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This paper describes a method for efficiently computing parallel transport
of tangent vectors on curved surfaces, or more generally, any vector-valued
data on a curved manifold. More precisely, it extends a vector field defined
over any region to the rest of the domain via parallel transport along shortest
geodesics. This basic operation enables fast, robust algorithms for extrapolat-
ing level set velocities, inverting the exponential map, computing geometric
medians and Karcher/Fréchet means of arbitrary distributions, constructing
centroidal Voronoi diagrams, and finding consistently ordered landmarks.
Rather than evaluate parallel transport by explicitly tracing geodesics, we
show that it can be computed via a short-time heat flow involving the con-
nection Laplacian. As a result, transport can be achieved by solving three
prefactored linear systems, each akin to a standard Poisson problem. To
implement the method we need only a discrete connection Laplacian, which
we describe for a variety of geometric data structures (point clouds, polygon
meshes, etc.). We also study the numerical behavior of our method, showing
empirically that it converges under refinement, and augment the construc-
tion of intrinsic Delaunay triangulations (iDT) so that they can be used in
the context of tangent vector field processing.
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1 INTRODUCTION

Given a vector at a point of a curved domain, how do we find the
most parallel vector at all other points (as shown in Fig. 1)? This
“most parallel” vector field—not typically considered in numerical
algorithms—provides a surprisingly valuable starting point for a
wide variety of tasks across geometric and scientific computing,
from extrapolating level set velocity to computing centers of distri-
butions. To compute this field, one idea is to transport the vector
along explicit paths from the source x to all other points y, but even
just constructing these paths is already quite expensive (Sec. 2). We
instead leverage a little-used relationship between parallel trans-
port and the vector heat equation, which describes the diffusion of a
given vector field over a time . As t goes to zero, the diffused field
is related to the original one via parallel transport along minimal
geodesics, i.e., shortest paths along the curved domain (Sec. 3.4).
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Fig. 1. Given a vector at a point, the vector heat method computes the most
parallel vector at every other point. The method easily generalizes to other
data (such as a velocity field along a curve), providing a novel and efficient
way to implement fundamental algorithms across geometry and simulation.

The same principle applies not only to point sources, but also
to vector fields over curves or other subsets of the domain. Since
diffusion equations are expressed in terms of standard Laplace-like
operators, we effectively reduce parallel transport tasks to sparse lin-
ear systems that are extremely well-studied in scientific computing—
and can hence immediately benefit from mature, high-performance
solvers. Moreover, since discrete Laplacians are available for a wide
variety of shape representations (polygon meshes, point clouds, etc.),
and generalize to many kinds of vector data (symmetric direction
fields, differential forms, etc.), we can apply this same strategy to
numerous applications. In particular, this paper introduces

o a fast method for computing parallel transport from a given
source set (Sec. 4)

e an augmented intrinsic Delaunay algorithm for vector field
processing (Sec. 5.4)

o the first method for computing a logarithmic map over the
entire surface, rather than in a local patch (Sec. 8.2), and

e the first method for computing true Karcher/Fréchet means
and geometric medians on general surfaces (Sec. 8.3).

We also describe how to discretize the connection Laplacian on
several different geometric data structures and types of vector data
(Sec. 6), and consider a variety of other applications including
distance-preserving velocity extrapolation for level set methods,
computing geodesic centroidal Voronoi tessellations (GCVT), and
finding consistently ordered intrinsic landmarks (Sec. 8).
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2 RELATED WORK

Discrete Parallel Transport. Parallel transport has a long history
in the discrete setting. One of the earliest ideas, perhaps, is Schild’s
ladder which approximates parallel transport via short geodesic
segments; this technique has proven useful for parallel transport
in high-dimensional spaces representing image data [Lorenzi and
Pennec 2014], but is not directly related to parallel transport of
vectors on discrete surfaces. A more natural predecessor to the type
of parallel transport encountered in geometry processing is the
simplicial calculus of Regge [1961], largely used for problems in
general relativity [Gentle 2002]. On surfaces, this approach essen-
tially amounts to the notion of discrete connections studied by Crane
et al. [2010]. To discretize our method on triangle meshes, we will
instead consider vectors at vertices, building on ideas from Polthier
and Schmies [1998] and Knéppel et al. [2013]. Finally, Azencot et al.
[2015] explore a spectral approach to parallel transport, though here
the goal is different from ours: transporting one vector field along
another, rather than transporting vectors along shortest geodesics.

Discrete Geodesics. A seem-
ingly natural solution to our
problem is to explicitly trans-
port vectors along geodesic
paths—in the case of trian-
gle meshes, one could unfold

the triangles along the path V

and apply a simple transla-
tion in the plane (a la Polth- ///W
ier and Schmies [1998]). How- |/

ever, finding these paths is
not straightforward: one can
either compute exact poly-
hedral geodesics via expen-
sive window-based methods

Fig. 2. Even just tracing all the
geodesics to a given source point (with-
out accounting for the cost of distance

. ] computation) is already an order of
[Mitchell et al. 1987; Chen and magnitude more expensive than ap-

Han 1990] that demand sophis- plying the vector heat method—here,
ticated acceleration schemes {54 slower.

[Surazhsky et al. 2005; Ying

et al. 2013; Qin et al. 2016]; or trace integral curves of a piece-
wise linear geodesic distance function [Kimmel and Sethian 1998;
Crane et al. 2013b], which may have very different behavior from
true geodesics [Tricoche et al. 2000]. Our approach is far simpler:
just build Laplace matrices and solve linear systems. It is also more
efficient: even if there were no cost associated with computing
geodesics, each shortest path on a discrete surface with O(n) ele-
ments has length O(+/n), yielding an overall cost in O(n!-%). In our
method, the cost is dominated by solving sparse diffusion equations,
which has complexity approaching O(n) for both iterative and direct
methods [Spielman and Teng 2004; Gillman and Martinsson 2014];
prefactorization can be used to further reduce amortized cost across
many different source points or sets (Sec. 7.2). In practice we observe
that merely extracting paths from a given piecewise constant vector
field is more than an order of magnitude slower than executing our
entire algorithm (Fig. 2). Moreover, the diffusion-based approach
also provides an accurate and reliable solution (Sec. 7.3).
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Relationship to Scalar Heat Method. The original, scalar heat method
[Crane et al. 2013b] computes a related, but fundamentally different
quantity from the vector heat method: the former computes geo-
desic distance; the latter computes parallel transport along shortest
geodesics. Computationally, these methods share some basic fea-
tures: rather than directly solve a difficult nonlinear hyperbolic
problem (wavefront propagation from a source), they reformulate
computation in terms of much easier linear elliptic PDEs (local
averaging); all nonlinearity is captured by simple pointwise oper-
ations. However, the structure of the vector version is different:
unlike the scalar heat method, there is no dependence among linear
equations (STEP I-STEP III of Algorithm 1), making error behavior
easier to analyze, and providing additional opportunities for accel-
eration. Moreover, the vector heat method does not require discrete
divergence or gradient operators, making it easier to apply to data
structures like point clouds, or even (in principle) data on general
graphs [El Karoui and Wu 2015].

Connection Laplacians. On flat domains like the plane, vector
diffusion amounts to diffusion of individual scalar components. On
curved domains things are not so simple: there is typically no global
coordinate system, and one must therefore apply a diffusion process
that accounts for parallel transport, achieved via the connection
Laplacian (Sec. 3). Singer and Wu [2012] use a similar process to
obtain a vector diffusion distance, motivated by tasks in data analysis
and machine learning. Lin et al. [2014] likewise consider vector
diffusion in the learning context; we leverage a similar technique in
Algorithm 2, STEP II, deriving initial conditions that substantially
improve accuracy. On triangle meshes, Knoppel et al. [2013, 2015]
consider two connection Laplacians: one based on finite elements,
and another in the spirit of discrete exterior calculus [Desbrun et al.
2006]; we build primarily on the latter. Algorithmically, fast solvers
for connection Laplacians are an active area of research [Kyng
et al. 2016]; applications built on top of the vector heat method
can immediately benefit from new developments in this area.

Applications. Though we postpone detailed background on ap-
plications to Sec. 8, it is worth noting that the heat flow approach
is the first practical way to compute an accurate logarithmic map
(sometimes referred to by its inverse, the exponential map) over
the entire domain rather than just a local patch—Fig. 20 provides
a comparison with previous methods, which exhibit significant er-
ror over longer distances. This global accuracy in turn yields the
first efficient and reliable method for computing Karcher means
and geometric medians on arbitrary surfaces (see especially Fig. 23).
Computationally, previous methods are Dijkstra-like and necessitate
dynamic branches and different memory access patterns for each
source point. In contrast, heat methods execute a fixed and hence
highly predictable traversal of a minimal data structure (a matrix
factorization). As a result, the constants involved tend to be much
smaller—for instance, our log map computation is faster than even
the basic method of Schmidt et al. [2006]. More broadly, tasks that
depend on global integration of information (such as computing
means or landmarks) benefit from the robust global nature of our
algorithm.
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Fig. 3. The field obtained by parallel transport along shortest geodesics
plays a special role in several basic geometric algorithms—replacing it with
a field that is merely smooth can cause these algorithms to fail. Here for
instance we use the field to locate the Karcher mean equidistant from the
two green points (left). Attempting to instead use the smoothest possible
field causes this search to fail, wandering randomly over the surface (right).

