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Abstract. We design and numerically validate a local discontinuous Galerkin (LDG)
method to compute solutions to the initial value problem for a nonlinear variational
wave equation originally proposed to model liquid crystals. For the semi-discrete LDG
formulation with a class of alternating numerical fluxes, the energy conserving prop-
erty is verified. A dissipative scheme is also introduced by locally imposing some
numerical “damping” in the scheme so to suppress some numerical oscillations near
solution singularities. Extensive numerical experiments are presented to validate and
illustrate the effectiveness of the numerical methods. Optimal convergence in L? is
numerically obtained when using alternating numerical fluxes. When using the cen-
tral numerical flux, only sub-optimal convergence is observed for polynomials of odd
degree. Numerical simulations with long time integration indicate that the energy
conserving property is crucial for accurately capturing the underlying wave shapes.
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1 Introduction

Many applications involve the solution of wave equations. In this paper, we consider a
variational nonlinear wave equation that models the propagation of orientation waves in
the director field in nematic liquid crystals. Let the director filed n(x,t) be the orientation
of the molecules at each location x and time ¢, in planar deformations of nematic liquid
crystals involving only one-dimensional space variable, the director field is given by

n(x,t) =cosu(x,t)ex+sinu(x,t)e,,
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where e, and e, are the coordinator vectors in the x and y directions, respectively. In
such a setting, the dynamics of the liquid crystal is described by some unknown function
u(x,t), which represents the angle of the director field relative to the x-direction, and the
variational principle [28] reduces to the following nonlinear wave equation

021 —c(u)dy(c(u)dyu) =0, (1.1)
and the wave speed c(u) is given by
(u) =wacos*u+Bsin’u

for some positive constant «, 8. In general, we assume that c(u) is a smooth, uniformly
positive function. One of the most important properties of the wave equation is the con-
servation of energy. Indeed, the analysis in [5,6,24] shows that conservative solutions are
unique, globally defined, and yield a flow on the space of couples (u,u;) € H'(R) x L*(R).
For each conservative solution, the total energy

E(t):% [ @+ (e ,))Puu () P

remains constant in time. Aim of this work is to compute such a conservative solution to
(1.1) with an arbitrary high order of accuracy.

Note that smooth solutions may well develop singularities in finite time [17]. It was
observed in [6,24] that conservative solutions can occasionally be measure-valued. On
the other hand, for dissipative solutions, studied in [7,17,33,34], the continuous depen-
dence for general initial data in H' x L? remains an open question. Nevertheless, when
singularity occurs in solutions, the numerical approximation to u, may become oscilla-
tory. We therefore also propose a dissipative scheme by locally imposing some numerical
“damping” in the conservative scheme, in such a way that it not only indicates where
the singularity is located, but it also provides a measure for the artificial damping that
smoothens singularities. Relatively little dissipation is added in the smooth regions away
from the singularity to ensure an accurate computation of solution structures away from
singularities.

Existing numerical results for wave propagation reveal that energy conserving nu-
merical methods, which conserve the discrete approximation of energy, are favorable
because they are able to maintain the phase and shape of the waves accurately. Numeri-
cal methods without this property may result in substantial phase and shape errors after
long time integration.

A vast amount of literature can be found on the numerical approximation of wave
equations, including finite difference, finite element, finite volume, spectral methods and
integral equation based methods. In this paper, we will confine our attention to the dis-
continuous Galerkin (DG) method, which is a class of finite element methods using com-
pletely discontinuous piecewise-polynomial space for the numerical solution and the test
functions in the spatial variables. Various DG methods have been designed for first order
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hyperbolic systems, mostly with entropy satisfying numerical fluxes so that the scheme
is entropy stable [11-14]. Chung and Engquist [8,9] have proposed an optimal, energy
conserving DG method for the first-order wave equation using staggered grids. They
introduced different meshes for different computational variables, and are able to prove
the optimal convergence for unstructured meshes.

DG methods for solving the second-order linear wave equation have been proposed
in a variety of forms: a family of non-symmetric interior penalty (IP) DG method was
developed in [27], in which the dissipative mechanism in the method depends on the
choice of an interior penalty parameter. The symmetric IPDG method is proposed for the
numerical discretization of the second-order wave equation in [19]. Recently, an energy
conserving local discontinuous Galerkin scheme was proposed first in [29] for the linear
wave equation with constant speed, further extension to the linear wave equation u =
(c?(x)uy)y, but with piecewise smooth speed function ¢(x) is presented in [10] — in both
papers the split system uy; = (c(x)w)y,w = c(x)u, is used. A different DG formulation
based on w = ut,wt—cz(x)uxx = 0 with a special testing on the equation w—u; =0 was
recently proposed in [1] to conserve or dissipate the energy for a large class of systems of
linear equations of second order.

For the nonlinear second order wave equation (1.1), a semi-discrete finite difference
scheme was first considered in [22], where the authors were able to prove convergence
of the generated numerical solution to the dissipative solution, for some restricted choice
of c(u). Further in [25] finite difference schemes for approximating the variational wave
equation in both one and two space dimensions were developed. The obtained energy
conservative (dissipative) schemes are based on rewriting the wave equation as a first-
order system of equations in terms of u;+c(u)u,, which have already been explored in
analysis, see, e.g., [6,24]. Still based on the first order hyperbolic system, the authors
in [3] proposed both energy conserving and dissipative DG methods, with the dissipation
provided by a smoothness indicator and a numerical flux. Numerical experiments using
a Fourier pseudospectral method are conducted in [20] to compute both conservative and
dissipative solutions, with energy-conserving discretization as well as with a vanishing
viscosity sequence.

