
0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2934010, IEEE
Transactions on Automatic Control

PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

A Simplified Approach to Analyze Complementary
Sensitivity Trade-offs in Continuous-Time and

Discrete-Time Systems
Neng Wan, Dapeng Li, and Naira Hovakimyan, Fellow, IEEE

Abstract—Continuous-time and discrete-time complementary
sensitivity Bode integrals (CSBIs) are investigated via a simplified
approach in this note. For continuous-time feedback systems with
unbounded frequency domain, the CSBI weighted by 1/ω2 is
considered, where this simplified method reveals a more explicit
relationship between the value of CSBI and the structure of
the open-loop transfer function. With a minor modification of
this method, the CSBI of discrete-time system is derived, and
illustrative examples are provided. Compared with the existing
results on CSBI, neither Cauchy integral theorem nor Poisson
integral formula is used throughout the analysis, and the analytic
constraint on the integrand is removed.

Index Terms—Complementary sensitivity Bode integral, sim-
plified approach, control trade-offs, linear systems.

I. INTRODUCTION

This technical note extends the simplified approach for anal-
ysis of sensitivity Bode integrals from [1] to complementary
sensitivity Bode integrals (CSBIs). Sensitivity function and
complementary sensitivity function are two critical transfer
functions that provide insights into the influences of external
disturbance on the error signal and the measurement output,
respectively. Freudenberg and Looze showed in [2], [3] that the
integral over all frequencies of the logarithm of the absolute
value of sensitivity function, ln |S(s)|, is proportional to the
sum of the unstable open-loop poles. Meanwhile, inspired
by the well-known result on sensitivity function and com-
plementary sensitivity functions [4], S(s) + T (s) = 1, it is
natural to believe that similar trade-off should also exist for
ln |T (s)|. However, as s → ∞, the integrand ln |T (s)| and
the corresponding integral grow to infinity in continuous-time
systems, which puzzled the researchers for a few years [5].

Several efforts have been made to tackle this issue of CSBI
in continuous-time systems. One of the earliest results was
contributed by Freudenberg and Looze [2], who exploited the
harmonic property of ln |T (s)| by multiplying this function
with a Poisson kernel and computed the CSBI with the help
of Poisson integral formula and a limiting argument [4].
A more concise form of continuous-time CSBI was later
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proposed by Middleton [6], who weighted ln |T (s)| by 1/ω2

and adopted the Cauchy integral theorem to compute the
integral. The employments of frequency inversion and Cauchy
integral theorem in [6] require the inverse frequency function
ln |T (1/s)| be analytic at s =∞, such that it can be expanded
as a Laurent series [4]. In [7], Yu et al. studied a type of
CSBI weighted by 1/(s2 + α2)k, where α ∈ R and k ≥ 1,
and an information-theoretic approach to derive the CSBI
of continuous-time stochastic system was presented in [8].
More previous results on discrete-time CSBI with a bounded
frequency domain can be found in [5], [9], [10].

The simplified approach from [1] is extended here to ana-
lyze the CSBIs for both continuous-time and discrete-time sys-
tems. Compared with the prevailing results on CSBI of deter-
ministic systems [2], [4]–[7], the salient feature of this method
is that neither Cauchy integral theorem nor Poisson integral
formula are invoked when deriving the CSBIs, which conse-
quently allows to remove the analytic (harmonic) constraints
on the integrands of CSBIs. In addition to a new approach to
derive CSBI, this simplified approach also provides a more
explicit explanation on how the complementary sensitivity
trade-off is impacted by the structure of an open-loop transfer
function, e.g. the distributions of zeros and poles, relative
degree, number of pure integrators and leading coefficient.
For continuous-time systems, we study the CSBI weighted
by 1/ω2 similar to [6], and with a slight modification, the
simplified approach is applied to investigating the discrete-
time CSBI. A few illustrative examples are given at the end
of this note.

This note is organized as follows: Section II introduces
the preliminaries; Section III studies the CSBI of continuous-
time systems; Section IV investigates the CSBI of discrete-
time systems; illustrative examples are shown in Section V,
and Section VI draws the conclusions.
Notation: In this paper, we use ln(·) to denote natural loga-
rithm with the base of the mathematical constant e and log(·)
to denote the logarithm with base 2. For a complex number
a, |a| stands for the modulus. Complex variables are denoted
as s = jω and z = ejω.

II. PRELIMINARIES AND PROBLEM FORMULATION

Background knowledge and preliminary results on CSBI are
stated in this section. Consider the block diagram of a general
feedback system shown in Figure 1, which can be either a
continuous-time system or a discrete-time system. Here L
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denotes the open-loop transfer function; d is the external
disturbance; e is the error signal, and y is the measurement
output. The complementary sensitivity function T (s) (or T (z))
is defined as the transfer function from external disturbance d
to measurement output y.