3 PRELIMINARIES

The basic idea of our method is to approximate parallel transport via
short-time diffusion of vector-valued data. In the Euclidean setting,
one can simply diffuse individual scalar components via the ordinary
heat equation, but on curved domains this approach fails, since for
vectors in different tangent spaces equality of coordinates has no
geometric significance. We instead consider a particular vector heat
equation which, for a short time t, keeps vectors parallel. We first
provide some basic notation and definitions.

3.1 Notation

Throughout we consider a Riemannian manifold M with metric g.
We use d(x,y) to denote the corresponding geodesic distance, i.e.,
the length of the shortest path between any two points x,y € M.
The cut locus of any subset Q C M is the set of all points p € M for
which there is not a unique closest point g € Q (Fig. 19, bottom). For
a vector field X on M, we use X, to denote the vector at a point p.
We will use 1 € C to denote the imaginary unit, ie., 2 =1, Finally,
we use dy to denote the Dirac delta centered at x € M.

3.2 Heat Diffusion

The most basic diffusion equation is the scalar heat equation, which
describes how an initial heat distribution ¢y : M — R looks after
being diffused for a time ¢ > 0:

e = D (1)
The operator A is the (negative semidefinite) Laplace-Beltrami op-
erator on M; in Euclidean R", A is just the usual Laplacian.

Heat Kernel. When the initial heat distribution ¢y is just a spike
Jx at a single point x, the solution to Eqn. 1 is referred to as the heat
kernel k;. The heat kernel is the fundamental solution, in the sense
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that convolution of the initial data ¢ with k; yields the solution
to the heat equation at time ¢. When the domain is Euclidean (i.e.,
M = R"™), this fundamental solution is just a Gaussian of constant
total mass, centered at a point x € R™:

1 —d(x,y)?/4t
) e . (2)

Here n denotes the dimension of the domain (e.g., n = 2 for the plane).
More generally, the heat kernel has the asymptotic expansion

—d(x,y)2/4t o
¢ (x,y)"1/2 (1+Zt’<1>i(x,y))~ 3

——J
2
(47rt)"/ =

Gi(x,y) =

ke (x,y) ~

For our purposes the definition of the functions j and ®; will not
be important, especially since we consider the limit as t — 0 (see
[Berline et al. 1992, Theorem 2.30] for further discussion). In practice,
we obtain a numerical approximation of k; by solving Eqn. 1 directly,
i.e., by placing a Dirac delta at a source point x and “smearing” it
out via heat diffusion.

3.3 Parallel Transport and Connections

Given a tangent vector X at a point p
of a curved surface M, which vector at
another point g should be considered
“parallel?” If we have a smooth curve
v (s) going from p to g, one reasonable
idea is that X should experience no “un-
necessary turning,” i.e, no change along
the tangent direction T := %y; the vec-
tor we obtain at the end of the path is
called the parallel transport of X along y,
which we will denote by Py (X). An im-
portant fact about parallel transport is
that it is path dependent, i.e., for two dif-
ferent curves y1, y2 from p to g, it is not
necessarily true that Py, (X) = Py, (X).
A good example is transporting a vector
from the north to the south pole of the
Earth along two different lines of longi-
tude: at the south pole, the angle between the resulting vectors will
be related to the difference in longitudes (see inset, top). However, as
q gets closer and closer to p, only the outgoing direction of the path
matters, since very short segments of paths with the same tangent
become indistinguishable. We can therefore use parallel transport
to define the derivative of one vector field Y along another vector
field Z. In particular, at any point p € M the covariant derivative
VzY, describes the change in Y as we travel an infinitesimally short
distance along any curve y with tangent Z at p. More formally, let-
ting p = y(0) and g = y(s), VzYlp := lims—o(Pg—p(Ylg) — Ylp)/s,
where Py, denotes parallel transport from g back to p (see inset,
bottom). The operator V is referred to as the Levi-Civita connection.

3.4 Connection Laplacian

The connection Laplacian N is a second derivative on vector fields
with many of the same basic properties as the ordinary Lapla-
cian A: it is negative semidefinite, self-adjoint, and elliptic. Just
as the ordinary negative semidefinite Laplacian can be expressed
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as the trace of the Hessian, or as the divergence of the gradient
(Af = tr(H(f)) = divogradf), the connection Laplacian associated
with a connection V is given by the trace of the second covariant
derivative, or by the composition of the covariant derivative with its
adjoint (X = tr(V2X) = —V*VX). Some intuition can be obtained
by relating the connection Laplacian to the vector heat equation

Lx, = NX;. (4)

Intuitively, the evolution of the vector field X; over time will look
like a “smearing out” of an initial vector field X (Fig. 4). We can
make this statement more precise by considering the associated
heat kernel ktv (x,y), which describes how a vector at a single point
x will diffuse to all other points y over time ¢. For points y that are
not on the cut locus of x, this kernel has the asymptotic expansion

e*d(x, y)? /4t

ktv(xv y) ~ Wj(xa y)~1/2 (Zo 1 (x, y)), (5

where the functions ®; from the scalar heat kernel have been re-
placed by maps ¥; taking vectors at x to vectors at y. Most impor-
tantly, the first function in this series is given by

Yo(x,y) = Py, (©)

where Yx—oy is the shortest curve from x to y, i.e., the shortest geo-
desic [Berline et al. 1992, Theorem 2.30]. In other words, as t — 0,
the vector heat kernel behaves like parallel transport along short-
est paths, along with a decay in magnitude that is identical to the
decay of the scalar heat kernel. (As a side note: for t — oo, X; ap-
proaches the smoothest possible vector field—independent of initial
conditions—since the vector heat equation corresponds to gradient
descent on the vector Dirichlet energy; normalizing this field would
yield the optimal direction field in the sense of Knoppel et al. [2013].)

Note that not all vector diffusion equations yield the same behav-
ior: for instance, a vector diffusion equation formulated in terms of
the Hodge Laplace operator (discussed in Sec. 6.1.1) will exhibit differ-
ent behavior with respect to parallel transport. The discrete picture
also provides some useful intuition for the connection Laplacian—
see Sec. 5.3.

— 1 —
t=0 =105 t=

sl

L1
100 10

Fig. 4. Similar to the scalar heat kernel k; (top), the vector heat kernel
ktV (bottom) “smears out” vectors over time. In the flat Euclidean case one
can simply diffuse each scalar component independently, but on a curved
domain the connection Laplacian is needed to diffuse vectors from one
tangent space to another. (Figures not to scale.)
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Fig. 5. Numerically, just taking the quotient of short-time solutions to the
vector and scalar heat equations yields a poor approximation of magni-
tude (left), which in this case should be piecewise constant. By separately
computing magnitudes (right), we obtain a more accurate solution.

4 SMOOTH FORMULATION

The relationship between the vector heat kernel and the parallel
transport map (Eqn. 6) is critical to our method, since it allows us
to compute parallel transport by solving diffusion problems—which
in turn amount to easy linear systems. For instance, to transport
a single unit vector to the rest of the surface, one could simply
compute the vector heat kernel for small time ¢, then normalize the
resulting vectors. In the general case, this strategy will not work:
consider three vectors of different magnitudes, or a vector field of
varying magnitude along a curve (Fig. 8). One way to account for
this varying magnitude is to observe that the scalar heat kernel k;
(Eqn. 3) and the vector heat kernel ktV (Eqn. 5) have identical leading
coefficients. Therefore, as t — 0 the higher-order terms vanish and
we can recover the parallel transport map as a simple quotient:

C
-0 ki(x,y) v

7

More generally, suppose we diffuse a given vector field X supported
(i.e, nonzero) on a set Q, and diffuse the corresponding scalar indica-
tor function ¢9 = 1q (formally, a Hausdorff measure of appropriate
dimension). Since diffusion is equivalent to convolution with the
heat kernel, these quantities approach the same magnitude at each
point, ie.,

}E}l}) [X:| = ¢¢ = 0.

Hence, the quotient X;/¢; should exactly factor out any decay in
magnitude, leaving only the result of parallel transport along short-
est geodesics. Numerically, however, the situation is not so simple:
even for fairly small values of ¢, diffused vectors pointing in different
directions will yield small cancellation errors, further reducing the
magnitude of the numerator X; (Fig. 5, left). To get reliable numer-
ical results we will need to consider an alternative approach: use
scalar diffusion to obtain the magnitude of the transported vectors
(Sec. 4.1); use vector diffusion to obtain their direction (Sec. 4.2).
Together these operations define our basic algorithm (Algorithm 1),
though nothing restricts the method to two dimensional surfaces,
nor to the tangent bundle: everything we state in the smooth set-
ting immediately applies to any vector bundle over a Riemannian
manifold of any dimension, as we will discuss in Sec. 6.
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ALGORITHM 1: Vector Heat Method

Uz

p2.

Fig. 6. A simple example of interpolation by diffusion: a Gaussian weighted
combination of values at two points pj, ps, yields a closest point inter-
polation u, as the Gaussian width ¢ goes to zero. Here u; is the linear
combination prior to normalization.

4.1 Scalar Interpolation

Suppose we have a pair of source points py, p» € R%, with associated
values uq,uy € R. How can we find a function u over the rest of
the plane whose value at each point is equal to the value at the
closest source p;? For this particular example the answer is obvious
(just find the line separating p; and py), but we can obtain it in an
interesting way that will naturally generalize. Suppose we use the
Gaussian kernel (Eqn. 2) to define a weighted average

uth,pl + uzGt,pZ

=
Gt,p1 +Gt,p,

As t goes to zero, this weighted average provides a closest point
interpolation (Fig. 6, bottom), since for points closer to p; than py,
the numerator u; := u1Gp,,+ + u2Gp, ¢ is dominated by the first
term, and vice versa (Fig. 6, top).