In this paper, we consider a generalized wave equation imposed on a bounded do-
main subject to proper boundary conditions. Usually it is difficult to obtain DG schemes
for second order wave equations which conserve energy to be optimally high order ac-
curate. Here, we apply the LDG discretization to the system of uy = c(u)qy, g =c(u)uy
for this nonlinear wave problem, similar to the reformulation in [29] for the linear wave
equation. The proposed semi-discrete scheme is shown to be energy conserving. Cou-
pled with the centered second-order time discretization (the leap-frog method) for the
temporal derivatives, we present the fully discrete LDG method. In our dissipative DG
scheme, the dissipation is provided by only a smoothness indicator.

The rest of this paper is organized as follows: In Section 2 we present the energy con-
serving LDG method, and a dissipative scheme is discussed in Section 3. Section 4 is de-
voted to numerical experiments with various examples. To demonstrate the importance
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of energy conservation, we test an example with long time integration, and the numerical
results reveal that our method stays very accurate after long time integration, in contrast
to numerical methods without this property. The advantage of energy-conserving meth-
ods is to solve wave problems, with the attempt to resolve all wave patterns for long time
periods.

2 The local discontinuous Galerkin method

2.1 Reformulation

We consider a generalized nonlinear wave equation of the form
071 —c(u)dx(c(u)dyu)+V'(u) =0, (2.1)
where V(u) is a given function, subject to the initial data
u(x,0)=uo(x), om(x,0)=uy(x), x€l, (2.2)

and periodic boundary conditions. Here I is a bounded interval in R. Note that this sys-
tem can be identified as the Euler-Lagrangian equation derived from the action principle
associated with the Lagrangian §|0;u|?— 3c?(u)|0,u[>—V (1), see, e.g. [32].

The LDG discretization will be based on the following system

o7u=c(u)dg—V'(u), (2.3a)
q=c(u)oxu, (2.3b)

for which the energy of the wave equation becomes
E= /( (1) +42) +V (u ))d (2.4)

2.2 Semi-discrete LDG formulation

We develop an energy conserving local discontinuous Galerkin (ECLDG) method for
(2.1), (2.2) through the reformulation (2.3). Let us denote the computational mesh by
I;=(xj_1/2,%j11/2) for j=1,---,N. The center of the cell is x; = (xj_1/2+x;11/2)/2, and
hj =xj11/2—xj-1/2. We denote by w;jrl/z the value of w at x;,1/, evaluated from the

right element [;;1, and w;_ , ,, the value of w at x; 1/, evaluated from the left element I;.

j+1/2
[w]=w* —w"~ denotes the jump of w at cell interfaces, and {w}=3(w*+w~) denotes the
average of the left and right interface values. We then define the piecewise polynomial
space V}, as the space of polynomials of degree k in each cell [}, i.e.,

Vh:{w we PK(I) for xe I, j=1,- ,N}.
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Denote C(u) = ["c(s)ds, the nonlinear system (2.3) becomes

o7u=c(u)oqg—V'(u), (2.5a)
g=0x(C(u)). (2.5b)

Integration of (2.5) against ¢, € H'(I) over I; with integration by parts leads to
/8 uldx=— /qa )§)dx+qe(u)glar, /V )&dx, (2.6a)
Ij

[ ndx=— [ Clwasnds+Cluynlar, (2.6b)
] J

where
U’arj = v(x]‘_.H/z) _v(x]‘tuz)'

Next we replace ¢,7 by test functions in Vj, and the exact solutions u,q by the numerical
approximation solutions uy,q;. The boundary values g and C(u) are replaced by the
numerical fluxes 4;, and C;, which will be defined latter. Thus the approximate solution
is defined as

/Iafuhédx:—/lqhax(c(uh)C)dx—l—rjhc(uh)C]an—/IV’(uh)édx, (2.72)

j j j

/I‘M?dxz—/l C(uy)0xndx+Cyi oy, (2.7b)
j J

To derive an energy conserving scheme, we apply the integration by parts to the term
—[;C 5 )0xndx once again, which leads to a scheme

/a%”hédx:_/Qhax(C(”h)g)dx‘i“ihc(”h)é”alj_/I‘V,(”h)édx/ (2.8a)
/%de /a () )+ (Cp = C () )1 o, (2.8b)

We are now ready to state the semi-discrete conservative discontinuous Galerkin method
as follows: find uy,q;, €V}, such that V¢,n €V,

/a%”hédx:_/Qhax(C(”h)‘:)dx"i_%c(uh)éblj_/I‘V,(uh)édxr (2.9a)
/Qhﬂdx / () Oxttpndx+(Cy—C(un) )y lar,, (2.9b)

where the numerical fluxes are defined as

(1,Ci) = (g, Ch*) = (0g; +(1-0)q;,, (1-0)C(u} ) +6C(w;)), €01, (210)
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We prepare the initial data for the ODE system (2.9) by a projection of (u,u;) in each
computational cell so that

up(x,0) =TTug, orup (x,0) =TTuy. (2.11)