L
yed

Fig. 1. General feedback system.

A. Continuous-Time System

For a continuous-time plant model G(s) and a control
mapping C(s) the open-loop transfer function L(s) can be
generally expressed as

L(s) = G(s) · C(s) = K ·
∏m
i=1(s− zi)

sn−l ·
∏l
i=1(s− pi)

, (1)

where K ∈ R, the relative degree is ν = n−m with m ≤ n,
n − l ≥ 0 denotes the number of pure integrators, zi and
pi respectively denote the zeros and poles of L(s), and no
zi or pi is at s = 0. When ν = 1, the leading coefficient
K = lims→∞ sL(s). The complementary sensitivity function
T (s) for this continuous-time system is defined as

T (s) = L(s)/[1 + L(s)]. (2)

In this note, we consider the continuous-time CSBI defined as
follows:

1

2π

∫ ∞
−∞

ln |T (s)| dω
ω2
, (3)

where a weighting function 1/ω2 is involved [4], [6]. Consider
the following frequency transformation

s = jω = (jω̃)−1 = s̃−1, (4)

where the frequency variables satisfy ω = − (ω̃)
−1. By change

of variables, we can rewrite CSBI in (3) as follows

1

2π

∫ ∞
−∞

ln |T̃ (s̃) |dω̃,

where T̃ (s̃) = T (s). The following lemma states an earlier
result on CSBI, which was obtained by resorting to Cauchy
integral theorem [4], [6].

Lemma 1. Let zui
’s be the non-minimum phase zeros of open-

loop transfer function L(s), and suppose that L(0) 6= 0. Then,
assuming closed-loop stability, if L(s) is a proper rational
function, then

1

2π

∫ ∞
−∞

ln

∣∣∣∣T (s)T (0)

∣∣∣∣ dωω2
=
∑
i

z−1ui
+

1

2 · T (0)
lim
s→0

dT (s)

ds
.

The theoretical basis of the simplified approach for
continuous-time system is stated in the following lemma [1].

Lemma 2. For complex numbers a and b, we have∫ ∞
−∞

ln

∣∣∣∣ (jω − a)(jω − b)

∣∣∣∣2 dω = 2π · (|Re a| − |Re b|) . (5)

Remark 1. The proof of Lemma 2 only requires some el-
ementary techniques, such as integration by parts. Instead
of weighting the left-hand side (LHS) of (5) by 1/ω2 and
deriving a new identity, we find that employing Lemma 2 to
derive continuous-time CSBI can show more insights into the
interactions between the value of CSBI and the structure of
the open-loop transfer function L(s).

B. Discrete-Time System

With a discrete-time plant model G(z) and control mapping
C(z), the open-loop transfer function L(z) can generally be
expressed as

L(z) = G(z) · C(z) = K ·
∏m
i=1(z − zi)∏n
i=1(z − pi)

, (6)

where K ∈ R, relative degree is ν = n−m ≥ 0, zi and pi are
respectively the zeros and poles, and zi 6= 0. Compared with
the open-loop transfer function for continuous-time system (1),
since frequency transformation is not involved when deriving
the discrete-time CSBI, unit delays 1/z are not explicitly
expressed in (6), and we allow pi = 0 in discrete-time system.
The discrete-time complementary sensitivity function T (z) is
then defined as

T (z) = L(z)/[1 + L(z)].

Since the frequency domain of discrete-time system is
bounded, ω ∈ [−π, π], we consider the following type of CSBI
without weighting function

1

2π

∫ π

−π
log |T (z)|dω. (7)

Previous result on the discrete-time CSBI is claimed in the
following lemma, which was also derived on the basis of
Cauchy integral theorem [5].

Lemma 3. Let zui ’s be the strictly unstable zeros of open-loop
transfer function L(z). Then, assuming closed-loop stability,
if L(z) is a proper rational function, we have

1

2π

∫ π

−π
log |T (z)| dω =

∑
i

log |zui |+ log |K|,

where zui
denotes the unstable zeros in L(z), and K is

the leading coefficient of the numerator of L(z), when the
denominator is monic.

The fundamental tool for analyzing discrete-time CSBI is
stated in the following lemma, whose proof only requires
elementary techniques and is available in [1].

Lemma 4. For a complex number a, we have∫ π

−π
log
∣∣ejω − a∣∣2 dω =

{
0, if |a| ≤ 1;

2π · log |a|2, if |a| > 1.

III. CONTINUOUS-TIME COMPLEMENTARY SENSITIVITY
BODE INTEGRAL

We investigate the continuous-time CSBI in this section.
The results are stated in two categories, namely when relative
degree ν ≥ 1 and ν = 0. Under each category, we show how
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the value of CSBI is related to the amount of pure integrators,
as well as the leading coefficient of the open-loop transfer
function. First, we consider a more general scenario when the
open-loop transfer function is strictly proper, i.e. ν ≥ 1.