This basic idea is easily generalized to curved domains: interpo-
lation is again achieved by dividing a weighted sum by the sum of
weights, except that we replace the Gaussian kernel G; with the
scalar heat kernel k; (Eqn. 3). In particular, given a collection of
sources p1,...,pn € M and associated values uy,...,u, € R, we
solve two independent heat equations for functions u and ¢, using
initial conditions

U = Z;‘lzl uibp;,

$o =
The interpolant is then simply the limit as ¢ goes to zero of the
normalized function

n
i=1 5Pi'

- u(t)

u(t) 50
The intuition is the same as in the planar case: for points closest
to p;, the weighted sum will be dominated by the u; term. Points
exactly on the cut locus will approach an average of values; though a
precise analysis of this behavior becomes more difficult [Grigor'yan
2009], in practice these values are well-behaved.

More generally, the source set can be any subset Q ¢ M—on a
surface, for instance, Q can be a collection of points, curves, and
regions (see for instance Fig. 7). In this case, the initial conditions
are essentially a Dirac-type measure concentrated on Q (or more
formally, a sum of Hausdorff measures of appropriate dimension);
in the discrete setting we can integrate basis functions with respect
to this measure to obtain initial conditions (as in App. A).

Input: A vector field X supported on a subset Q c M of the domain M.
Output: A vector field X on all of M.
I Integrate the vector heat flow % Y; = NY, for time ¢, with Yy = X.
II. Integrate the scalar heat flow %u, = Au; for time ¢, with uy = | X/|.
III. Integrate the scalar heat flow %qﬁt = A¢; for time ¢, with ¢g = 1q.
IV. Evaluate the vector field X; = u; Yy /s |Ye|.

4.2  Vector Heat Method

We now define our main algorithm, the vector heat method, which
is summarized in Algorithm 1. The basic idea is to first diffuse a given
vector field via the vector heat equation (Eqn. 4). For small time t,
the resulting vectors will have essentially the right direction, but
the wrong magnitude. To obtain the right magnitude, we interpolate
the magnitudes of the source vectors (as in Sec. 4.1), and scale the
normalized vectors by these magnitudes. The result is a field where
the vector at each point q closely approximates the parallel vector
at the closest point p. More precisely, for any given vector field X
supported on a subset Q C M of the domain M, we obtain a vector
field X; such that at each point ¢ € M not in the cut locus of Q,

}i_r)r(l)X”q = PYP—*qXLD’

where p is the point of Q closest to g, and y,—q is the shortest
geodesic from p to g. In practice we cannot evaluate the limit field
directly; instead, we pick a small time step ¢t > 0 (as detailed in
Sec. 7.3) and solve the vector diffusion equation

Ly, = Ny,
to obtain a diffused vector field Y;. For a small time ¢t > 0, each
vector Y;|q will closely match the direction of the closest source
vector X|p, but will have the wrong magnitude, i.e., [Y¢lq # |X|p. To
get the right magnitude, we solve the two scalar diffusion equations

with Yy =X,

diut = Auy with gy =X]|, and
m¢t = A¢t with d)() = ]lQ.

The quotient u; := u;/¢; then gives the magnitude of the vector at
the closest point, and the final vector field is hence just

Xt =uYe /|yl

This strategy resembles the scalar heat method, where one cannot
simply apply Varadhan’s formula, but must instead normalize the
gradient to obtain the correct magnitude. Likewise, in the vector
heat method we cannot simply divide the vector heat kernel by
the scalar heat kernel (as in Eqn. 7), but must carefully interpolate
magnitudes. This strategy provides numerical robustness: even if
there are small errors in direction, the magnitudes are essentially
perfect (Fig. 5, right).

Note that for points on the cut locus, X essentially approaches
an average of all closest vectors (see for instance Ludewig [2018]).
Importantly, we have no particular interest in approximating the
cut locus itself; the presence of a cut locus is merely a natural
feature of any globally accurate approximation of the true (smooth)
solution to our problem. Global accuracy turns out to be essential
for applications—see for instance Fig. 3 and discussion in Sec. 8.
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—

Fig. 7. Interpolation of scalar values at points (left) and curves (right).

5 DISCRETE FORMULATION

Fundamentally, the vector heat method is an algorithm formulated
in the smooth setting—so far we have not assumed that we work
with any particular discretization (such as point clouds or polygon
meshes). In this section we discretize the method on triangle meshes;
other possibilities are explored in Sec. 6.2.

5.1 Discrete Surface

Topology. Throughout we consider a manifold triangle mesh
K = (V,E, F), with or without boundary. In principle our method
applies to nonorientable domains, but to simplify exposition (and
implementation) it will be easier to assume that K is oriented. We
use tuples of vertex indices to specify simplices—for instance, ijk is
a triangle with vertices i, j, k € V. Indices appearing on both sides of
an equation are held fixed in sums, for instance, a;j = ¥;jker bijk
denotes a sum over only those triangles ijk € F containing edge ij.

Geometry. The only geometric information we need to formulate
our algorithm is positive edge lengths ¢ : E — R satisfying
the triangle inequality in each face; from this data one can easﬂzf
determine the area A; jx of each triangle, and the interior angle 9{
at each corner i of each triangle ijk (via Heron’s formula and the law
of cosines, resp.). For problems involving tangent vector fields, this
purely intrinsic point of view has some attractive consequences—in
particular, it enables us to talk about tangent vector fields on an
intrinsic Delaunay triangulation (Sec. 5.4), which in practice can
significantly improve accuracy and reliability (Fig. 10).

5.2 Intrinsic Tangent Spaces

At each vertex i € V, we encode
tangent vectors X; in local polar
coordinates (rj, ¢;), d la Knoppel
et al. [2013]. Conceptually, one can
imagine isometrically mapping a
small neighborhood of the vertex
onto a circular cone whose base
has a radius r = 1 (see inset); the
direction of any tangent vector can then be expressed as an angle ¢ €
[0, 277), equal to the arc length along the cone boundary. Concretely,
we pick a canonical reference edge ijy to represent the direction
¢ = 0; all other directions are expressed as a counter-clockwise
rotation relative to this edge. In particular, letting

@,’ = Z Q{k

ijkeF
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7777,

Fig. 8. Parallel transport of vectors from points (left) and curves (right).

be the total interior angle at vertex i, we define normalized angles
sk ik
6" == 276]" /0y, 8)

which sum to 2. The direction of the outgoing edges ijo, ij1, . . . (in
counter-clockwise order) are then given by the cumulative sums

a—1
5p>ip+
Pijo = 29{‘0 # ©)
p=0

A tangent vector X; at any vertex i is specified by an angle ¢; and
magnitude r; in this coordinate system. In practice, we will encode
this data as a complex number r;e'?: € C.

Discrete Parallel Transport. For any edge
ij € E, the angles ¢;; and 7 + ¢;; encode
the edge direction relative to the coordinate
systems at vertices i and j, resp. To keep a
vector parallel as we go from i to j, we must
therefore rotate by the angle

pij = (@ji + 1) — ¢ij.
We encode the corresponding rotations as
unit complex numbers

rij = e'Pii | (10)

which will help to construct our discrete connection Laplacian.

5.3 Discrete Laplace Operators

For triangle meshes, the Laplace-Beltrami operator A can be dis-
cretized as a weighted graph Laplacian L € RIVXIV1 given by

(Lp)i = 3 > (cotO +cot &) (g; - ¢1)
ijeE ————
=wi;
at each vertex i € V, where k, [ denote the vertices
opposite edge ij; the cotan weights w;; simply ac-
count for the shape of the triangles (see Crane et al.
[2013a, Chapter 6]). To be concrete, let a := cot 6‘:k,

b := cot Gjlfi and ¢ := cot 9;3 be the cotangents of ;

the angles at the corners of a triangle ijk € F. One
way to build L is to accumulate, for each triangle, the local 3 X 3
matrix

1 b+c -—c -b
-3 -c c¢c+a -a
-b -a a+b

into the corresponding entries of L.



The connection Laplacian A’ is given by a nearly identical complex
matrix I € C!IVIXIVI; the only change is that the off-diagonal entries
are multiplied by the edge rotations r;;:

b+c —crij —bry
——=| —erji ct+a  —ar
—bry; —arg; a+b

This matrix is Hermitian since r;; and rji are unit complex numbers
encoding equal and opposite rotations; hence, rj; = ri_j1 = 7jj. This
matrix naturally arises as the Hessian of the vector Dirichlet en-
ergy Yijeg wijlXj — rijXi |2, which quantifies the “straightness” of
a given vector field X (see Knoppel et al. [2015, Section 3.2]). Both
L and LY effectively encode zero Neumann boundary conditions;
zero Dirichlet conditions will yield similar results (see discussion in
Crane et al. [2013b, Section 3.4]). We also have a diagonal |V| X |V|
lumped mass matrix with entries

Mi; = % Z A; k-
ijk
This matrix is either real or complex depending on whether we are
building the scalar or vector heat equation (resp.). In particular, we

apply a one-step backward Euler approximation to our short-time
heat equations (STeps I-1III of Algorithm 1) to obtain

M=t)Y = Yo,

M=tLu = ug,

M-tl)p = go.
Here the vectors Yo € C!V1 ug, ¢o € RIVI describe the source data.
For instance, if the source is a collection of points i1, ...,ip € V
with associated vectors X , ..., Xj,, then

k k k
Yo = ZXMSk, ug = Z | Xk 19, ¢o = ZfSk,
im1 im1 i=1

where §; is the Kronecker delta at vertex k. The final result is
obtained by evaluating u;Y;/@;|Y|; at each vertex i € V (STEP IV).

k O +6; > k
»=0

lk Kkl _ . &
i 01‘ +9j < 1 9=0

Fig. 9. Left: the intrinsic Delaunay algorithm performs edge flips to obtain
a mesh where edge angle sums are no greater than . Right: we augment
this algorithm to update the local tangent spaces on each flip.
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5.4 Tangent Intrinsic Delaunay

Although this discretization already works quite
well, we can improve robustness and accuracy by
building the matrices L, LV, and M with respect to
the intrinsic Delaunay triangulation of the given
mesh [Bobenko and Springborn 2007]. The basic
idea is to construct a different triangulation of the
same piecewise Euclidean surface (i.e., without changing the geom-
etry) which leads to better numerical behavior for operators like
the Laplacian. Conceptually, edges may cross multiple faces of the
original mesh (see inset), but in practice we need only keep track
of the usual connectivity information: which edges are connected
to which vertices? Since the vertex set is preserved, any solution
computed on the Delaunay mesh can be directly copied back to the
vertices of the original mesh. However, we will need to augment
this construction to keep track of tangent-valued data.

