
Navigating Intrinsic Triangulations

NICHOLAS SHARP, Carnegie Mellon University
YOUSUF SOLIMAN, Caltech
KEENAN CRANE, Carnegie Mellon University

Fig. 1. Our data structure makes it possible to treat a crude input mesh (left) as a high-quality intrinsic triangulation (right) while exactly preserving the
original geometry. Existing algorithms can be run directly on the new triangulation as though it is an ordinary triangle mesh. Here, a mesh with tiny input
angles becomes a geometrically identical Delaunay triangulation with angles no smaller than 30

◦—a feat impossible for traditional, extrinsic remeshing.

We present a data structure that makes it easy to run a large class of algo-

rithms from computational geometry and scientific computing on extremely

poor-quality surface meshes. Rather than changing the geometry, as in

traditional remeshing, we consider intrinsic triangulations which connect

vertices by straight paths along the exact geometry of the input mesh. Our

key insight is that such a triangulation can be encoded implicitly by storing

the direction and distance to neighboring vertices. The resulting signpost
data structure then allows geometric and topological queries to be made

on-demand by tracing paths across the surface. Existing algorithms can be

easily translated into the intrinsic setting, since this data structure supports

the same basic operations as an ordinary triangle mesh (vertex insertions,

edge splits, etc.). The output of intrinsic algorithms can then be stored on an

ordinary mesh for subsequent use; unlike previous data structures, we use a

constant amount of memory and do not need to explicitly construct an over-
lay mesh unless it is specifically requested. Working in the intrinsic setting

incurs little computational overhead, yet we can run algorithms on extremely

degenerate inputs, including all manifold meshes from the Thingi10k data

set. To evaluate our data structure we implement several fundamental geo-

metric algorithms including intrinsic versions of Delaunay refinement and

optimal Delaunay triangulation, approximation of Steiner trees, adaptive

mesh refinement for PDEs, and computation of Poisson equations, geodesic

distance, and flip-free tangent vector fields.

Authors’ addresses: Nicholas Sharp, Carnegie Mellon University, 5000 Forbes Ave, Pitts-

burgh, PA, 15213; Yousuf Soliman, Caltech; Keenan Crane, Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2019/7-ART55 $15.00

https://doi.org/10.1145/3306346.3322979

CCS Concepts: • Mathematics of computing →Mesh generation.

Additional KeyWords and Phrases: remeshing, discrete differential geometry

ACM Reference Format:
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. Navigating Intrin-

sic Triangulations. ACM Trans. Graph. 38, 4, Article 55 (July 2019), 16 pages.

https://doi.org/10.1145/3306346.3322979

1 INTRODUCTION
The geometry of a polyhedron has little to do with

the way it is triangulated. For instance, flipping a

diagonal of a triangulated cube does not change its

shape; in general, any two neighboring faces of a tri-

angulation can be laid out flat and connected along

the opposite diagonal (see inset). Although the new

edge looks bent when drawn on the surface, each tri-

angle is still described by three ordinary edge lengths. Such intrinsic
triangulations effectively provide “scaffolding” on top of a fixed geo-

metric space: no information about shape is lost by changing the

way vertices are connected. However, the choice of triangulation

can have significant impact on the behavior of algorithms.

Intrinsic triangulations of geometric spaces have a long history in

mathematics, but have seen limited use in practical algorithms: ex-

isting data structures support only simple edge flips, precluding their
use for general geometry processing. Yet a full-blown intrinsic data

structure is quite powerful, since it decouples the triangulation used

to describe the domain from the one used to implement algorithms

on that domain. Hence, rather than trying to make algorithms more

robust one at a time, we can immediately run a large class of existing
algorithms on low-quality inputs, with little to no modification.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:2 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

#10
#4

Fig. 2. Our signpost data structure stores the direction and distance to each
neighbor, making triangulations easy to update and to query on-demand.