Theorem 1. For an open-loop transfer function L(s) with
relative degree ν ≥ 1 and stable closed-loop system, the
continuous-time CSBI satisfies∗

1
2π

∫∞
−∞ ln|T (s)|dωω2

=


∑
iRe z

−1
ui
, if 0 ≤ l ≤ n− 2;∑

iRe z
−1
ui
− 1

2K ·
∏n−1

i=1 (−pi)∏m
i=1(−zi)

, if l = n− 1;

±∞, otherwise;

where pi, zi and zui
respectively denote the poles, zeros, and

non-minimum phase zeros in L(s), and n− l is the amount of
pure integrators in L(s).

Proof. When relative degree ν ≥ 1, the open-loop transfer
function defined in (1) can be expressed as follows

L(s) = K ·
∏m
i=1(s− zi)/[sn−l ·

∏l
i=1(s− pi)], (8)

where l ≤ n, m + 1 ≤ n, K ∈ R, and no zi or pi is at
s = 0. Substitute (8) into (2), and rewrite the complementary
sensitivity function T (s) in the following two equivalent forms

T1(s) =
K ·

∏m
i=1(s− zi)

sn−l ·
∏l
i=1(s− pi) +K ·

∏m
i=1(s− zi)

, (9)

T2(s) = K ·
∏m
i=1(s− zi)/

∏n
i=1(s− ri), (10)

where ri’s denote the closed-loop poles with negative real
parts, and T1(s) = T2(s) = T (s). Applying frequency
transformation (4) to complementary sensitivity functions (9)
and (10) gives

T̃1(s̃) =
K ·

∏m
i=1(s̃

−1 − zi)
s̃l−n

∏l
i=1(s̃

−1 − pi) +K ·
∏m
i=1(s̃

−1 − zi)
, (11)

T̃2(s̃) = K ·
∏m
i=1(s̃

−1 − zi)/
∏n
i=1(s̃

−1 − ri). (12)

Multiplying the numerators and denominators of (11) and (12)
by s̃n and with some algebraic manipulations, we have

T̃1(s̃) =
K

∏m
i=1(−zi)s̃

n−m ∏m
i=1(s̃−z

−1
i )∏l

i=1(−pi)
∏l

i=1(s̃−p
−1
i )+K

∏m
i=1(−zi)s̃n−m

∏m
i=1(s̃−z

−1
i )

(13)

T̃2(s̃) = K ·
∏m

i=1(−zi)∏n
i=1(−ri)

· s̃
n−m ∏m

i=1(s̃−z
−1
i )∏n

i=1(s̃−r
−1
i )

. (14)

Some relationship among pi, zi, and ri can be implied
from (9)-(14). Equating the denominators of (9) and (10), we
have

sn−l ·
∏l
i=1(s−pi)+K ·

∏m
i=1(s− zi) =

∏n
i=1(s−ri). (15)

Expanding both sides of (15) yields

sn −
(∑l

i=1 pi

)
sn−1 + · · ·+

∏l
i=1 (−pi) sn−l

+K[sm − (
∑m
i=1 zi) · sm−1 + · · ·+

∏m
i=1 (−zi)]

= sn − (
∑n
i=1 ri)s

n−1 + · · ·+
∏n
i=1 (−ri) .

(16)

∗ A trivial case is omitted in the statement of Theorem 1. When∏n
i=1 (−pi) = −2K

∏m
i=1 (−zi) and no pure integrator exists in L(s), the

CSBI is bounded and satisfies 1
2π

∫∞
−∞ ln |T (s)|dω/ω2 =

∑n
i=1 Re p−1

i −∑
i Re z−1

si , where zsi denotes the minimum phase zeros of L(s).

Since complex roots always come in conjugate pairs, the
products

∏l
i=1(−pi),

∏m
i=1(−zi) and

∏n
i=1 (−ri) in (16) are

all real. Equating the denominators in (13) and (14) gives∏l
i=1(−pi)

∏l
i=1(s̃− p

−1
i ) +K

∏m
i=1(−zi)s̃n−m

·
∏m
i=1(s̃− z

−1
i ) =

∏n
i=1(−ri) ·

∏n
i=1(s̃− r

−1
i ).

(17)

Expanding both sides of (17) yields∏l
i=1(−pi)[s̃l − (

∑l
i=1 p

−1
i )s̃l−1 + · · ·+

∏l
i=1(−p

−1
i )]

+K
∏m
i=1(−zi)[s̃n −

(∑m
i=1 z

−1
i

)
s̃n−1 + · · · (18)

+
∏m
i=1(−z

−1
i )s̃n−m] =

∏n
i=1 (−ri) [s̃n

− (
∑n
i=1 r

−1
i )s̃n−1 + · · ·+

∏n
i=1(−r

−1
i )].