Let k, [ denote the vertices opposite a given edge ij. The basic
intrinsic Delaunay algorithm iteratively flips any edge ij where the
angle sum G;C] + 9;1 is greater than 7, or equivalently, where the
cotan weight wj; is negative. After a flip, edge k! is assigned a new
length {4, equal to the distance between k and [ along the previous
triangles ijk and jil. This length can be computed via the law of
cosines—see Fisher et al. [2006] for further details. We make a small
but important modification to this algorithm: after each flip, we also
compute the angles ¢ encoding the outgoing direction of the flipped
edge kl relative to its endpoints. In particular, we set

Plk — qolj+2ﬂ'9{k/®l,
Pkl < Qi t Zﬂell(l/@k.

In other words we add the (normalized) angle between the preced-
ing edge and the new edge to the angle of the preceding edge; here
the angles ¢/ k, 9;;1 can be computed from the updated lengths. This
way, we preserve the local polar coordinate systems throughout the
flipping process, and therefore know how to map tangent data com-
puted on the intrinsic Delaunay triangulation back to the original
mesh: simply copy the polar coordinates (r;, ¢;).

This procedure is useful not only for our algorithm, but any
algorithm that seeks to improve the quality and reliability of tangent
vector field processing without altering the geometry of the input
mesh. For instance, the discrete connection Laplacian LY may be
indefinite since (unlike the cotan Laplacian L) it cannot simply be
interpreted as the restriction of the smooth connection Laplacian AY
to the subspace of piecewise linear functions. The intrinsic Delaunay
condition ensures that L is semidefinite, since the intrinsic cotan
weights w;; are guaranteed to be nonnegative. It also ensures that
no vector X; can be “flipped,” in the sense that it will always be a
positive linear combination of the neighbors r;;X; (and hence in
their convex cone). In practice the intrinsic Delaunay condition is
not strictly necessary to obtain high-quality results, but helps to
guarantee that problems will not occur, even on pathological inputs
(Fig. 10). Formally understanding further properties of the intrinsic
connection Laplacian and associated objects (e.g., special intrinsic
vector fields) is an enticing question for future work.
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. original - intrinsic Delaunay

Fig. 10. We often obtain high-quality results even on non-Delaunay meshes
(top). Occasionally, however, transported fields can have improperly oriented
vectors (inset), here causing errors in the log map (bottom center). By keeping
track of tangent spaces during intrinsic Delaunay flips, we obtain a high-
quality solution (bottom right) without having to change the input geometry.

6 GENERALIZATIONS

The vector heat method easily generalizes to other domains and
other kinds of vector-valued data (Sec. 6.1), and can easily be imple-
mented on many data structures beyond triangle meshes (Sec. 6.2).

6.1 Other Vector Bundles

As stated, the algorithm described in Sec. 4 already applies to any
vector bundle. Loosely speaking, a vector bundle is a manifold M
with a copy of the same vector space V at each point. A choice
of vector at each point of M is called a section of the bundle—for
instance, a tangent vector field X is a section of the tangent bundle
TM. As hinted at in Sec. 3.3, the connection V defines what it means
for nearby vectors to be parallel. In general we may want to change
the domain (i.e., the choice of manifold M), the type of vector data
(i.e., the choice of vector space V), or the notion of what it means
for vectors to be parallel (i.e., the choice of connection V). These
choices ultimately determine the operators A and A, which are all
we need to formulate Algorithm 1. An elementary example is the
trivial real line bundle, where the vector space is just V = R, i.e,
sections are just real-valued functions, and parallel transport simply
copies values from one point to another. In this case the vector
heat method reduces to the scalar interpolation scheme described
in Sec. 4.1—some more interesting examples are given below.

6.1.1 Differential 1-Forms. One vector bundle common in ap-
plications is the cotangent bundle T*M, whose sections are called
differential 1-forms. In this context, it is often easiest to discretize
the Hodge Laplacian A; := d§ + dd. To obtain a corresponding
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connection Laplacian A'!, we will employ the Weitzenbick identity,
which for a smooth surface M with Gaussian curvature K says that

Na =Aa+ %Ka

for any 1-form a. We can therefore obtain a discrete connection
Laplacian by adding a matrix representing the curvature term to an
existing discretization of the Hodge Laplacian. In particular, let

Qj =7 — (é{k + é]’.‘i + é,ij)

be the total Gaussian curvature of triangle ijk (see Sharp and Crane
[2018, Section 5.2]). Similarly, let

Qij = 3(Qujk + Lir)
be the total curvature in the barycentric diamond around an edge ij
with opposite vertices k, [ € V, which has area

Aij = 3 (A + Ajar)-

One discrete Hodge Laplacian
is provided by discrete exterior cal-
culus [Desbrun et al. 2006], de-
fined in terms of simplicial bound-
ary/coboundary operators, in con-
junction with diagonal mass matri-
ces %, for differential k-forms. One
can likewise add a diagonal ma-
trix with entries Q;;/A;; to approx-
imate the connection Laplacian—
unfortunately, this approach does
not yield the correct result (inset,
top); seemingly, the highly local re-
gion of support is not sufficient to capture transport. We therefore
replace x with an approximate Galerkin mass matrix *? obtained
via one point barycentric quadrature [Mohamed et al. 2016], which
has larger support and appears to capture sufficient directional in-
formation. For any two edges ij and jk contained in a common face
ijk € F, this matrix has a nonzero entry Jj

. diagonal

barycentric

leij cos (£)

WB)ij = S
I e cos ()

ij
(i.e., the vectors from the edge midpoints to the face barycenter),
and { is the angle between the normal n of edge jk and the dual

edge ej’fk (see inset figure). To discretize the term %K we then build

where & is the angle between the barycentric dual edges e}, and e;k

amatrix K € RIEXIEl with diagonal entries
Qi; /B
Kijiij = g2, (%1 id.ij
for each edge ij € E, and off-diagonal entries
_ Qjk B
Kijijk = 22, %1 )ij.jk
for all pairs of edges ij, jk € E that share a triangle. When used in
Algorithm 1, this discretization appears to yield the correct solution—

for instance, the solution on the sphere above closely matches the
analytical solution (compare with Fig. 16, bottom).



6.1.2  Symmetric Direction Fields.
Another important example of
vector-valued data in computer
graphics and geometry processing
are symmetric direction fields such
as line fields, cross fields, etc. [Vax-
man et al. 2016], which play a key
role in applications like surface
shading [Knéppel et al. 2015] and
quadrilateral remeshing [Bommes et al. 2013]. Formally, such fields
are sections of the kth tensor power TM®¥ of the tangent bundle,
where k determines the degree of symmetry. In this setting, one can
build the connection Laplacian exactly as described in Knéppel et al.
[2013]—in particular, all one has to do is raise the coefficients r;;
from Eqn. 10 to the kth power, and apply Algorithm 1 as usual. The
final vectors are given by the kth complex roots at each vertex, as
described in Knoppel et al. [2013, Sec. 2]. An example is shown in
the inset figure.

6.1.3  Different Connection. Another
possibility is to change the connection
V itself. In this case, Algorithm 1 will
compute parallel transport along ordi-
nary geodesics, but the notion of what
it means to parallel will change. For in-
stance, setting r;; = 1+ 01 for all edges
ij simply yields closest point interpo-
lation of complex functions. A more
interesting connection is considered
by Knoppel et al. [2015], who compute
a global parameterization aligned to
a given vector field Z. Here the Levi-
Civita connection V is replaced by the
connection V = d — 17 b; in practice
this just means that the rotations r;;
are larger for edges that align with Z
(see Knoppel et al. [2015, Section 3.2]).
Using the corresponding connection
Laplacian A in Algorithm 1 will yield a local field aligned parame-
terization centered around a given point x, since for any shortest
geodesic y starting at x the augmented parallel transport map is
given by

Py _ et fy(Z,y/) ds,

i.e., a rotation determined by how much the tangent of y lines up
with Z. Hence, the angle of the transported field 5(y) := arg(ﬁy)H y1)
will be a scalar function increasing along Z (see inset). The gradient
of n will therefore be closely aligned with Z near the source point
x; any non-integrability is effectively dealt with by pushing it out
toward the cut locus (dashed line), rather than inserting new sin-
gularities (as in Knéppel et al. [2015]) or globally projecting onto a
more integrable field (as in Ray et al. [2006]).