Possible choices for ITov include the piecewise L?-projection of v into Vj, or the Lagrange
interpolant of v in Vj,. Note that the choice of the numerical flux C,, in (2.10) ensures that
the term Cj,—C(uy,) on cell boundaries is uniquely determined. The global form of the
DG formulation may be obtained by summing (2.9) over all j’s,

JRuedr=— [ gdx(cu)edx =T (@nlcn)ea o [Vim)edx, @129
]

A

Jawndx= [ ctwn)ommmds-+ ¥ (1CGw)nlj12 = (Calil)jiare) (2.12b)
]

where [ = Z]-Iil [;» and the periodic boundary conditions have been used.
]

2.3 Energy conserving property

We now show that for any 6 € [0,1], the numerical flux (2.10) is admissible for the LDG
scheme (2.9) to conserve the discrete energy (2.4).

Theorem 2.1. For the semi-discrete approximations (uy,,qy,) obtained from the LDG formulation
(2.9) with (2.10). The semi-discrete energy

1
()= [ (5(@uun )+ V() )
is preserved in the sense that
E,(t)=E;(0), Vt>0.
Proof. Let us use the notation C;, = C(u,) below. To show the conservation of E, we take

¢ =0:uy, in (2.12a), and 17 =g;, in 9¢(2.12b) to obtain

/a%uhatuhdx:—/qhax(atCh)dx—Z(qh[atCh])j+1/2—/V’(uh)atuhdx,
j

/at%%dxz/ax(atch)%dHZ([atch%]jﬂ/z—(atéh[qh])mn)-
j

Adding the above together and integrating the complete derivative out, we obtain

N

/ <% (9euf, +43) +V(Uh)> dx = X; (19¢Chainlj+1/2— @eCalan])j+1/2— (@[0:Chl)j+1/2)
=

a
dt
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which vanishes, by the identity
[ab] = (0a™ +(1—6)a™)[b]+(0b~ +(1—6)b")[a], VOE€[0,1].
This proof is completed. O

Remark 2.1. In the numerical tests below we observe optimal convergence in the L? norm
for 0 #1/2, where the numerical performance for 6 =y is exactly the same as that for
6 =1—pu. For the central flux, i.e. § =1/2, convergence is suboptimal for k odd, yet still
optimal for k even. Hence the alternating flux =0 or 6 =1 is recommended. Sub-optimal
order for odd degree polynomials is also observed in [3] for the conservative DG scheme
using symmetric fluxes. Note also that similar phenomena are also reported in [4,30] for
the conservative DG schemes for generalized KdV equations.

Remark 2.2. In some applications, the linear equation is of the form
07u—c*(x)02u=0,

which conserves the following energy functional

E— % [(€2@m02+ @),

One can verify that the discrete energy, Ej, = 3 [[c2(9:u,)?+4¢2]dx, is conserved by the
following DG scheme

/ 20 upgdx = — / anGxdx—Y (anlE])j1/2, (2.13a)

j
/%’75136:/axuhﬂderZ([Mh’ﬂjH/z—(th[’?])jﬂ/z)/ (2.13b)
j

provided the numerical fluxes are given by
(G, 0n) = (qh,u; %)= (8g +(1-0)q, ,(1—0)u;f +6u, ), 0€[0,1], (2.14)

with periodic boundary conditions.

2.4 Time discretization

We should choose a suitable time-stepping method such that the fully discrete scheme
can preserve the energy-conserving properties of the semi-discrete system. Let 0=ty <
t1<---<tx=T be a partition of the interval [0, T] with time step At=#""!—#". Here uniform
time step At is taken for convenient presentation. We define the following operator

n__,,n—1
Uy —uy

At

n+l__ . n
Dyl = Uy, —HWy

A Dow=
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then the fully discrete approximation u} to u(-,t") is given by the second order leap-frog
method: forn=1,---,K—1, find uZ“ eV, by

[0 D upzdr=— [ gp(c@)e)dx - C@le)e - [V, @15

]
[ainax= [ eluiyupends-+ Y (1Cm2— (Cilnyen ), (2.15b)
]

with the numerical fluxes defined in (2.10). For P° elements, the above LDG formulation
leads to the following finite volume scheme,

u n

ﬁ*zc(u)du—fu,f_2c(u)du
j T j _V/(u]r})/ ]':1,...,]\]_

DD~ u} =c(uf)

This when c(u) is a constant ¢ and V (1) = §u? with a >0 becomes

no_oynyn
pUjra —2ujtui,

-+ — N __ n
D™D uj=c 12 wuj.
By the von Neumann stability analysis, we can obtain the CFL condition
2
At<

—h.
V2 +ah?

For P¥ elements, the stability condition, At <Q(c,k)h, can become more restrictive. In our
numerical experiments, we use small time steps so that the energy preserving property
can still be observed for the fully discrete scheme. Alternatively, the implicit Runge-Kutta
collocation type time-stepping methods [15] or a symmetric multistep method [23] can
be employed in a fully discrete scheme which does preserve the conservation properties
up to round-off error.