The value of CSBI varies depending on the amount of pure
integrators in the open-loop transfer function L(s).

Case 1: No pure integrator exists in L(s), i.e. l = n.
When l = n, equating the constant terms in (16) gives the

following identity∏n
i=1 (−pi) +K

∏m
i=1 (−zi) =

∏n
i=1 (−ri) . (19)

Equating the coefficients of terms s̃n−1 in (18) yields∏n
i=1(−pi)

(∑n
i=1 p

−1
i

)
+K

∏m
i=1(−zi)

(∑m
i=1 z

−1
i

)
=
∏n
i=1 (−ri)

(∑n
i=1 r

−1
i

)
.

(20)

Applying Lemma 2 to T̃2(s̃) in (14) and substituting (19) into
the result, the CSBI satisfies

1
2π

∫∞
−∞ ln|T (s)|dωω2 = 1

2π

∫∞
−∞ ln|T̃2 (s̃) |dω̃

= 1
2 [
∑m
i=1 |Re z−1i | −

∑n
i=1 |Re r−1i |] (21)

+ 1
π

∫∞
−∞ ln

|K∏m
i=1(−zi)|

|∏n
i=1(−pi)+K

∏m
i=1(−zi)|

dω̃.

Since the first two terms on the right-hand side (RHS)
of (21) are bounded, the CSBI is bounded if and only if
|K
∏m
i=1 (−zi)| = |

∏n
i=1 (−pi) +K

∏m
i=1 (−zi)|. This con-

dition can be attained if: i) at least one pi = 0, which
contradicts the previous assumption that pi 6= 0, and hence
CSBI is undefined for this case; or ii)

∏n
i=1 (−pi) =

−2K
∏m
i=1 (−zi), which was not noticed in the preceding

works and is omitted in the statement of Theorem 1, since
this situation is trivial and can rarely be satisfied in practice1.
With (20) and some further analysis, the CSBI satisfying
condition ii) is 1

2π

∫∞
−∞ ln|T (s)|/ω2 dω =

∑n
i=1 Re p

−1
i −∑

iRe z−1si , where zsi denotes the minimum phase ze-
ros of L(s). For the other open-loop transfer functions
without pure integrator, the corresponding CSBIs are un-
bounded. Specifically, when |

∏n
i=1 (−pi)+K

∏m
i=1 (−zi) | <

|K
∏m
i=1 (−zi) |, the CSBI is negative infinity; while when

|
∏n
i=1 (−pi) +K

∏m
i=1 (−zi) | > |K

∏m
i=1 (−zi) |, this inte-

gral is positive infinity.

Case 2: Single pure integrator exists in L(s), i.e. l = n− 1.
When l = n− 1, equating the constant terms in (16) yields

K
∏m
i=1 (−zi) =

∏n
i=1 (−ri) . (22)

Equating the coefficients of terms s̃n−1 in (18) gives

−
∏n−1
i=1 (−pi) +K

∏m
i=1(−zi)

(∑m
i=1 z

−1
i

)
=
∏n
i=1 (−ri)

(∑n
i=1 r

−1
i

)
.

(23)
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Applying Lemma 2 to T̃2(s̃) in (14) and substituting (22) into
the result, the CSBI becomes

1
2π

∫∞
−∞ ln|T (s)| dωω2 = 1

2π

∫∞
−∞ ln|T̃2 (s̃) |dω̃

= 1
2 · [
∑m
i=1 |Re z−1i | −

∑n
i=1 |Re r−1i |].

(24)

The first term on the RHS of (24) can be decomposed as∑m
i=1

∣∣Re z−1i
∣∣ =∑i Re z−1ui

−
∑
i Re z−1si , (25)

where zui ’s and zsi ’s respectively denote the non-minimum
phase zeros and minimum phase zeros in L(s). Since the
closed-loop system is stable and all the closed-loop poles ri’s
have negative real parts, with identities (22) and (23), the
second term on the RHS of (24) can be rewritten as∑n

i=1 |Re r−1i | =
∏n−1

i=1 (−pi)−K
∏m

i=1(−zi)
∑m

i=1 Re z−1
i∏n

i=1(−ri)

= −
∑
iRe z

−1
si −

∑
iRe z

−1
ui

+
∏n−1

i=1 (−pi)
K

∏m
i=1(−zi)

.
(26)

Combing the results in (24), (25) and (26), when single
integrator exists in L(s), the CSBI is

1
2π

∫∞
−∞ ln|T (s)| dωω2 =

∑
iRe z

−1
ui
− 1

2K ·
∏n−1

i=1 (−pi)∏m
i=1(−zi)

. (27)

Case 3: Two or more pure integrators exist in L(s), i.e. 0 ≤
l ≤ n− 2.