6.2 Other Discretizations

There is no fundamental reason why we must use triangle meshes
to discretize the vector heat method: any geometric representation
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that admits a discretization of the scalar Laplace-Beltrami opera-
tor A and the connection Laplacian A" will suffice. Discrete Lapla-
cians have been developed for a wide variety of domains, including
point clouds [Liu et al. 2012], polygon meshes [Alexa and Wardet-
zky 2011], subdivision surfaces [de Goes et al. 2016], tetrahedral
meshes [Belyaev and Fayolle 2015], spline surfaces [Nguyen et al.
2016], and digital surfaces, i.e., voxelizations [Caissard et al. 2017],
all of which have been used to implement the scalar heat method
(see either the preceding references, or Crane et al. [2013b]).

Given a scalar Laplacian, a connection Laplacian can be obtained
by following the same strategy used for triangle meshes (Sec. 5.3):
for any pair of nearby nodes i and j (representing vertices, points,
etc.), determine the transformation between tangent spaces. For a
surface embedded in R”, this transformation is just the smallest
rotation between tangent planes, and can be encoded by a unit
complex number r;;. Then simply multiply the off-diagonal entries
L;; by the values r;; to obtain the connection Laplacian LY. If L
was symmetric, L;; will be Hermitian (assuming rj; = ri_jl), and will
hence exhibit the properties discussed in Sec. 7.1). We consider three
specific cases in detail.

6.2.1 Polygon Meshes. For surface meshes comprised of general,
possibly non-planar polygons, we augment the discrete Laplacian of
Alexa and Wardetzky [2011] (and use the same mass matrix M). In
this setting we need a transport coefficient for all pairs of vertices i, j
contained in each polygon—not just those connected by an edge. We
therefore define extrinsic tangent planes, by picking any reasonable
normal direction N; at each vertex i € V, and any direction E;
orthogonal to Nj; that serves as the zero direction. Letting R;; €
SO(3) denote the smallest rotation taking plane i to plane j, the
rotations r;j; are then determined by the angle from R;;E; to E; in
plane j. These values are used to modify the off-diagonal entries as
described above. Fig. 11, center right shows an example on a quad-
dominant mesh containing non-planar quads and pentagons, of the
type commonly used in numerical simulation.

6.2.2 Point Clouds. As in Crane et al. [2013b, Section 3.2.3], we
use the positive semidefinite point cloud Laplacian of Liu et al. [2012]
to implement our algorithm on unstructured point cloud data. In
this setting we must already estimate tangent planes at each point
in order to build the scalar Laplacian; the transport coefficients
can therefore be computed exactly as in the polygonal case: pick
a direction E; at each tangent plane and compute the rotations r;;
from R;;E; to Ej. As in the scalar case, the mass matrix M is given
by the Voronoi areas associated with points. An example is shown
in Fig. 11, center left.

6.2.3 Voxelizations. Finally, for a voxelized or digital surface a
discrete Laplacian was recently developed by Caissard et al. [2017].
Here, values are associated with faces (i.e., quads) on the voxelization
boundary; the basic principle is the same as in the point cloud
case, but normals and areas are carefully estimated based on the
voxelization geometry. (If the voxelization arises from an Eulerian
signed distance function, these normals might also be used.) An
example is shown in Fig. 11, far right.
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Fig. 11. To implement our method on a given geometric data structure, we essentially just need a scalar Laplacian and a notion of tangent spaces at each
point or vertex. Here we show the solution for three sources of different magnitudes on a triangle mesh, point cloud, polygon mesh, and voxelization.

MoDEL TRIANGLES PRECOMPUTE SOLVE
Chair 11k 0.06 s 0.002 s
Bust 100k 0.73 s 0.031s
Children 100k 0.74 s 0.027 s
Seahorse 145k 1.25s 0.047 s
Snake 293k 2.74s 0.101 s
Rhino 310k 4.02s 0.105 s

Table 1. Timings for Figure 12, including intrinsic Delaunay preprocessing.

7 DISCUSSION AND VALIDATION

Here we study numerical properties of our method, and compare
with other candidate approaches. Importantly, the main task we
consider (parallel transport along shortest geodesics to a given set)
is not one previously considered in geometry processing, and hence
there are no standard algorithms. The closest analogy, perhaps, is
a recent numerical integrator for closed-form Riemannian metrics
rather than discrete meshes [Louis et al. 2018]. For surfaces of revo-
lution we use the exact solution (computed via Clairaut’s relation)
as a basis for comparison; for more complicated models we com-
pute exact polyhedral geodesics (a la Surazhsky et al. [2005]), and
apply parallel transport via unfolding, as described by Polthier and
Schmies [1998]. Note that even the polyhedral approach does not
yield the true (smooth) solution on coarse meshes or near the cut
locus; on fine meshes and away from the cut locus it nonetheless
provides a useful benchmark for comparison. Overall we find that
the vector heat method provides an excellent performance/quality
trade off, making it well-suited for practical geometry processing
tasks; application-specific comparisons are explored in Sec. 8.

7.1

Which properties of smooth parallel transport are preserved by our
discrete algorithm? For a single point source, one can easily argue
that we exactly preserve elementary properties such as linearity
(Py(aX +Y) = aPy X + P, Y), conservation of magnitude (|Py X| =
|X1]), and covariance with respect to rotation, i.e., rotating the initial

Basic Properties
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vector is equivalent to rotating the final solution by the same angle.
A more interesting property is symmetry: in the smooth setting,
Py, © Py, = 1id, i, transporting from x to y and back again
should yield the original vector. This property turns out to be true
in the discrete case as well: since the matrix IY € CIV*IVI encoding

the connection Laplacian is Hermitian, the solution operator
A= (M+t%)7!

is also Hermitian. Letting §; denote a Kronecker delta at the source
vertex i € V, we can write the parallel vector field corresponding to
the vector b := z§; (for z € C) as X = Ab. The transported vector at
any vertex j € V can be written as X; = (5jTX)5j; when we transport
this vector back to i, we therefore get

8] (AX;) = 8] ASj(8] X) = z(8] A8j)(8] AS:) = zAijAji.

Since A is Hermitian, A;; = Kﬁ, hence A;jAj; is real, ie., the initial
vector z experiences a scaling and no rotation. But since the overall
process preserves scale, the final vector is the same as the initial
one. Further properties of parallel transport (such as equivalence
between curvature and monodromy around closed loops) may not
hold exactly; likewise, these properties may not hold exactly in the
case of multiple sources or curves, since for t > 0 vectors pointing
in different directions may result in cancellation of magnitude. In
general, we expect that many properties will at least be preserved
under refinement—see Sec. 7.3 for further discussion.

7.2

We implemented our method in C++ using double precision; all tim-
ings were taken on a single thread of an Intel Core i7 3.5GHz CPU. To
solve linear systems we prefactored matrices via CHOLMOD [Chen
et al. 2008] or UMFPACK [Davis 2004] and applied backsubstitution
for each subsequent problem. For the basic algorithm (Algorithm 1)
we need to pre-factor two |V| X |V| Laplace matrices (one real, one
complex); for each new source set we need only three backsolves,
and trivial per-vertex multiplication/division operations. The (op-
tional) intrinsic Delaunay mesh can be constructed as a preprocess;

Implementation and Performance
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Fig. 12. Results of the vector heat method on a variety of models; source is marked by a large arrow. For visualization, vectors are sampled d la Bridson [2007].

in practice we find the cost is about the same as one matrix factor-
ization. On a mesh of 100k triangles, preprocessing takes about 1
second overall; computing parallel transport from any subsequent
source to all points on the surface then takes about 30ms. We did
not carefully optimize our code, though further accelerations are
relatively straightforward: for instance, since both matrices have the
same sparsity pattern one could re-use the symbolic factorization;
moreover, since there is no dependence among the linear systems,
backsubstitution could be applied in parallel. (See also discussion of
fast preconditioners in Sec. 2.) In contrast, computing exact polyhe-
dral geodesics and applying parallel transport via unfolding takes
about 40x longer on the same mesh (using Kirsanov’s implemen-
tation of [Surazhsky et al. 2005]). One could significantly improve
performance of the polyhedral strategy via any number of recent
acceleration schemes (such as [Ying et al. 2013]), or, at the cost of
accuracy, by extracting geodesics from a cheaper piecewise linear
distance function. However, even just tracing the geodesics from the
source point to each vertex (whether using the polyhedral scheme or
fast marching) already takes about 10-20x longer than executing our
entire method; in general, it would seem quite difficult to develop
a polyhedral strategy that is competitive with the diffusion-based
approach.

exact polyhedral
M vector heat method

on® 7
025 .05 .10 .20

Fig. 13. The vector heat method appears to converge linearly. Left: On
progressively finer meshes (ranging from 1250-11250 triangles), we transport
avector from a source x to several other points and measure the error relative
to the true solution on the smooth surface. Right: visualization of vectors
transported via the vector heat method; black is reference solution.

7.3 Convergence and Accuracy

The accuracy of any method for computing parallel transport will de-
pend on the resolution and quality of the surface tessellation. For the
vector heat method, we find that using an intrinsic Delaunay triangu-
lation improves quality, and hence apply this technique throughout
our examples. Exact polyhedral schemes also re-tessellate the in-
put by slicing it up into polygonal “windows” relative to the given
source. This point of view helps to explain the relative trade offs
of the two approaches: the vector heat method re-tessellates the
domain at most once (as an optional pre-process), whereas poly-
hedral schemes must re-tessellate for each new source point. The
vector heat method hence has far better amortized performance,
whereas window-based schemes can provide greater accuracy since
the domain is effectively meshed along characteristics of the equa-
tion being solved (i.e., along geodesics). Empirically, we observe a
convergence rate of roughly O(k) and O(h?) for the two methods,
resp., relative to the mean edge length h (Fig. 13). Fields computed
via these two methods mainly differ near the cut locus, where neither
approach can guarantee accurate results—in fact, it is well-known
that the exact polyhedral cut locus is a poor approximation of the
smooth one [Itoh and Sinclair 2004]. On the whole, accuracy and
rates of convergence are in line with the scalar heat method—for a
more in-depth analysis, see Crane et al. [2013b, Section 4.2].