The basic idea of our signpost data structure is to implicitly en-

code an intrinsic triangulation by storing the direction and distance

from each vertex to its neighbors. Edges can then be traced out

on-demand by simply walking along the surface. However, all of

this machinery is easily abstracted away: since we support the same

standard queries as an ordinary mesh, the fact that an intrinsic trian-

gulation is being used “under the hood” can largely be hidden from a

developer of geometric software. This situation is reminiscent of the

usage pattern in, say, numerical linear algebra: although libraries

may perform sophisticated matrix transformations to improve accu-

racy or stability, a developer need not think about (or even know

about) these transformations in order to express high-level algo-

rithms. Likewise, we seek to abstract away the particular choice of

surface tessellation for geometry processing applications.

input

intrinsic

Fig. 3. Linear basis func-
tions on an input vs. in-
trinsic triangulation.

Two major categories of algorithms nat-

urally fit into the intrinsic framework. First,

it enables one to apply standard techniques

from Euclidean computational geometry to

the polyhedral setting without simultane-

ously having to worry about geometric ap-

proximation: the polyhedron can be viewed

as an unchanging “background” domain,

just like the Euclidean plane. Second, for

finite element methods it allows one to de-

couple the mesh used to specify the domain

from the mesh used to define basis functions, providing the best of

both worlds: a concise description of the geometry, together with a

small number of high-quality elements (Figure 3).

Our main contribution is a new general-purpose data structure

for intrinsic triangulations that enables fundamental geometric al-

gorithms to be implemented in the intrinsic setting for the very

first time (Section 3). Most notably, intrinsic Delaunay refinement
(Section 4.2) provides a way to obtain a high-quality intrinsic tri-

angulation for any input domain (i.e., not merely Delaunay, but

also good angles, areas, etc.). These tools appear to be the “missing

ingredients” that allow intrinsic triangulations to be applied to a

much broader range of real-world geometry processing problems.

1.1 Related Work
Geometry Processing in theWild. There has been significant recent

work on robust geometric algorithms for low-quality, real-world

inputs. Much of this work depends on a volumetric interpretation
of geometry [Zhou et al. 2016; Hu et al. 2018; Sellán et al. 2019],

using functions defined over the ambient three-dimensional space to

achieve robustness [Jacobson et al. 2013; Barill et al. 2018]. Likewise,

robust surface triangulation methods from computational geometry

are largely based around tetrahedralization of a three-dimensional

domain [Boissonnat and Oudot 2005; Cheng et al. 2012]. To our

knowledge, ours is the first general approach to manifold surface
processing “in the wild,” which neither changes the input geometry

nor constructs an auxiliary volumetric data structure.

intrinsic
�ip

extrinsic
�ip

Data Structures. Few data struc-

tures are available for intrinsic tri-

angulations. Geodesic data structures

from computational geometry focus

on planar regions [Goodrich and

Tamassia 1997], making them un-

suitable for 3D geometry processing;

other work analyzes sampling criteria,

but does not consider practical data structures [Boissonnat et al.

2013]. Work on the discrete Laplace-Beltrami operator of an intrinsic
Delaunay triangulation [Bobenko and Springborn 2005] inspired

development of the first (and to date, only) practical data structure

for intrinsic triangulations, the incremental overlay of Fisher et al.

[2007] which maintains an explicit list of edge crossings. We pro-

vide a detailed comparison in Section 6.3, but most importantly

this incremental overlay is designed to support edge flips and little

else—how to implement other operations is not clear, apart from a

tracing strategy as developed in this work. Several other algorithms

construct intrinsic Delaunay triangulations by tracing geodesics

from an intrinsic Voronoi diagram [Xin et al. 2011, 2012; Liu et al.

2017], but do not discuss data structures for subsequent processing.

Importantly, although we explore triangulation algorithms in Sec-

tion 4, we emphasize that our data structure is not specifically aimed
at Delaunay triangulations; rather, it provides a general framework

for any kind of intrinsic geometry processing (Section 5).

Further discussion of related work in the context of specific ap-

plications can be found throughout Sections 4 and 5.

Fig. 4. An intrinsic edge can cross an extrinsic edge many times, as seen
with this increasingly “twisted” cube. Rather than track these crossings
explicitly, we introduce an implicit encoding that has constant size.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Navigating Intrinsic Triangulations • 55:3

Fig. 5. Unlike an ordinary triangle mesh (top), an intrinsic triangulation
(bottom) can include edges that take any straight path between vertices.
However, each region bounded by three edges can still be unfolded into a
single planar triangle.