When 0 ≤ l ≤ n − 2, equating the constant terms in (16)
gives the same identity as (22), K ·

∏m
i=1(−zi) =

∏n
i=1(−ri).

Equating the coefficients of terms s̃n−1 in (18) yields

K
∏m
i=1(−zi)

(∑m
i=1 z

−1
i

)
=
∏n
i=1 (−ri)

(∑n
i=1 r

−1
i

)
. (28)

Since all the closed-loop poles ri’s have negative real parts,
with (22) and (28), we have∑n

i=1

∣∣Re r−1i
∣∣ = K

∏m
i=1(−zi)

∑m
i=1 Re z−1

i∏n
i=1(−ri)

= −
∑
i Re z−1ui

−
∑
i Re z−1si .

(29)

Applying Lemma 2 to T̃2(s̃) in (14) and substituting (22)
and (29) into the result, the CSBI for L(s) with two or more
integrators is

1
2π

∫∞
−∞ ln|T (s)| dωω2 = 1

2π

∫∞
−∞ ln|T̃2 (s̃) |dω̃

= 1
2 · [
∑m
i=1 |Re z−1i | −

∑n
i=1 |Re r−1i |]

+ 1
π

∫∞
−∞ ln

∣∣∣K · ∏m
i=1(−zi)∏n
i=1(−ri)

∣∣∣ dω̃
=
∑
i Re z−1ui

. (30)

Summarizing the results in (21), (27) and (30) leads to Theo-
rem 1. This completes the proof.

Next, we consider the scenario when the open-loop transfer
function L(s) is biproper, i.e. relative degree ν = n−m = 0.
The CSBI of this category is related to not only the number of
pure integrators n− l, but also the value of leading coefficient
K.

Corollary 2. For an open-loop transfer function L(s) with
relative degree ν = 0 and stable closed-loop system, the
continuous-time CSBI satisfies
1
2π

∫∞
−∞ ln|T (s)|dωω2

=


∑
iRe z

−1
ui
, if K 6= −1 and 0 ≤ l ≤ n− 2;∑

iRe z
−1
ui
−

∏n−1
i=1 (−pi)

2K
∏n

i=1(−zi)
, if K 6= −1 and l = n− 1;

±∞, otherwise.

Proof. When relative degree ν = 0, the open-loop transfer
function L(s) can be expressed as follows

L(s) = K ·
∏n
i=1(s− zi)/[sn−l

∏l
i=1(s− pi)], (31)

where K ∈ R, l ≤ n, and no zero zi or pole pi is at
s = 0. When K = −1, since the term sn vanishes in
the denominator of complementary sensitivity function T (s)
in (2), applying the frequency transformation (4) and similar
algebraic manipulations as in (14)-(31), the complementary
sensitivity function T̃ (s̃) = T (s) satisfies

T̃ (s̃) =

∏n
i=1(−zi)

K ′
∏q
i=1(−ri)

·
∏n
i=1(s̃− z

−1
i )

s̃n−q
∏q
i=1(s̃− r

−1
i )

, (32)

where ri’s are the closed-loop poles with negative real parts,
K ′ ∈ R is the lumped coefficient, q < n, and the values
of K ′ and q are determined by the distributions of poles
pi’s and zeros zi’s in L(s). In general, we do not have∏n
i=1(−zi) = K ′

∏q
i=1(−ri), i.e. T (0) = 1; otherwise, one

can derive the corresponding CSBI by applying the analysis
in the proof of Theorem 1 to this specific set of pi’s and zi’s.
Hence, applying Lemma 2 to T̃ (s) in (32) yields

1
2π

∫∞
−∞ ln |T (s)| dωω2 = 1

2π

∫∞
−∞ ln |T̃ (s̃) |dω̃

= 1
2 [
∑n
i=1 |Re z−1i | −

∑q
i=1 |Re r−1i |]

+ 1
π

∫∞
−∞ ln

∣∣∣ ∏n
i=1(−zi)

K′
∏q

i=1(−ri)

∣∣∣ dω̃. (33)

Since the last term on the RHS of (33) is unbounded, in
general, the CSBI is unbounded when K = −1.

When K 6= −1, the complementary sensitivity function
T (s) can be equivalently expressed as

T1(s) =
K
∏n
i=1(s− zi)

sn−l
∏l
i=1(s− pi) +K

∏n
i=1(s− zi)

, (34)

T2(s) = (K/K + 1) ·
∏n
i=1(s− zi)/

∏n
i=1(s− ri), (35)

where T1(s) = T2(s) = T (s). Equating the denominators
of (34) and (35) and expanding the polynomials give the
following equation

sn − (
∑l
i=1 pi)s

n−1 + · · ·+
∏l
i=1(−pi)sn−l

+K[sn − (
∑n
i=1 zi)s

n−1 + · · ·+
∏n
i=1(−zi)] (36)

= (K + 1) · [sn − (
∑n
i=1 ri)s

n−1 + · · ·+
∏n
i=1(−ri)].