The above method requires initial conditions for two time steps. We obtain u! by the
Taylor expansion of u at =0,

2
u(x,At) =u(x,0)+Ato;u(x,0)+ ATta%u(x,O) +0(A1%), (2.16)

and conversion of d?u to c(u)dy(c(u)dyu) using the wave equation, while u(x,0) and
d:1(x,0) are given by initial conditions.
More precisely, we prepare the initial data as follows:

2

u® =TTuy, u1:u0+AtHu1+ATt [c(u®)0x (c(u®)ou) — V' (u")], (2.17)

where IT is the projection operator defined in (2.11). For the time step of size At ~ h?,
the temporal accuracy of order (At)? will not dominate over the spatial accuracy of order
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It for 0< k< 3. For even higher order schemes, one may use more terms in the Taylor
expansion (2.16) so that the initial error is insignificant. In the Taylor expansion, the
higher derivatives with respect to t can be converted to derivatives in x through repeated
use of the wave equation.

2.5 Algorithm

The details related to the implementation of the method is summarized in the following
algorithm.

1. First, from (2.12b), we obtain g, in the following form
Qn=A[Uy], (2.18)

where Qj,, U, denote the vectors containing the degree of freedom for g;, 1y, respec-
tively.

2. We then substitute (2.18) into (2.12a) to obtain

02U, = B[A[Uy], Uy]. (2.19)

3. A time discretization method is used to solve the obtained 2nd order semi-discrete
ODE system (2.19).

3 An energy dissipating scheme

In this section, we present an energy dissipating scheme. We use a cell-wise artificial
dissipation approach, motivated by some similar smoothness indicators proposed in [26,
31] in the simulation of the compressible Euler equation.

For each cell [}, the amplitude can be modeled as

if Aj<A.—x,
€=¢ % <1+sin”(/\£;1\*)) if Av—k<Aj<A+K,
€0 if A]‘>A*+K.

Herein, A]- is the smoothness indicator; A, is a reference value of the smoothness indica-
tor for solutions of degree k polynomials, which is modeled as —3log,,(k) in this study;
Kk is a free parameter to control the functioning spectra of the artificial damping. Set
Qp =upy, on each cell we project Qj onto pk=2 space to obtain I'T(Qy), and define

||Qh—H(Qh)||5,1j
HQhH%,Ij '

Aj=log
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We note that this smoothness indicator can robustly detect solution singularities, as A; is
much larger than A, when the wave field is not smooth. The amount of artificial damping
added to the equation can be modeled as

eo=h(2=h)llc(un)lle/r,
for some 7y > 0.

The resulting scheme is termed as an energy dissipating scheme, which is as follows:
tind uy,q, €V}, such that V¢,n €V,

/Ija%uhgdx:_/Ij%ax(C(”h)é)dx"i_th(”h)aalj_sj/ljax(at”h)axédx_/Ijvl(uh)gdx/
(3.1a)
/%de / ()t dx+(Cp—C(un) )t lor,, (3.1b)

with C’(u) =c(u), and the numerical flux (2.10) for both 4, and C;,. The global form of the
LDG formulation is

[umigdr=- z / andx (c(114)E)dx — mh[( W& 1/2

—Zsj/l.ax(atuh)axgdx—/V’(uh)gdx, (3.2a)

/%de—Z/ c(up)0 uwdx+2 lis12— (Culn))js1/2)- (3.2b)

A similar analysis to the proof of Theorem 2.1 gives
d 1
dt/ < ((@run)*+45) +V(Mh)> dx=— Zs]/ 9y (puy,)2dx <0.

We again use the leap-frog method to obtain the fully discrete scheme as follows: for
n=1,--,K—1, find u} "' €V, by

| DD =~ [ gran(cup)@ydx— L @le()e) /2

j

aqu+l_aqu—l 10
_Zg]- /Ij — 9, Edx— / V' (ul')dx, (3.3a)
/Qhﬂdx / “h)ax“hﬁdx+z [Cinlivi2—(Ciln))js1,2) (3.3b)

for all test functions ¢ and # in Vj,.

We note that our approach differs from that in [3] as they introduce a different smooth-
ness indicator and also modify the numerical flux. The author in [20] proposed a different
dissipation realized through a vanishing viscosity sequence.
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4 Numerical experiments

In this section we present numerical experiments to illustrate the performance of our
energy conserving and dissipating schemes. Attention is given particularly to two issues:

e Verification of the theoretical results, including a study of convergence rates and
the energy conservation;

e Investigation of the long time behavior of the energy conserving scheme. This in-
cludes a comparison of the errors as a function of time, and the solution profiles
after long time integration.

4.1 Convergence rates

We begin to test the order of convergence of the proposed ECLDG scheme. The results
here present the case of uniform meshes, in which the domain is uniformly divided into
N cells. The second order leap-frog time discretization is stable for At < Q(c,k)h; we
adopt a smaller time-step by the relation At = O(h?) so that the numerical error will be
dominated by the spatial discretization error.

Example 4.1. We consider the linear wave equation
07u—02u=0, (4.1)

over the domain (0,271) x R™, subject to initial data
u(x,0)=e"*, 9u(x,0)=—e"cosx, x€(0,27), (4.2)

and periodic boundary conditions. The exact solution is

u(x,t) = esin(¥—t),

With this example, we first test the effect of choices of 6 € [0,1] using P? polynomial
approximations on uniform meshes. Table 1 reports the numerical errors and the orders
of accuracy for P? approximation at #=1. Different choices of 6 € [0,1] are shown to yield
the same order of accuracy, though numerical errors are slightly different. Note also that
both numerical errors and orders of convergence are identical for both 6 and 1—6.

