is small, the random

fluctuation associated with random sampling can cause a non-

monotonic pattern in modeling error. Hence, it is clear from

the two trends in Fig. 2 that the use of the unlabeled samples

can help in reducing such random fluctuations resulting in a

monotonic behavior.

B. Voltage Controlled Oscillator Design

In this example, a voltage controlled oscillator (VCO) is

considered where the PoI is the frequency. VCO is a common

block in a frequency synthesizer. In recent years, ring VCO

has replaced traditional Operational Transconductance Ampli-

fier (OTA) where it demonstrated superior power efficiency. In

total, 4620 random variables are used to model the process

variations for this circuit and 148 device level parameters

(∆VTH
) are used in the alternative model.
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Fig. 3. The relative modeling error of the VCO is shown as a function of
the labeled samples.

TABLE II
MODELING ERROR AND COST FOR VCO

OMP [13] Proposed

Number of Simulations 50 40

Relative Error 1.55% 1.6%

Simulation Cost (Sec.) 45000 36000

Modeling Cost (Sec.) 1.5 95

Total Cost (Sec.) 45002 36095

Using a setup similar to the previous example, performance

modeling is performed and the modeling accuracy of both

OMP and the proposed approach are summarized in Fig.

3. The error trends in Fig. 3 demonstrate the superiority of

the proposed approach when compared to OMP. Moreover,

Table II presents the modeling cost for both approaches which

shows 20% reduction in the modeling cost when using the

proposed method.

V. CONCLUSION

In this paper, a novel semi-supervised performance model-

ing approach is presented. The proposed approach relies on a

co-learning framework that makes use of the two redundant

data representation available at hand to incorporate unlabeled

samples in the modeling process. Iteratively, two models are

built based on the two representations and the most confident

samples from one model are used as pseudo samples for the

other in a co-learning scheme while taking into account the

prior information of the model coefficients. As shown by our

experimental results, the proposed approach can achieve up

to 30% reduction in the stimulation cost when compared to

state-of-the-art method.
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