Adopting the frequency transformation (4) and some algebraic
manipulations, (34) and (35) can be transformed into

T̃1(s̃) =
K

∏n
i=1(−zi)

∏n
i=1(s̃−z

−1
i )∏l

i=1(−pi)
∏l

i=1(s̃−p
−1
i )+K

∏n
i=1(−zi)

∏n
i=1(s̃−z

−1
i )

,

(37)

T̃2(s̃) =
K

∏n
i=1(−zi)

(K+1)
∏n

i=1(−ri)
·
∏n

i=1(s̃−z
−1
i )∏n

i=1(s̃−r
−1
i )

. (38)
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Equating and expanding the denominators in (37) and (38),
we have∏l

i=1(−pi)[s̃l − (
∑l
i=1 p

−1
i )s̃l−1 + · · ·+

∏l
i=1

(
−p−1i

)
]

+K
∏n
i=1(−zi)[s̃n −

(∑n
i=1 z

−1
i

)
s̃n−1 + · · ·

+
∏n
i=1

(
−z−1i

)
] = (K + 1)

∏n
i=1(−ri)[s̃n (39)

− (
∑n
i=1 r

−1
i )s̃n−1 + · · ·+

∏n
i=1(−r

−1
i )].

Similar to the proof of Theorem 1, we analyze the CSBIs for
L(s) with different amounts of pure integrators.

Case 1: No pure integrator exists in L(s), i.e. l = n.
When l = n, equating the constant terms in (36)

gives,
∏n
i=1(−pi) + K

∏n
i=1(−zi) = (K + 1)

∏n
i=1(−ri).

Equating the coefficients of s̃n−1 terms in (39) yields,∏n
i=1(−pi)

(∑n
i=1 p

−1
i

)
+K

∏n
i=1(−zi)

(∑n
i=1 z

−1
i

)
= (K+

1)
∏n
i=1(−ri)

(∑n
i=1 r

−1
i

)
. Applying Lemma 2 to T̃2(s̃)

in (38), the complementary sensitivity Bode integral satisfies
1
2π

∫∞
−∞ ln |T (s)| dωω2 = 1

2 [
∑n
i=1 |Re z−1i | −

∑n
i=1 |Re r−1i |]

+ 1
π

∫∞
−∞ ln

|K∏n
i=1(−zi)|

|∏n
i=1(−pi)+K

∏n
i=1(−zi)|

dω̃. (40)

Bode integral in (40) is bounded when at least one pi = 0,
which contradicts the fact that pi 6= 0 when we defined L(s)
in (31). Hence, the integral is unbounded when l = n. Further
analysis on this case refers to the comments after (21).

Case 2: Single pure integrator exists in L(s), i.e. l = n− 1.
When l = n − 1, equating the constant terms in (36)

gives K
∏n
i=1(−zi) = (K + 1)

∏n
i=1(−ri). Equating the

coefficients of s̃n−1 terms in (39) gives −
∏n−1
i=1 (−pi) +

K
∏n
i=1(−zi)(

∑n
i=1 z

−1
i ) = (K+1)·

∏n
i=1(−ri)(

∑n
i=1 r

−1
i ).

From (25) we have
∑n
i=1

∣∣Re z−1i
∣∣ =

∑
i Re z−1ui

−∑
i Re z−1si . Since all the closed-loop poles ri’s are

with negative real parts, the sum
∑n
i=1 |Re r−1i | =∏n−1

i=1 (−pi)[K
∏n
i=1(−zi)]−

∑n
i=1 z

−1
i . Applying Lemma 2

to T̃2(s̃) in (38), the CSBI gives

1
2π

∫∞
−∞ ln |T (s)| dωω2 =

∑
iRe z

−1
ui
−

∏n−1
i=1 (−pi)

2K·
∏n

i=1(−zi)
. (41)

Case 3: Two or more pure integrators exist in L(s), i.e. 0 ≤
l ≤ n− 2.

When 0 ≤ l ≤ n − 2, equating the constant
terms in (36) gives K

∏n
i=1(−zi) = (K + 1)

∏n
i=1(−ri).

Equating the coefficients of s̃n−1 terms in (39) gives
K
∏n
i=1(−zi)(

∑n
i=1 z

−1
i ) = (K+1)

∏n
i=1(−ri)·(

∑n
i=1 r

−1
i ).