Next we present both the numerical errors and the orders of convergence in Table 2,
using Pk (0<k<3) polynomials and the numerical flux (2.10) with different 6=0,1/4,1/2.
We see that there is an order loss for polynomials of odd degree with 6 =1/2.

We also verify the conservative property of the LDG method. Figs. 1 and 3 plot the
numerical solutions at t =0,100,1000 and ¢ = 5000 with k =2 and k = 3, respectively. It
shows that the scheme gives quite a good approximation to the exact solution in the long
time simulation. We plot in Figs. 2 and 4 the energy and L? error from t =0 to +=5000.
It shows that the discrete energy is conserved by the ECLDG method, and the L? error
increases linearly with time.
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Figure 1: Example 4.1, the solutions at t=0,100,1000 and 5000 with k=2, At=2.5x10"3 and 40 cells.
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Figure 2: Example 4.1, time history of the L? error and energy plots using the conservative LDG (2.15) with
k=2, At=2.5x10"2 and 40 cells.
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Figure 3: Example 4.1, the solutions at £=0,100,1000 and 5000 with k=3, At=2.5x10"3 and 40 cells.
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Figure 4: Example 4.1, time history of the L? error and energy plots using the conservative LDG (2.15) with
k=3, At=2.5x10"2 and 40 cells.
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Table 1: Errors for Example 4.1 when using P2 polynomials on a uniform mesh of N cells. Final time is t=1.

|| 0 | N | L? error | order | 0 | N | L? error | order ||
10 [ 745e-03 | - 10 [ 745e-03 | -
20 | 7.71e-04 | 327 20 | 7.71e-04 | 327
6=0 | 40 | 9.31e-05 [ 3.05 | 6=1 | 40 | 9.31e-05 [ 3.05
80 | 1.29¢-05 [ 2.85 80 [ 1.29e-05 | 2.85
160 | 1.63e-06 | 2.98 160 | 1.63e-06 | 2.98
320 | 2.33e-07 | 2.81 320 | 2.33e-07 | 2.81
10 [ 657e-03 | - 10 [ 657e-03 | -
20 | 7.55e-04 [ 3.12 20 | 7.55e-04 | 3.12
0=1 | 40 [852e-05| 315 | =% | 40 [8.52e-05[ 3.15
80 | 9.36e-06 | 3.19 80 [ 9.36e-06 | 3.19
160 | 1.31e-06 | 2.84 160 [ 1.31e-06 | 2.84
320 | 1.67e-07 | 2.97 320 | 1.67e-07 | 2.97
10 [797e-03 | - 10 [ 797e-03 | -
20 | 5.42e-04 [ 3.88 20 | 5.42¢-04 | 3.88
6=2 | 40 | 638e-05 [ 3.09 | =2 | 40 | 6.38¢-05 | 3.09
80 | 7.88e-06 [ 3.02 80 | 7.88e-06 | 3.02
160 [ 1.00e-06 | 2.98 160 [ 1.00e-06 | 2.98
320 | 1.23e-07 | 3.02 320 | 1.23e-07 | 3.02
10 [7.03e-03 | - 10 [7.03e-03 [ -
20 | 6.50e-04 | 3.44 20 | 6.50e-04 | 3.44
0=1 | 40 | 7.17e-05 [ 318 | 6=3 | 40 | 7.17e-05 [ 3.18
80 | 1.01e-05 [ 2.83 80 | 1.01e-05 | 2.83
160 | 1.24e-06 | 3.03 160 | 1.24e-06 | 3.03
320 | 1.44e-07 | 3.11 320 | 1.44e-07 | 3.11
10 [743e-03 | - 10 [ 743e-03 | -
20 | 5.66e-04 | 3.71 20 | 5.66e-04 | 3.71
6=3% | 40 | 6.81e-05 [ 3.06 | 6=3 | 40 | 6.81e-05 | 3.06
80 | 8.18e-06 [ 3.06 80 | 8.18e-06 | 3.06
160 | 1.00e-06 | 3.03 160 | 1.00e-06 | 3.03
320 | 1.28e-07 | 2.97 320 | 1.28e-07 | 2.97

4.2 Time history of the energy

We next investigate the long time evolution of the rescaled energy E = [ (9u),)*+q7dx of
both the conservative and dissipative schemes.

Example 4.2. Consider the nonlinear wave equation (1.1), i.e.,
07 u—c(u)dx(c(u)dyu) =0,

with smooth initial data

7T

u(x,0)= 1

+exp(—x?), (4.3)
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Table 2: Errors for Example 4.1 when using Pk polynomials on a uniform mesh of N cells. Final time is t=1.