2 BACKGROUND
The intrinsic perspective on geometry means that surfaces are de-

scribed without reference to the way they sit in space, using only

measurements along the surface (lengths, areas, etc.). Although our

initial triangulation typically comes from a standard triangle mesh,

we do not require that subsequent triangulations be realizable as

collections of planar triangles in R3—only that each individual face

can be drawn as a triangle in the Euclidean plane (Figure 5). We

will assume throughout that the underlying domain has manifold

connectivity, and that any n-gons have been triangulated (though in

principle one could construct a similar representation with intrinsic

polygonal faces). We first give an account of intrinsic triangulations

in isolation; Section 3 describes a practical data structure that can

be used to encode an intrinsic triangulation of a given mesh.

2.1 Connectivity
The connectivity of an intrinsic triangulation is given by an abstract

triangulation M = (V, E, F) of a polyhedral surface. We denote

vertices of M by indices i ∈ V, edges by pairs ij ∈ E, and faces

by triples ijk ∈ F; each edge is associated with two oppositely

Fig. 6. To provide maximum flexibility, we permit intrinsic triangulations
that are not simplicial, allowing for instance triangles with repeated vertices
(left) or self edges (right).

oriented halfedges ij, ji ∈ H. When indices appear on both sides

of an equation, all sums and products are restricted to elements

containing those indices. For instance, the expression ai :=
∑
i j bi j

indicates that the value of a at vertex i is equal to the sum of b over

all edges ij containing vertex i .
In general,M need not be simplicial: we allow irregular triangula-

tions where (for instance) two edges of a triangle are glued together,
or all three vertices coincide, as depicted in Figure 6. Formally,M is a

∆-complex, as defined by Hatcher [2002, Section 2.1]. This more gen-

eral construction can represent important objects such as intrinsic
Delaunay triangulations, yet leads to no additional implementation

complexity beyond using an appropriate mesh data structure (see

Section 3.1). In practice, irregular vertices almost never occur, except

for a small number of extreme examples (e.g., in the Thingi10k data

set). Moreover, every ∆-complex can be subdivided into a standard

simplicial complex [Lundell and Weingram 1969, Theorem 6.1].

Extrinsic vs. Intrinsic Triangulation. Even
though the input mesh is not strictly re-

quired to be embedded in Rn , for clarity we
refer to the initial triangulation as the ex-
trinsic triangulation and any subsequent

re-triangulation as the intrinsic triangu-
lation. We use a bar to denote extrinsic ver-

tices (x̄ , ȳ, z̄, etc.) and ordinary letters for

intrinsic vertices (i, j,k , etc.); note however that intrinsic and extrin-
sic vertices will often coincide. In figures, we will often use the inset

styling to distinguish between intrinsic and extrinsic elements.

2.2 Discrete Metric
The geometry of an intrinsic triangulation is completely determined

by a discrete metric, i.e., a collection of edge lengths ℓ : E → R>0
satisfying the triangle inequality ℓi j + ℓjk > ℓki in each face ijk ∈ F .
Other geometric quantities, like the interior angle θ

jk
i at corner i of

triangle ijk ∈ F , can be determined purely from the edge lengths, as

discussed in Section 3.1.1. If a triangulation has vertex coordinates

f : V → Rn , then initial edge lengths can of course be obtained

from the Euclidean distance ℓi j = | fj − fi |. Importantly, however,

subsequent intrinsic edge lengths will not generally agree with the

Euclidean distance—see Figure 9.

2.3 Tangent Spaces

Fig. 7. Intrinsically, the neighborhood of a
vertex i looks like a circular cone. The di-
rection of any outgoing edge ik can be ex-
pressed via an angle φik around this cone.