// i l\,} @
\ 20°

. = \ﬁ\

polyhedral
. vector heat method — 0

o

Fig. 14. Our algorithm yields very similar results to the brute-force approach
of explicitly unfolding triangles along exact polyhedral geodesics. Away from
the cut locus, the difference is typically just a few degrees (left, right).
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Fig. 15. Our method enables fast velocity extension for level set methods. Here we show a sequence of frames from a simple curve-shortening flow, plus
a constant tangential term. In each frame, our scalar interpolation scheme provides a closest-point interpolation of normal velocity (top left), resulting in
excellent preservation of the signed distance function over long integration times (bottom left); note that we never apply explicit redistancing. Since Algorithm 1
provides accurate extrapolation of vector data over the entire domain (top right), we can track particles even very far from the interface (bottom right).

Choice of t. The accuracy of the vector heat method will be af-
fected by the choice of the parameter ¢. Here we observe the exact
same behavior as for the scalar heat method: if & is the average
spacing between nodes (e.g., the mean edge length in a triangle
mesh) then setting

t=h
for both scalar and vector heat flow tends to yield the best accuracy
(see Fig. 26 and [Crane et al. 2013b, Section 3.2.4]). We use this value
throughout all of our examples.

8 APPLICATIONS

Fast parallel transport along shortest paths provides a basic foun-
dation on top of which many algorithms can easily be built—here
we consider several important examples from geometry processing
and simulation. Implementation of these algorithms via the vec-
tor heat method is often much simpler than existing alternatives:
mainly just setting up and solving linear systems. In each case one
enjoys a common set of benefits, such as low amortized cost (due
to prefactorization) and the ability to generalize to many different
geometric data structures (point clouds, polygon meshes, etc.). To
keep discussion concrete, we will describe algorithms primarily in
terms of triangulated surfaces.

8.1 Velocity Extrapolation

Perhaps the most straightforward application of our method is
extrapolation of scalar or vector velocity in the context of free
boundary problems; beyond physical simulation, such methods are
increasingly used for tasks ranging from shape optimization to se-
mantic shape analysis. If a signed distance function needs to be
updated, one can simply extrapolate the scalar velocity in the nor-
mal direction, using the approach described in Sec. 4.1. To advect
auxiliary quantities (color, temperature, particles, etc.), one also
needs to extrapolate the tangential velocity, which can be done
using Algorithm 1. Fig. 15 illustrates several features of our extrap-
olation strategy: for instance, since we solve a global problem we
get a well-behaved velocity field far from the interface; in fact, the
closest point property ensures that a signed distance function will
be nearly preserved even over long integration times. Note that due
to the use of a finite value ¢, data directly on the interface may not
be exactly preserved, but will generally be very close. In the scalar
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case, the performance comparison with fast marching is identical to
the comparison found in [Crane et al. 2013b, Section 4.1]: the cost
of our method is dominated by two backsolves, whereas fast march-
ing executes a Dijkstra-like traversal. Note that one does not need
to refactor matrices for a changing boundary. In the vector case,
there is not a clear comparison: vector extrapolation is well-studied
for Euclidean domains (e.g., [Adalsteinsson and Sethian 1999]), but
these methods do not immediately generalize to curved surfaces
due to the added complexity of parallel transport (especially on data
structures like point clouds).

8.2 Logarithmic Map

At any point x of a closed surface M, the exponential map exp,. (rv)
yields the point y € M obtained by walking in the unit tangent
direction v and continuing along a geodesic for a distance r. The
logarithmic map log, is the inverse operation: given any point y
(away from the cut locus), it finds the smallest distance r and cor-
responding unit vector v such that exp, (rv) = y, in analogy with
the ordinary logarithm and exponential. If we encode v as an an-
gle ¢, then we essentially have polar coordinates (r, ¢) relative to
an origin x. As observed by Schmidt et al. [2006], the logarithmic
map (referred to there as the exponential map) is useful for a large
number of tasks in geometry processing, such as interactive shape
editing [Schmidt and Singh 2010] and texture decaling (Fig. 17). A

vector heat method

analytical solution

Fig. 16. Left: the logarithmic map provides a coordinate system on the sur-
face, relative to a chosen origin x. Right: on the sphere we easily compute
the correct log map; note that far from the source even the analytical log
map can be highly skewed.



global logarithmic map also helps translate algorithms from Eu-
clidean space to curved domains—for instance, in Sec. 8.3 the log
map enables us to easily compute generalized centers of mass, by
identifying points on the surface with vectors in the tangent plane.

How can we compute the log map on a sur-
face? For polar coordinates (r, ¢) in the Eu-
clidean plane, ¢ can be expressed as the angle
between a horizontal direction H and a radial
vector field R emanating from the origin. Like-
wise, on a curved surface the radial vector field
R is given by the gradient of the geodesic dis-
tance to a source point x, and the “horizontal”
vector field H is obtained by transporting any
unit vector at x to every other point. The angu-
lar coordinate of the log map is then the angle
from H to R; the radial component is just the
geodesic distance. We compute the horizontal
field by applying Algorithm 1 as usual, where
the choice of initial vector determines the zero
direction (¢ = 0). Obtaining the radial field R is
more challenging: if we simply take derivatives
of a per-vertex distance function, we get numer-
ical noise (Fig. 18, left). Explicitly smoothing
this field is not an attractive option, since it will distort features like
the cut locus, and generally degrade the accuracy of subsequent
computations (e.g., when computing Karcher means).

Instead, we can apply our parallel transport algorithm (Algo-
rithm 1) to a small circle of outward pointing normals around the
source vertex i. Here, care must be taken in formulating the initial
conditions R? for the vector diffusion step: simply setting RO to the
outward pointing direction —ej;/|ej;| at each neighbor j can lead to
anisotropy in the resulting map (Fig. 18, middle). We instead derive
initial conditions by carefully projecting unit normals on a circle
of radius ¢ around the source vertex onto piecewise linear basis
functions (as discussed in App. A). This approach yields a log map
which is both accurate and smooth (Fig. 18, right). Note that since
both H and R are unit vector fields we do not need to interpolate
magnitudes. The radial coordinate r (corresponding to the geodesic
distance) can be computed using any method; we simply integrate
R by solving the Poisson equation Ar = V - R, requiring only one
additional prefactorization and backsubstitution. In particular, to
evaluate the right hand side of this equation, we first map vectors
R; at vertices to integrated values R;; € R per edge, by averaging
the inner product with the edge vector:

Rij = 5 ((eij, Xi) + (=¢ji, X))

(see Knoppel et al. [2015, Section 3.2] for further discussion). Keeping
in mind that R;; = —Rj;, the total divergence V - R for vertex i can
then be expressed as

(V-R)i = Z wijRij,
ijeE

where w;; are the cotan weights from Sec. 5.3. The final log map
is encoded via Cartesian coordinates (u, v) := r;(cos ¢;, sin ¢;) at
each vertex i € V.
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Fig. 17. A noise-free log map allows us to place delicious decals (left) or
tantalizing tattoos (right) on a surface without having to worry about difficult
issues like where to place cuts.

Previous approaches aim to compute a log map only in a neigh-
borhood around the source using extrinsic approximations [Schmidt
et al. 2006; Brun 2007; Melveer and Reimers 2012], making them in-
accurate over longer distances, and precluding isometry invariance.
For instance, Zhang et al. [2006] simply project the closest 25% of
vertices onto the local tangent plane which can fail badly for highly
curved surfaces; Dijkstra-like algorithms can also deviate wildly on
highly curved domains (see Fig. 20 for comparisons). As a result,
such approximations cannot reliably be used for algorithms that
require global information, such as computation of Karcher means
(Sec. 8.3) or intrinsic landmarks (Sec. 8.5). Our method nicely re-
solves the map over the whole surface, all the way up to the cut locus
(Fig. 19). It is also quite competitive in terms of performance since
it simply needs to execute highly optimized backsubstitution opera-
tions, rather than a Dijkstra-like traversal (see discussion in Sec. 2).
When a parameterization is desired only in a small region (e.g., when
computing centroidal Voronoi diagrams), further speedups might
be achieved by applying the localized Cholesky strategy of Herholz
et al. [2017a], which fits perfectly into our framework. Fig. 17 shows
some simple examples where our log map is used to add texture
decals to a surface. Note that in the smooth setting the log map
is only well-defined for closed surfaces—nonetheless, our method
still works nicely on surfaces with boundary, especially within the
image of the exponential map.

Fig. 18. To get a high-quality log map (here, from a source point x) one must
carefully discretize the distance gradient. Left: simply taking the gradient
of a given distance function yields numerical noise. Middle: naive parallel
transport of vectors emanating from the source yields global anisotropy.
Right: proper discretization of initial conditions yields a smooth and accurate
map, where the only remaining noise is near the cut locus (dashed line).
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ALGORITHM 2: Logarithmic Map
Input: A point x € M and zero direction Hy € Ty M.
Output: A function (u, v) : M — R2.
I. Transport Hj to all other points to get H, via Algorithm 1.
II. Compute R using Algorithm 1, with initial conditions from App. A.
III. Compute the angle ¢ from H to R at each point.
IV. Solve the Poisson equation Ar =V - R.
V. Evaluate (u, v) := r(cos ¢, sin ¢) at each point.