(k,0) At 4.0e-2 1.0e-2 2.5e-3 | 6.25e-4 | 1.5625e-4 | 3.90625e-05
! N 10 20 40 80 160 320
o—o | Ju—un]l [ 409%-1 [ 2.03e-1 | 101e-1 | 507e2 | 253¢-2 1272
order - 1.01 1.01 0.99 1.00 0.99
0l g—1 =] [ 467e-T | 215e1 | 103e-1 | 5.09e2 | 254e2 | 1.27e2
4 order - 1.12 1.06 1.02 1.00 1.00
o_1 | ui—u] [ 500eT | 221e-T | 1.04e-l | 5.10e-2 | 254e2 | 127e2
T2 order - 1.18 1.09 1.03 1.01 1.00
o—o | Ju—m]] | 8.80e-2 | 2192 | 5.35¢-3 | 1.20e-3 | 282e4 | 7.68¢
order - 201 | 203 | 216 2.09 1.88
vo1 L g—1 [Tu=w] [ T10e-T | 376e2 | 7.95¢-3 | 2.10e-3 | 4.73e-4 1.22¢-4
4 order - 1.55 2.24 1.92 2.15 1.95
o_1 |ui—u] | 1671 | 8.60e-2 | 433e2 | 217e-2 | 1.08e2 | 542e-03
2| order - 0.96 0.99 1.00 1.01 1.00
o—o | Ju—unll | 745e-3 | 7.71e-4 | 931e5 | 1295 | 1.63e-6 | 233e-07
order - 3.27 3.05 2.85 2.98 2.81
teo | g1 [ =] | 7.03e-3 | 650e-4 | 7.17e5 | 1.01e | 12de-6 | 1.44e07
4 order - 3.44 3.18 2.83 3.03 3.11
o_1 |ui—u] | 878e3 | 5.50e-4 | 6.11eb | 7.50e-6 | 935e7 | 1.16e-07
T2 order - 3.99 3.18 3.03 3.00 3.01
o_o LIu—tll [ 815e-4 | 4595 | 3.01e-6 | 1.87e-7 | 128e8 | 7.07e-10
order - 415 | 393 | 401 3.87 118
t—3 | g_1 [Iu—w] [ 829e-4 | 581eb | 442e-6 | 298e7 | 2.12¢8 1.37¢-9
4 order - 3.83 3.72 3.89 3.81 3.95
o_1 | ui—u,] | 818e-d | 878e-5 | 950e6 | 8.74e-7 | 1.0le7 | 123e8
T2 order - 3.22 3.21 3.40 3.11 3.04
oru(x,0) =—c(u(x,0))0,u(x,0), x€R, (4.4)
where

¢?(u) = acos® u+ Bsin®u.

This problem has been tested numerically in [3,17,22]. The exact solution is not available,
we use a reference solution computed on a finer mesh with N =20000. Table 3 shows
errors and the rate of convergence for the ECLDG scheme using central numerical fluxes,
i.e., (2.10) with 6=1/2. For k=1, it exhibits sub-optimal convergence rate. For k=0,2, the
order of convergence is optimal k+1.

Figs. 5-6 show the discrete energy and numerical solutions when using the conserva-
tive LDG schemes, and Figs. 9-10 when using the dissipative LDG schemes. Also Figs. 7-8
show the numerical solutions of the auxiliary variable g=c(u)u, at times t=0, t=5,t=6
and t =15 for the conservative and dissipative LDG schemes, respectively. The results
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Table 3: Errors |[u—u,f|| for Example 4.2 with («,8)=(0.5,1.5) when using Pk polynomials on a uniform mesh
of N cells. Final time is t=1. The reference solution was computed with N =20000.

N 125 250 500 1000
k=0 | |[u—uy| | 2.87e-2 | 1.07e-2 | 4.78e-3 | 2.30e-3
order - 1.42 1.16 1.06
N 125 250 500 1000
k=1 | |lu—uy| | 6.93e-3 | 3.21e-3 | 1.57e-3 | 7.82¢-4
order - 1.11 1.03 1.01
N 125 250 500 1000
k=2 | |lu—uy|l | 1.09e-3 | 1.17e-4 | 1.40e-5 | 1.36e-6
order - 3.22 3.06 3.35
) | ’ | | | T
3. 1.5F — - —t=10|q
n t=15

t

(a) Energy history (b) Solution

Figure 5: Example 4.2, (a,)=(0.5,1.5), time history of energy and numerical solutions plots using the conser-
vative LDG (2.15) with k=2, At=1.0%1073 and 1000 cells.

4 T T

3.

sl
25

w 2 >
15F
-0.5

nl
0.5

0 y -1.5

0 5 10 15
t
(a) Energy history (b) Solution

Figure 6: Example 4.2, (a,)=(0.5,1.5), time history of energy and numerical solutions plots using the conser-
vative LDG (2.15) with k=3, At=1.0x10"3 and 1000 cells.
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-20 —1‘5 —1‘0 —g 6 5 1‘0 1‘5 2‘0 2‘5 30 -20 —1‘5 —1‘0 —g 6 5‘: 1‘0 1‘5 2‘0 2‘5 30
(a) Conservative LDG scheme (b) Dissipative LDG scheme

Figure 7: Example 4.2, (¢,)=(0.5,1.5), numerical solutions g, plots using the conservative LDG scheme (2.15)
and the dissipative LDG scheme (3.3) with k=2, At=2.5x10"3 and 1000 cells.