Tangent vectors on a poly-

hedral surface can be en-

coded in local polar co-

ordinates (r ,φ) ∈ R ×
[0, 2π) relative to an arbi-

trary (but fixed) reference

direction e at each vertex,

edge, or face, which cor-

responds to the direction

φ = 0 (Figure 8). At edges

we simply let ei j be the

direction along the edge;

likewise, at faces we let

ei jk be parallel to one of

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:4 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

Fig. 8. A tangent vector X at a point p is encoded by an angle φ relative to
some fixed reference direction e at each vertex i , edge i j , or face i jk .

the three edges. At vertices, we take advantage of the fact that—

intrinsically—the local neighborhood looks like a circular cone (Fig-

ure 7). Following Knöppel et al. [2015, Section 3.1], we therefore

let ei be the direction from i to some canonical neighbor j0, and
interpret the angle φ as the arc length along the base of the cone.

More precisely, let

Θi :=
∑
i jk θ

jk
i (1)

be the total angle around vertex i , and define augmented angles

˜θ
jk
i := 2πθ

jk
i /Θi

which (by construction) sum to 2π . All tangent directions at this
vertex are then expressed with respect to normalized angles. In

particular, if ij0, ij1, . . . , ijN denote the outgoing edges in counter-

clockwise order, then the directions φi ja of these edges are given

by the cumulative sums

φi ja :=
∑a−1
n=0

˜θ
jn, jn+1
i , (2)

where the index n+1 is taken modulo N . Note that these coordinate

systems remain fixed even if we modify the intrinsic triangulation

(e.g., by flipping the reference edge ij0).

3 DATA STRUCTURE
Whereas Section 2 defines intrinsic triangulations in isolation, we

now describe a data structure that encodes an intrinsic triangulation

of a given extrinsic mesh, as well as routines to modify and query

the triangulation. To do so we store, at each intrinsic vertex, the

distance and direction that one must travel in order to reach each

neighboring vertex—we call this construction the signpost data struc-
ture, in analogy with signs used to mark trajectories to neighboring

cities (Figure 2).

Our signpost data structure has at its core just two operations—

signpost updates and tracing queries—on top of which all other oper-

ations can be expressed (Section 3.2). From here one can easily im-

plement common geometric and topological primitives such as edge

flips and vertex insertions (Section 3.3). We also describe efficient

strategies for evaluating correspondence between the intrinsic and

extrinsic triangulation (Section 3.4). Here we discuss only generic,

low-level operations; we defer discussion of how to actually con-

struct a “good” triangulation to Section 4. Detailed pseudocode for

most methods is provided in Appendix B; we also plan on releasing

an open source implementation following publication.

3.1 Signpost Data Structure
Our signpost data structure can be built on top of any standard

mesh data structure, such as a vertex-face adjacency list; we find it

most convenient to use a halfedge mesh, which supports irregular

triangulations (Section 2.1). Starting with the connectivity M =
(V ,E, F), our signpost data structure then amounts to two additional

pieces of data:

• positive edge lengths ℓ : E → R>0, and
• angles φ : H → [0, 2π) for each halfedge.

The lengths ℓi j describe the shape of each triangle; the angle φi j
gives the direction of the halfedge from vertex i to vertex j, in the

local polar coordinate system at vertex i (Section 2.3). For each

vertex i inserted into the intrinsic mesh, we also store its location

via a pointer to the extrinsic edge or triangle it belongs to, and its

(two or three, resp.) barycentric coordinates bi within that element.

3.1.1 Geometric Quantities. Geometric quantities on the intrinsic

triangulation can easily be computed from the edge lengths ℓ (rather

than the vertex positions f , which would generally yield incorrect

results). Expressions for several quantities are given in Figure 9; note

that in floating point there are more accurate ways to evaluate such

quantities—see for instance [Shewchuk 1999]. The extrinsic location

fi ∈ R
3
of any intrinsic vertex i can still be obtained via barycentric

interpolation of extrinsic vertex coordinates if necessary (e.g., for
visualization, or sampling a function on R3). Other quantities can be

deduced, e.g., by isometrically unfolding local neighborhoods into

the plane and applying standard Euclidean formulas.

3.2 Atomic Operations
We now describe the atomic local operations on the signpost data

structure: a tracing query, which follows a signpost to its destination;
a signpost update, which updates the direction of a single signpost;

and a vertex update, which combines these two operations to update

the signposts around a vertex. As with many data structures, these

operations may initially appear abstract, but ultimately allow all

other operations to be implemented in a natural way (consider for

the splice operation in a quad edge mesh [Guibas and Stolfi 1985]).