@r
53'40:0

f
%

Fig. 19. Our log map is globally accurate—even on long skinny models where
most points are reached by traveling in nearly identical directions (far right).
On a high-resolution mesh we nicely resolve the cut locus (dashed line).

[Schmidt et al. 2006] [Schmidt et al. 2013]

vector heat method

[Zhang et al 2006]

Fig. 20. Since the vector heat method is based on a straightforward dis-
cretization of a smooth formulation, it leads to a close approximation of
the true log map. Previous approximations exhibit not only small local er-
rors, but large global inaccuracies—especially in the angular coordinate ¢.
(Reference solution is computed via the exact polyhedral scheme.)
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Point cloud log map. As an example
of how the diffusion-based approach
easily extends to other geometric data
structures, we implemented the log
map directly on unstructured point
clouds. Here, computation of the hori-
zontal vector field H is straightforward:
just apply Algorithm 1 to a unit vector
at the source point x; the radial field
R can be computed using the same ini-
tial conditions described by Lin et al.
[2014]: transport the vector from x to
the tangent space at each neighbor y
(via an extrinsic rotation) and project
onto the tangent space. The angular
component is then given by the angle
from H to R; the radial component is
obtained by solving the Poisson equa-
tion Ar = V - R exactly as described in Crane et al. [2013b, Section
3.2.3]. Two examples on scanned data are shown in the inset.

Lics

8.3 Karcher Means and Geometric Medians

Given a set of points y1, . ..,yn € M, any minimizer of the energy

1

E(x) = o

d(x,yi)? (11)

n
i=1
provides a notion of center.
For p = 2, such minimizers
are called Karcher means; in
Euclidean space, just the cen-
troid or arithmetic mean. (If the
Karcher mean is unique, it is
known as the Fréchet mean.) For
p = 1, minimizers are known as
geometric medians, and tend to
be more robust to outliers.

Though algorithms have been
developed for finding Karcher
means on special geometries

Fig. 22. At any point x € M, the gra-
dient v of the Karcher mean energy
is just the sum of the logarithms of

[Buss and Fillmore 2001] or all the points ;.

other notions of weighted averages on surfaces [Panozzo et al. 2013],
to date there has been no practical algorithm for accurately com-
puting Karcher means on general surfaces. Likewise, the geometric
median has been considered in the space of images [Fletcher et al.
2009], but no efficient algorithms are known on discrete geometric

ALGORITHM 3: Karcher Mean
Input: A collection of points y, . .
Output: A point m € M.

., Yn €M.

L Pick a random initial guess m® € M.
II. Until the vector v has sufficiently small norm:
(a) Compute the log map at m* via Algorithm 2.
(b) Evaluate the update vector v = % Yilog, i (yi)-

k+1

(c) Compute m = exp,,k (tv), ie, walk forward along v for time 7.
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v

Fig. 21. Our globally accurate logarithmic map can be used to compute centers of data on a curved surface. Left: given a collection of points, we iteratively
compute the Karcher mean; on simple geometries we reproduce the expected solution in just 2-3 iterations, and the algorithm generalizes to more complex
geometries while still needing < 20 iterations. Right: We can also efficiently compute the centers of distributions; here we show both the Karcher mean
(purple) and the geometric median (green). The Karcher mean is significantly influenced by outliers, while the geometric median is not.

domains (meshes, point clouds, etc.). Our algorithm for computing
the log map (Sec. 8.2) enables a straightforward and efficient strat-
egy for minimizing the energy E. In the case of the Karcher mean
(p = 2), we just iteratively evaluate the update vector

1 n
ve Z log,,x (i), mk+l exp,,k (tv), (12)
i=1

where 7 > 0 is a step size. (For instance, if the domain is RN this
algorithm immediately converges to the centroid for 7 = 1.) For the
geometric median (p = 1) we simply need to replace the expression
for v with a convex combination }}; w;log,,x (yi)/ 2.; wi, where the
coefficients w; = 1/d(m¥,y;) can also be computed from the log
map—this strategy is known as the Weiszfeld algorithm [Weiszfeld
1937]. The log map is computed once per iteration, via the algorithm
described in Sec. 8.2. To evaluate the exponential map, we simply
trace a geodesic at m¥ along the surface in the direction v for time 7
(a la Polthier and Schmies [1998], in the case of triangle meshes). In
practice this scheme tends to converge in no more than 20 iterations
(and far fewer on simple models); in all our examples, the initial
guess m® € M is chosen completely at random. The cost of each
iteration is dominated by the backsolves to compute the log map.
Line search can slightly reduce the number of steps, at the cost
of additional solves; for most examples we use 7 = 1 and no line
search.

In fact, since we know the log map over the entire surface, the
number of points p; has a negligible effect on the cost of computation
(just taking a weighted sum). We can therefore apply the same
method directly to arbitrary distributions p : M — R (as depicted
in Fig. 21, right); in this case, we can define a center

m(p) = arg min fA ) p(y)d(x, y)? dy. (13)

The only change to the algorithm is that we now take a weighted
average over all vertices, using weights M;;p;, where p; € R5¢ is
the density at each vertex, and M is the mass matrix.

The globally accurate approximation of the log map provided
by the vector heat method allows us to reliably obtain the correct
result (Fig. 23, far right). Although previous methods for locally
approximating the log map can also be used to implement this
algorithm [Zhang et al. 2006; Schmidt et al. 2006; Schmidt 2013], they
are not accurate enough globally to produce the desired behavior:

iterates either wander around randomly and fail to converge, or
converge only because line search eventually steers an inaccurate
guess toward a local minimum (Fig. 23). The method of Panozzo
et al. [2013] takes a different, non-iterative approach to computing
averages on surfaces, but does not produce the true Karcher mean,
and may not even respect basic symmetries (Fig. 23, center right).
Likewise, simply using a smooth, somewhat parallel vector field
to construct the log map also does not work, as shown in Fig. 3,
right. To date, the vector heat method appears to be the only way
to compute Karcher means on surfaces.

8.4 Geodesic Centroidal Voronoi Diagrams

A Voronoi diagram partitions
a domain M into regions U; C
M comprised of those points
closest to a given collection
of sites s; € M. In a cen-
troidal Voronoi diagram, each
site is located at the centroid
of its associated region. Our
fast Karcher mean algorithm
(Sec. 8.3) provides an effec-
tive way to compute geodesic
centroidal Voronoi tessellations
(GCVT)’ where the centroid is Fig. 24. Fast Karcher means allow
defined as the cell’s Karcher s, compute centroidal geodesic
mean. Our method provides, Voronoi tessellations with large, pos-
to our knowledge, the first ef- sibly multiply-connected cells.

ficient approach for computing the true GCVT: using the Euclidean
centroid (d la CCVT [Du et al. 2003]) does not work well for large,
curved cells; likewise, a diffusion-based centroid (a la Herholz et al.
[2017b]) can yield a diagram very different from the GCVT, espe-
cially when the Karcher mean is outside the cell.

To compute a GCVT, we simply apply Lloyd’s algorithm, updating
cell centers via the Karcher mean. More specifically, we consider
a distribution associated with each cell, defined via the scalar heat
kernel k; as

o kt(si")
pi= Zj k:(sj, ) 9
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Fig. 23. Here we compute the Karcher mean of the four green points, which should appear at the center of the sternum. Previous local approximations of the
log map yield poor behavior, with iterates failing to converge (far left, center left) or wandering around randomly until line search pushes the solution toward a
local minimum (center). Other algorithms compute only approximate averages, which may not respect symmetries of the problem (center right). The global
accuracy of the log map provided by the heat method guides the algorithm to the correct solution in just a few iterations (far right).

for a small time ¢. This distribution is an indicator function for each
cell U;; k; is computed as usual (by solving a discrete heat equation).
We then apply Algorithm 3 to move each site s; to the center of the
distribution p;, and repeat until convergence. In practice, we find
it is more efficient overall to take just a single step of the Karcher
algorithm, even though it results in more Lloyd iterations. We do
not have to worry about topological issues like features separated by
small extrinsic distances, and can handle multiply connected cells
since we need only integrate the log map over each region U;. Faster
convergence might be achieved by replacing Lloyd’s algorithm with
a more sophisticated optimization strategy—Liu et al. [2016, Section
2] provides a nice discussion in the context of GCVT.

8.5 Ordered Intrinsic Landmarks
An ongoing challenge in ge- 5
ometry processing is find-
ing landmark points that 5
provide correspondence be-
tween (near-)isometric sur-

a
faces. A significant diffi- ’
culty is not only finding ge- 4
ometrically salient points, - 6 .

but also finding a consistent
ordering for those points,
i.e., which landmark on the ¢ ® 2 ® 7
first surface corresponds to
which landmark on the sec-
ond surface? Trying to de- [ @
termine this ordering a pos-
teriori leads to hard combi- Fig. 25. Our robust geometric median fa-
natorial matching problems; cilitates computation of consistently or-
algorithms for efficiently dered landmarks, helping to avoid diffi-

) . cult matching problems. (Models recon-
computing such matchings .