Meanwhile, we have
∑n
i=1

∣∣Re z−1i
∣∣ =

∑
i Re z−1ui

−∑
i Re z−1si and

∑n
i=1

∣∣Re r−1i
∣∣ = −

∑n
i=1 z

−1
i =

−
∑
i Re z−1ui

−
∑
i Re z−1si . Hence, applying Lemma 2 to

T̃2(s̃) in (38), the complementary sensitivity Bode integral
satisfies

1
2π

∫∞
−∞ ln |T (s)| dωω2 =

∑
iRe z

−1
ui
. (42)

Summarizing the results in (40-42) gives Corollary 2. This
completes the proof.

Remark 2. The results on continuous-time CSBI have been
presented in Theorem 1 for systems with ν ≥ 1 and Corol-
lary 2 for systems with ν = 0, respectively. In general, the
results derived via the simplified approach, Theorem 1 and

Corollary 2, match the earlier result, Lemma 1, obtained
by employing Cauchy integral theorem. Nevertheless, more
detailed relationship between CSBI and the features of L(s)
and more relaxed constraints on lnT (1/s) are attained by
using the simplified approach. In both cases of ν ≥ 1 and
ν = 0, the values of CSBIs are mainly determined by the
non-minimum phase zeros zui

, while the form of CSBI varies
depending on the amount of pure integrators in L(s). When
only single pure integrator exists in L(s), the value of CSBI is
determined by the leading coefficient K, minimum phase zeros
zsi , and the poles pi in L(s), which was not reported in the
previous papers. Theorem 1 and Corollary 2 also show that
the continuous-time CSBI defined in [6] is unbounded, when
L(s) does not contain any pure integrator, which is a limitation
of this type of CSBI and did not receive enough attention in
recent papers [4], [8]. Meanwhile, the analytic constraint on
ln |T (1/s)|, as well as the initial value constraint T (0) 6= 0,
are not necessary in the proofs of Theorem 1 and Corollary 2,
which can also be extended to the scenario when some of the
closed-loop poles ri’s are on the imaginary axis via simplified
approach.

IV. DISCRETE-TIME COMPLEMENTARY SENSITIVITY
BODE INTEGRAL

Discrete-time CSBI is investigated in this section by using a
simplified approach developed on the basis of Lemma 4. Com-
pared with the continuous-time system, since the frequency
domain of discrete-time system is bounded, we do not need
to worry about the unboundedness of discrete-time CSBI, and
hence neither weighting function nor frequency inversion is
involved in this section. When the relative degree ν ≥ 1 in
L(z), we have the following result.

Theorem 3. For an open-loop transfer function L(z) with
relative degree ν ≥ 1 and stable closed-loop system, the
discrete-time CSBI satisfies

1
2π

∫ π
−π log |T (z)|dω =

∑
i log |zui

|+ log |K|, (43)

where zui
’s are the unstable zeros in L(z), and K is the

leading coefficient in (6).

Proof. When relative degree ν ≥ 1, the open-loop transfer
function (6) can be expressed as

L(z) = K ·
∏m
i=1(z − zi)/

∏n
i=1(z − pi),

where n ≥ m + 1. Then the discrete-time complementary
sensitivity function takes the form

T (z) =
K·

∏m
i=1(z−zi)∏n

i=1(z−pi)+K·
∏m

i=1(z−zi)
= K ·

∏m
i=1(z−zi)∏n
i=1(z−ri)

. (44)

where ri’s denote the closed-loop poles. Since the closed-loop
system is stable and all the closed-loop poles ri’s are within
the unit circle, applying Lemma 4 to (44), the discrete-time
CSBI satisfies

1
2π

∫ π
−π log |T (z)|dω = 1

4π

∫ π
−π log

∣∣∣K∏m
i=1(z−zi)∏n
i=1(z−ri)

∣∣∣2 dω
=
∑
i log |zui

|+ 1
2π

∫ π
−π log |K|dω,

(45)

which implies (43) in Theorem 3.



0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2934010, IEEE
Transactions on Automatic Control

PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

We then consider the CSBI of a biproper open-loop system,
i.e. when ν = n−m = 0.