In particular, they will be used to implement low level operations in

Sections 3.3 and 3.4, as well as higher-level triangulation algorithms

in Section 4.

Fig. 9. Left: when working with an intrinsic triangulation, the length ℓi j
of an edge will in general be different from the extrinsic distance |fj − fi |
between its endpoints. Right: instead, quantities like triangle areasAi jk and
interior angles θ jki can be easily computed from the intrinsic edge lengths.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Navigating Intrinsic Triangulations • 55:5

3.2.1 Signpost Update. Maintaining the

signpost data structure requires that we

be able to update the direction of halfedges

from known length and angle information—

this update is an atomic operation used in

edge flips, vertex insertions, etc., as well as for initializing the sign-

post data structure itself (see Algorithm 4). Consider in particular

a triangle ijk where the angle φi j and all three edge lengths are al-

ready known. A signpost update computes the direction of halfedge

ik ∈ H via the relationship

φik = φi j +
2π
Θi

θ
jk
i , (3)

where the interior angle θ
jk
i is computed from the edge lengths,

as discussed in Section 3.1.1. In other words, it simply computes

the direction of the next edge around the vertex by adding the

normalized Euclidean angle (Section 2.3).

3.2.2 Tracing Query. At any point p, a trac-
ing query computes the point q reached by

walking a given distance s > 0 in a given

unit direction u (along either the intrinsic

or extrinsic mesh). Such queries correspond

to an evaluation of the discrete exponential
map, producing a straightest polyhedral ge-

odesic in the sense of Polthier and Schmies

[1998]. Conceptually, this query amounts to

little more than unfolding triangles along

the path and drawing a straight line (see inset). Since tracing is a

purely intrinsic operation, all calculations can be carried out in a

local 2D coordinate system for each triangle—we do not need to

work in 3D, or explicitly constrain the path to the surface.

Algorithmically, each vertex of the path

is found by computing 2D ray-line intersec-

tions with the edges of the current triangle,

and moving to the closest intersection point.

The direction of the ray is then transformed

into the coordinate system of the next tri-

angle (by constructing a vector that makes

the same angle with the shared edge), and

the process is repeated. The final output is

the barycentric coordinates of the point q, as
well as a pointer to the triangle containing q.
In some situations it is also useful to main-

tain a list of points crossed along the path (given by 1D barycentric

coordinates and edge pointers). Discussion of floating point imple-

mentation is discussed in Appendix A.

Note that to support the atomic operations of our data structure,

we do not need to consider paths through vertices (a case which

is carefully considered by Polthier and Schmies [1998]). The only

subtlety is tracing a vector u that starts at a vertex i . Assuming the

direction of u is given by a normalized angle φu ∈ [0, 2π), we first
iterate over the neighbors jn of i until we find the triangle containing
u, i.e., until φi jn ≤ φu < φi jn+1 . We then initiate a tracing query

starting at vertex i of triangle ijn jn+1 in the direction Θiφu/2π , i.e.,
we “un-normalize” the angle so that we can just work in ordinary

coordinates. This procedure is described in Algorithm 2.

3.2.3 Vertex Update. Several local op-
erations (Section 3.3) compute new

lengths ℓi j for the edges incident on a

single vertex i; the vertex update uses
these new lengths to update our other

quantities. To update the incoming an-

gles φ ji we simply apply a signpost

update (Section 3.2.1) to each halfedge

ji using the known angles φ j, j+1 and θ
j+1,i
j . To update the outgoing

angles φi j we first establish the direction of an initial edge ij0 by
performing a tracing query from j0 to i along the direction u, then
measure the angleφi j0 between−u and the reference direction of the

extrinsic triangle xyz containing the intrinsic vertex i . This tracing
query also provides the new barycentric coordinates bi . To obtain

the remaining angles φi j , we add cumulative sums of interior angles

θ
j, j+1
i (as in Equation 2) to the initial angle φi j0 . Note that to facili-

tate subsequent tracing queries it is critical to express the outgoing

signpost angles φi j with respect to the canonical coordinate system

for the extrinsic triangle xyz (as defined in Section 2.3). Otherwise,

there is no way to determine how an intrinsic tangent vector u at i
gets mapped to an extrinsic tangent vector for subsequent tracing

queries (and vice versa).