:c(u)ux

q

!
o
o

-20 —1‘5 —1‘0 —g 6 5 1‘0 1‘5 2‘0 2‘5 30 -20 —1‘5 —16 —é 6 ."> 16 1‘5 2‘0 2‘5 30
(a) Conservative LDG scheme (b) Dissipative LDG scheme

Figure 8: Example 4.2, (¢,)=(0.5,1.5), numerical solutions g, plots using the conservative LDG scheme (2.15)
and the dissipative LDG scheme (3.3) with k=3, At=2.5%x10"3 and 1000 cells.

are consistent with those reported in [3,22]. It is reported that despite the initial data is
smooth, the solution develops a singularity in u, around t=6. After this time, we see that
numerical solution of g; displays numerical oscillations when conservative schemes are
used. These oscillations are not present when using the dissipative scheme. For the time
evolution of the discrete energy, the conservative scheme shows its conservation, but the
dissipative scheme shows that it decreases in time.

It is known that the nonlinear variational wave equation admits both conservative
and dissipative weak solutions, we refer to [3,20] for related numerical results on these
two solutions. Fig. 11 shows the numerical solution to 4.2 with (a =0.5,  =4.5) using
the conservative LDG (2.15) and the dissipative LDG (3.3). The results show that the so-
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4 T T

—*— Numerical energy

t X

(a) Energy history (b) Solution

Figure 9: Example 4.2, («,8)=(0.5,1.5), time history of energy and numerical solutions plots using the dissipative
LDG scheme (3.3) with k=2, At=2.5x10"2 and 1000 cells.

4 T T 2 T T T T T T T T T

- —t=5
1 15F - — —t=10 4
\ —t=15

t X

(a) Energy history (b) Solution

Figure 10: Example 4.2, (a,8) = (0.5,1.5), time history of energy and numerical solutions plots using the
dissipative LDG scheme (3.3) with k=3, At=2.5x10"3 and 1000 cells.

lution may develop a singularity at a time 4 <t <6, see Fig. 11(a, b). After the formation
of singularity we see that the conservative and dissipative LDG schemes give two dis-
tinct solutions, as shown in Fig. 11(c, d). From Fig. 12, we see that solutions obtained
with various values of time steps At are almost indistinguishable. We also observe a
large deviation between conservative and dissipative solutions. These show that the two
schemes converge to different solutions as At — 0.

Example 4.3. We consider a problem numerically investigated previously in [3, 18]. We
look for traveling wave solutions of the form u(x,t) =U(x—st) to (1.1), with c(u) given
by

¢?(u) =acos’u+Bsinu,



N. Yi and H. Liu / Commun. Comput. Phys., 23 (2018), pp. 747-772 765

_—%5 -20 -15 -10 -5 L] 5 10 15 20 25

_—125 -20 -15 -0 -5 o L] 10 15 20 25

d) t=10

Figure 11: Example 4.2, («,8)=(0.5,4.5), numerical solution plots using the conservative LDG scheme (2.15)
and the dissipative LDG scheme (3.3) with k=2, At=1.0x10~2 and 5000 cells.

----- At=10e04 e A =1 D04
15 —— A t=1.0e05 15 —— A t=1.0e-05)

_—125 —ZICI -1‘5 —Ilﬂ —!I'J I:II {I'J IIO 1‘5 2IE| 25 _—125 -2IE| —1‘5 -1I|:| -..‘Ir il:l ..‘Ir 1I|:| 1‘5 2IE| 25
x x
(a) Conservative LDG scheme (b) Dissipative LDG scheme

Figure 12: Example 4.2, («,)=/(0.5,4.5), numerical solutions u; at t =10 plots using the conservative LDG
scheme (2.15) and the dissipative LDG scheme (3.3) with k=2 and 5000 cells.
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3
L B — - — - Initial data
’ 15F Exactsolution | T T T T 7T
0.08 1 4 — — — Numerical solution

Error
o
o
a
u
)

0.2 0.4 0.6 0.8 1 -2 -1 0 1 2 3
t X

(a) L2 errors (b) Solution

Figure 13: Example 4.3, time history of the L2 error and numerical solutions plots at t=1 using the conservative
LDG (2.15) with k=3, At=1.0x10"3 and 500 cells.

then U must satisfy

U’\/|52—occosle—ﬁsin2U| =4,

where A is some integration constant.

For s=+/a, we have
A

virs i

Integration of this with boundary conditions U(0) =0 and U(1) = 7t gives an explicit
traveling wave solution

U'sin(U) =

U(&)=cos }(—28+1), 0<&=x—st<]1,

connecting 0 for ¢ <0 and 7t for > 1.

For s= /B, we have
A

Vie=pl

Integration of this with boundary conditions U(—1) = —7/2 and U(1) = 77/2 gives an
explicit traveling wave solution

U'cos(U) =

U(F)=sin"1(¢), 0<f=x—st<1,
connecting —7t/2 for ¢ <0 and 7t/2 for ¢ > 1.

Fig. 13 shows the L? error history and numerical solution at t =1 with N =500 us-
ing the conservative LDG scheme with P? approximation. The numerical solutions are
comparable with those reported in [3].

Finally, we present an example for the case with constant speed ¢, but with non-trivial
V(u).
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Example 4.4. We consider the Sine-Gordon equation
07u—c*2u+sinu=0. (4.5)

This equation appears in several physical applications (see e.g. [16]), and one interesting
feature of the sine-Gordon equation is the existence of soliton and multi-soliton solu-
tions. The equation can be solved exactly by various analytical techniques, since the
direct method introduced in [21].

We apply the explicit scheme (2.15) to solve (4.5) with appropriate boundary condi-
tions. Let us solve it on the interval [—L,L] with Dirichlet boundary conditions using the
following parameters set:

L=20, ¢=02, Ax=0.1, At=0.01.