Corollary 4. For an open-loop transfer function L(z) with
relative degree ν = 0 and stable closed-loop system, the
discrete-time CSBI satisfies

1
2π

∫ π
−π log |T (z)|dω =

∑
i log |zui |+ log

∣∣∣ K
1+K

∣∣∣ . (46)

Proof. When relative degree ν = 0, the discrete-time open-
loop transfer function (6) can be expressed as follows

L(z) = K ·
∏n
i=1(z − zi)/

∏n
i=1(z − pi),

where K = limz→∞ L(z). The complementary sensitivity
function then becomes

T (z) =
K·

∏n
i=1(z−zi)∏n

i=1(z−pi)+K·
∏n

i=1(z−zi)
= K

1+K

∏n
i=1(z−zi)∏n
i=1(z−ri)

. (47)

When K = −1, the order of denominator in (47) will be less
than n, i.e. at least one closed-loop pole ri is out of unit circle
and at infinity, which implies that the closed-loop system is
not causal. Hence, in practice, the leading coefficient K = −1
is not allowed when ν = 0 [1], though one can still obtain
a bounded value by applying Lemma 4 to (47) or computing
the integral (7) directly. When K 6= −1, since the closed-
loop system is stable and all ri’s are inside the unit circle,
applying Lemma 4 to (47), the discrete-time CSBI satisfies

1
2π

∫ π
−π log |T (z)|dω = 1

4π

∫ π
−π ln

∣∣∣ K
∏n

i=1(z−zi)
(1+K)

∏n
i=1(z−ri)

∣∣∣2 dω
=
∑
i log |zui |+ 1

2π

∫ π
−π log |

K
1+K |dω, (48)

which implies (46) in Corollary 4.

Remark 3. The results on discrete-time CSBI have been pre-
sented in Theorem 3 for systems with ν ≥ 1 and in Corollary 4
for systems with ν = 0, respectively. These results, derived
by using the simplified approach, match the previous results
in [5] generally. For both cases, ν ≥ 1 and ν = 0, the CSBI
is proportional to the sum of the logarithms of unstable or
non-minimum phase zeros. However, the difference between
the second terms on the RHS of (43) and (46) was not noted
in the previous papers.

V. ILLUSTRATIVE EXAMPLES

Illustrative examples that examine the previous theorems
and corollaries are given in this section. First, we consider
the following continuous-time transfer function L1(s) with
two pure integrators L1(s) = −1.164 × 10−4(s − 10)(s +
0.0625)/[s2 · (s+ 10)], where the relative degree ν = 1, and
a non-minimum phase zero is located at s = 10. The closed-
loop complementary sensitivity function is T1(s) = −1.164×
10−4 · (s − 10)(s + 0.0625)/[(s + 10)(s2 + 1.149 × 10−4 ·
s + 7.725 × 10−6)], which is a closed-loop stable plant with
three closed-loop poles located at s = 5.745×10−5±2.697×
10−3i and −10. The numerical computation of CSBI gives
1
2π

∫∞
−∞ ln |T1(s)|/ω2 dω ≈ 0.1000. Applying Theorem 1

yields 1
2π

∫∞
−∞ ln |T1(s)|/ω2 dω =

∑
iRe z

−1
ui

= 1/10 = 0.1,
which matches the numerical result.

Next, we consider an open-loop transfer function L2(s)
with only one pure integrator, i.e. l = n − 1. L2(s) =

−(s− 1)/[s(s + 3.5)], which, with relative degree ν = 1,
has a non-minimum phase zero at s = 1. The closed-
loop complementary sensitivity function of L2(s) is T2(s) =
−(s−1)/(s2+2.5s+1), which is closed-loop stable with two
closed-loop poles at s = −0.5 and −2. The numerical com-
putation of CSBI gives 1

2π

∫∞
−∞ ln |T2(s)| /ω2dω ≈ −0.75.

Applying Theorem 1 yields 1
2π

∫∞
−∞ ln |T2(s)| /ω2dω =∑

iRe z
−1
ui
− (2K)−1

∏n−1
i=1 (−pi)/

∏m
i=1(−zi) = 1− 1.75 =

−0.75, which also matches the numerical result.
Meanwhile, by following similar procedures as above, one

can easily verify that the CSBI of the open-loop transfer
function L3(s) = −2.0348·(s−1)/(s2+3s+2) is unbounded,
which validates the last situation in Theorem 1. In the end,
we use an example to examine Corollary 4, which was
rarely noted before. Consider a biproper discrete-time system
L4(z) = 2(z+2)/(z+0.5). By using numerical integration, the
CSBI of L4(z) gives (2π)−1

∫ π
−π log |L4(z)/(1+L4(z))|dω ≈

0.4150 ≈ log 2 + log(2/3), which justifies Corollary 4. For
brevity, more examples that verify Corollary 2 and Theorem 3
are omitted in this note, and interested readers are referred
to [1]–[10] and related references.

VI. CONCLUSION

A simplified approach for analyzing complementary sen-
sitivity trade-offs in both continuous-time and discrete-time
systems was proposed in this note. A comprehensive relation-
ship between CSBIs and the features of open-loop transfer
functions was interpreted by using this simplified approach. A
few illustrative examples were presented to justify the results.
However, similar to the result in [1], the simplified approach
is unable to analyze non-rational transfer functions, such as
transfer function with time delay [2]–[4]. This might be an
interesting topic for future research on sensitivity analysis.
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