R ) structed from scans in Bogo et al. [2014].)

are only just starting to be

understood [Kezurer et al. 2015]. The ability to reliably compute geo-
metric centers provides new opportunities for generating landmarks
that are consistently ordered a priori. We explore a simple strategy

& [
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where we first compute the geometric medians of the surface itself;
in other words, we apply the algorithm described in Sec. 8.3, setting
p = 1 and using a uniform density p = 1 over the whole surface.
We then progressively add points via furthest point sampling, i.e.,
picking the point with greatest geodesic distance from our current
set. Since in general there may be more than one geometric median
(e.g., on surfaces with symmetries) we sample a large set of initial
guesses, and compute the furthest points relative to this set (dis-
carding the medians themselves, since we cannot easily distinguish
their order). Using the geometric median rather than the Karcher
mean significantly reduces variability caused by values near the cut
locus, which are effectively treated as outliers. As is common in
shape correspondence problems, we can add a weak extrinsic factor
(e.g., the x-coordinate) to the density p in order to break symmetry.
Though we have so far considered only the most basic implementa-
tion, results are already promising (Fig. 25); further refinement of
such techniques would make for interesting future work.

9 LIMITATIONS

Potential challenges in applying our method stem mainly from two
sources, namely (i) scalability of linear solvers, and (ii) numerical
accuracy. Since we solve standard Poisson-like systems, the scalabil-
ity issue is no different than for many other problems in scientific
computing—for instance, if meshes become too big to factor, one
can switch to more scalable solvers (of the kind discussed in Sec. 2).
In practice, however, we find that modern direct solvers [Chen et al.
2008] provide an excellent solution up to millions of elements. In
terms of accuracy, poor mesh quality can lead to problems such as
indefinite matrices and spurious flipped vectors (Fig. 10). Using an
intrinsic Delaunay triangulation helps significantly, though (as with
any finite element method) meshes with too few elements or poorly
distributed vertices can of course yield low-quality results. The use
of low-order elements limits us to linear convergence; as with the
scalar heat method, spline and subdivision bases might yield higher
order accuracy [de Goes et al. 2016; Nguyen et al. 2016]. As discussed
in Sec. 7.1 some basic properties of smooth parallel transport are
not exactly preserved. Finally, the applications explored in Sec. 8



leave many open questions, such as preserving data along level
sets, generalizing the definition of the log map for domains with
boundary, and improving the robustness of landmark identification.

10 CONCLUSION

Vector fields arising from parallel transport along shortest geodesics
enable the implementation of many fundamental algorithms in
geometry processing, yet surprisingly have received little prior at-
tention. We have presented a first method for efficiently and reliably
computing such fields, though many questions remain. For instance:
how to properly formulate boundary conditions, how to improve
accuracy (e.g., using more sophisticated finite element discretiza-
tions [Arnold and Li 2017]), how to improve practical efficiency
(e.g., via parallelism and local computation), and what additional
properties might be guaranteed (expanding on Sec. 7.1). Another
interesting question is whether the method can be augmented to
compute transport along non-geodesic curves, or along a given vec-
tor field (a la [Azencot et al. 2015]). Overall, given that the starting
point (vector diffusion via the connection Laplacian) is quite unlike
many traditional methods from computational geometry, we expect
our method will inspire new ways of looking at old problems and
lead to very different computational trade offs. We are hopeful that
the ease of implementation (just building and solving Laplace-like
systems) will facilitate rapid adoption in real applications.
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A DISTANCE GRADIENT DISCRETIZATION

For the log map (Sec. 8.2), we need a discretization of the radial vec-
tor field R, which in the smooth setting is the gradient of the distance
function at x, i.e., Rly = Vd(x,y). Away from the cut locus, R is a
unit vector field tangent to the shortest geodesics emanating from
x. To get an accurate discretization, we can therefore transport unit
vectors in a small neighborhood around x to every other point—but
must be careful about initial conditions. Simply sampling initial con-
ditions onto vertices will not yield well-behaved solutions (Fig. 18,
center); the dangers of intermingling sampling and finite-elements
are well-known. We instead take a finite element approach, leading
to reliable and accurate initial conditions (Fig. 18, right). We work
in a flat Euclidean domain where we can use a single coordinate
system for all tangent spaces; the resulting expressions also yield
accurate results on curved domains due to the normalization by
angle sums ©; (Sec. 5.2), which effectively “flattens out” each vertex
tangent space.

Consider a small circle C, of radius ¢ > 0 centered around a
source vertex i € V, and let n denote its outward unit normal field.
For a point in the plane—or at the tip of a cone, as depicted in
Sec. 5.1—the normals n are exactly the gradient of geodesic distance
along C,. Just as one might treat a point source as a measure of
unit mass supported on a point (i.e., a Dirac delta), we consider a
measure of unit mass supported on C,, namely

= _741
He =

where ‘Hl is the Hausdorff measure on the circle. Our initial con-
ditions are then given by the vector-valued measure X, := ny,.
Now let F := span{y,, : v € V} denote the finite element space
of piecewise linear hat functions /,, at vertices v. To discretize a
solution to the PDE (id + AY)Y = X, in the space F, we solve

M+ A)y =x,
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where M;; is the mass matrix and A is the stiffness matrix discretiz-
ing the connection Laplacian—in our case we use the matrices de-
fined in Sec. 5.3. We therefore just need to discretize the right-hand
side, which is achieved by integrating each of the basis functions i;
with respect to the measure X, i.e., by evaluating the integrals

Xg 1= fl//v dX,

over the whole domain. Since X is sup-

ported only on triangles containing the

source vertex i, and since each basis func-

tion 1, is supported only on the triangles

containing v, we need only evaluate this

expression for immediate neighbors of i.
For each neighbor j, we work in a polar

coordinate system (r, §) with i at the ori-

gin and edge ij along the horizontal axis

(see inset). We treat points and vectors as

complex numbers, using e to denote Eu-

ler’s number and 1 to denote the imaginary i e

unit (which applies a 90-degree counter-

clockwise rotation); we use (-, ) to denote

the usual (real) inner product of vectors.

For brev1ty we will also let « := 9] 'k and 1

B =0, 1/ Tn this coordinate system we

can express the unit normal as n(6) := (cos 8, sin0) = e'? At any

point x in triangle ijk, the piecewise linear hat function ¢; can be

expressed as

~.

1 1
¥j(x) = E(& —teji/Cik) = m@ —1ejk)

where e;; is the edge vector from i to k, {;; := |e;i| is its length,
hj?i is the height of the triangle with apex j and base ki, and A; jx
is its area. In other words, to get a linear function with value 1 at j
and value 0 at i and k, we take the dot product with the unit vector
orthogonal to e;, and divide by height. Integrating this function
over the triangle ijk with respect to the measure X, then yields

L VX iz f Yi(ec®)n(9) edf

f <ez€ 1(a— 7r/2)>e19 de,
ZAle

where we have used the relationship e;; = {;pe'®. Integrating this
expression and repeating a nearly identical calculation for triangle
jil we find that the overall integral of i/; is given by

lig (asina,sina — a cos a) /(44;k) +

Cir (Bsin B, fcos f —sin ) /(4A;i1)

To get the final entry for the right-hand side at vertex j, we rotate
this value back into the tangent coordinate system of j:

Xj =

(15)

Xj = —e""ﬁf(j. (16)

Since Equations 15 and 16 involve only lengths, angles, and areas,
they can easily be evaluated on any triangle mesh. Note that the
angles ¢;; are exactly the same as those given in Eqn. 9.



Importantly, the initial value x; at the source vertex i should not
necessarily be zero: this value does not represent the pointwise
value of the initial data, but is rather just one of several nodes that
determines the best piecewise linear approximation. The calculation
of this value is similar to the neighboring values except that we now
take a sum over all triangles ijk containing vertex i. For each such
triangle we will again construct a coordinate system with i at the
origin and ij along the horizontal axis. In this coordinate frame, the
outward unit vector orthogonal to edge kj can be expressed as

v = 1(lije’ - Lipe'®) [y,
where a := 6‘: k. Within triangle ijk, the basis function ¢; is then
Yi(x) = 1- (x,0)/h)E,

and the integral over the triangle is

o
f YidXe == [ v (ee®) n(0) edt
ijk e Jo

“ 10 1 T 0
f eV df - —— f €, 1(lij — Lige'®))e'” do.
0 245k Jo

We can ignore the first term since over the whole circle it integrates
to zero; the remaining term integrates to

%= 1 —sina(fjpa + £;j sina)
B 4A;jk tij(cosasina — a) + £ (a cos a — sin a)

(17)
The initial value at the source is then given by the sum of these
values, rotated back to the original coordinate system:

Xj = Z elg"ij)?i,j.
ijkeF

Again, these initial conditions can be easily computed on any tri-
angle mesh. Notice that the initial conditions do not depend on
the choice of radius ¢. To obtain the radial field R we now run Al-
gorithm 1 with initial conditions x, but can simply normalize the
resulting vectors rather than solving for magnitudes. At the source
vertex i we set R; to zero.
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Fig. 26. To determine a good choice for the parameter ¢, we measured the
error of the vector heat method for varying values of t = mh?, where h
is the mean edge length. Each curve represents a mesh from the data set
of Myles et al. [2014]. For each value of m, the error is the mean error
relative to the exact polyhedral solution over the whole surface. Each curve
is independently normalized by the error at its optimal m value, indicated
by a black dot. Overall, we find that ¢ = h? (i.e, m = 1) is a reasonable
choice across a wide variety of examples.

vector heat method

(reference)

[Zhang et al 2006]

Fig. 27. Other local approximations of parallel transport, such as the method
of Zhang et al [2006], do not provide a good global approximation over the
larger domain. Here the field produced by the vector heat method closely
matches the reference (exact polyhedral surface) allowing us to compute a
globally accurate log map; the local approximation of Zhang et al deviates
significantly away from the source.
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