We start with the numerical representation of kink and antikink solutions. A one-soliton
solution of the Sine-Gordon equation,

x—ct
u(x,t) =4arctan (e Via > .

for which u increases monotonically from zero to 271 as x increases from —oo to o, is
called a kink. A solution of the form

__x—ct
u(x,t) =4arctan (e V1—62>

called an antikink, in contrast to the kink, is the transition from the solution 27t to 0.

Table 4 reports the numerical errors and the orders of accuracy for P¥ approximation
to kink solutions. We clearly see that the convergence rate is k+1 for even values of
k=0,2, but only k for odd value of k=1, while central numerical fluxes are used.

Fig. 14 shows the space-time plot of the numerical kink and antikink solutions, respec-
tively. Direct comparisons between the numerical solutions and the analytical solutions
show good agreement.

We next produce two-solitons solutions, corresponding to kink-kink and kink-antikink
collisions. For the kink-kink collision we choose

x+L/2 x—L/2
u(x,0) =4arctan (6 m) +4arctan (e m) ,

c x+L/2> c <x—L/2>
Ju(x,0)=-2 sech +2 sech ,
14(x,0) 1—c? <\/1—c2 V1—c?

and for the kink-antikink collision the initial conditions are
x+L/2 xL)2
u(x,0) =4arctan <€ v 1”2> +4arctan <e \/17> ’

c x+L/2> c <x—L/2>
Jiu(x,0)=-2 sech -2 sech .
1(x,0) 1—c2 <\/1—c2 V1—c2
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Table 4: Errors for Example 4.4 with kink solutions when using Pk polynomials on a uniform mesh of N cells.
Final time is t=1.

At 1.0e-1 | 5.0e2 | 25e2 | 125e2 | 6.25¢-3

- N 100 200 400 800 1600
[u—uy| | 3.37e-1 | 1.66e-1 | 826e2 | 4.13e-2 | 2.06e-2

order - .02 | 101 1.00 1.00
At 1.0e-1 | 5.0e2 | 25e2 | 125e2 | 6.25¢-3

- N 100 200 400 800 1600
[u—uy| | 7.13e-2 | 3.63e-2 | 1.83e2 | 9.18e-3 | 4.60e-3

order - 097 | 0.99 1.00 1.18

At 1.0e-1 | 2.5e-2 [ 6.25¢-3 | 1.5625¢-3 | 3.90625¢-4

P N 100 200 400 800 1600
[u—uy| | 428e-3 | 5.34e-5 | 6.43e-6 | 8.0le-7 | 1.00e-7

order - 632 | 3.05 3.00 3.00

Solution U(X, T) Solution U(X, T)

<= T 0

<o X >

(a) Kink soliton (b) Antikink soliton

Figure 14: Example 4.4, single soliton, numerical solutions calculated with k=2, At=1.0x 1072 and 400 cells.

Numerical solutions corresponding to both cases are presented in Fig. 15, respectively. It
can be seen that no spurious oscillations are observed. In the kink-kink simulation, the
kinks move toward each other with equal velocities. Eventually they collide, whereby
they are reflected and move away form one another. In the kink-antikink simulation,
the kink and the antikink initially move inward towards the origin. As they collide,
the profile instantaneously becomes equal to 27t. Subsequently the kink and the antikink
move away form one another in their original directions of motion. Fig. 15 is in agreement
with [2].

The sine-Gordon equation also has another group of soliton solutions, known as
breathers. A breather is a nonlinear mode that is localized in space and oscillates with
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Solution UX, T) Soldtion U(X, T)

<= T-> 0 .20

<« T->

(a) Kink-kink collision (b) Kink-antikink collision

Figure 15: Example 4.4, soliton collision, numerical solutions calculated with k=2, At=1.0x10"2 and 400
cells.

Solution U(X, T)

. Ao e

Breather soliton

Figure 16: Example 4.4, breather soliton, numerical solutions calculated with k=2, At=5.0x10"2 and 200
cells.

time. We consider equation (4.5) in the domain —10 < x <10,—20 <t <20. The exact
solution is

ct

u(x,t)=4arctan 1sin — L )sech ——— c=05
T c V1+c2 Vite)) T

The initial and boundary conditions are derived from the exact solution. Fig. 16 shows
the space-time profile of the numerical solution for x € [-10,10] and t € [—20,20]. We
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can see that no spurious oscillations and shift of the solitons is observed, which is in
agreement with the corresponding result in [2].

5 Concluding remarks

In this paper, we have developed an energy conserving LDG method for solving the
nonlinear variational wave equation. The scheme is constructed for a generalized wave
equation, also including linear wave equation with variable wave speed, and the sine-
Gordon equation. The energy conserving property for the semi-discrete formulation can
be proven. The leap-frog time discretization was used to obtain a fully discrete method.
A dissipative scheme is also introduced by locally imposing some numerical “damping”
in the conservative scheme, in order to suppress the numerical oscillations near the solu-
tion singularity. Numerical tests have demonstrated the optimal convergence for a class
of alternating numerical fluxes, and the suboptimal convergence for polynomials of odd
degree when the central flux is adopted. Numerical simulations with long time integra-
tion indicate that energy conserving property is important in order to accurately capture
the underlying wave shapes.
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