3.3 Local Operations
Local mesh operations such as edge flipping and splitting can easily

be implemented using the atomic routines defined in the previous

section. This section develops standard operations needed for many

applications, including those in Sections 4 and 5. Other common

operations (such as edge insertion [Bern et al. 1993]) could also be

implemented. However, operations that remove extrinsic vertices
(such as edge collapses) do not have an obvious interpretation, since

intrinsically it is not clear what the resulting geometry should be; in

general, only vertices that were previously inserted can be removed

without changing the geometry of the domain.

3.3.1 Edge Flip. An edge flip
replaces a pair of triangles

ijk, jil ∈ F with the trian-

gle pair kl j, lki (see inset).

To update our signpost data

structure, we simply need to

compute the length of the

new edge, and the angles

of the two new halfedges

(no barycentric coordinates

change during a flip). The new length ℓkl can be computed as indi-

cated in Figure 9; the anglesφlk andφkl can be obtained by applying

signpost updates (Section 3.2.1) using the known angles φl j ,θ
jk
l and

φki ,θ
il
k , resp. This procedure corresponds to the edge flip briefly

discussed in Sharp et al. [2019, Section 5.4]. Note that, as with planar

triangulations, an edge flip cannot be performed if the two triangles

form a nonconvex quadrilateral, or if either endpoint has degree one

(as in Figure 6, right). Interestingly, neither of these conditions needs
to be checked explicitly in the special case of Delaunay flips—see

Section 4.1 for further discussion.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:6 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

3.3.2 Vertex Insertion. Given the

barycentric coordinates for a point

p on the interior of an intrinsic tri-

angle ijk , a vertex insertion replaces

ijk with three new intrinsic triangles

ijp, jkp,kip. The new edge lengths

ℓip , ℓjp , and ℓkp can be obtained by

applying the distance formula given

in Algorithm 6, and the remaining data is computed via the vertex

update procedure (Algorithm 7). Inserting a vertex on the interior

of an edge is nearly identical (Algorithm 8).

3.3.3 Vertex Repositioning.
Intrinsic vertices i that have
been inserted in the triangu-

lation can be moved to a new

location p without changing

the geometry of the surface.

In general, one can simply re-

move vertex i , triangulate the resulting polygon (which is intrin-

sically flat), and insert a vertex at p à la Section 3.3.2. For smaller

motions which only affect the vertex neighborhood of i , it is simpler

and more efficient to just update the local lengths and angles. In

particular, let v be the vector from i to p; a conservative check for

this case is that |v| is smaller than the minimal incident triangle

height. The new edge lengths can then be computed as

ℓpj =
√
|v|2 + ℓ2i j − 2|v|ℓi j cosα ,

where α := φi j − φv is the angle between v and the original edge ij;
the angles φ of all incident halfedges are then computed via a vertex

update (Section 3.2.3). An implementation is given in Algorithm 10—

for the algorithms in this paper, we need only this local update.

3.4 Correspondence
There is always a 1:1 correspondence between points on an intrin-

sic triangulation and the underlying extrinsic triangulation. An

attractive feature of the signpost data structure is that we can query

this relationship directly, without building an auxiliary structure

(Section 3.4.1). This functionality makes our data structure easily

compatible with sample-based rendering like ray-tracing, e.g., by
interpolating a texture map or evaluating a finite element solution.

For downstream applications that do require a standard poly-

gon mesh, one can optionally extract an explicit overlay mesh (Sec-

tion 3.4.2), which is the common subdivision of the intrinsic and

extrinsic triangulation. Piecewise linear functions on the intrinsic

triangulation then become (finer) piecewise linear functions on the

overlay mesh, and can hence be used or visualized within a standard

geometry pipeline. (Note that, in general, this subdivision will not
exhibit special properties of the intrinsic mesh—e.g., an intrinsic

Delaunay mesh will not have a Delaunay overlay.) Extraction of

the overlay need only be performed once, after all triangulation
operations. In contrast, the data structure of Fisher et al. [2007] must

maintain the overlay during each local operation, which can incur

significant cost (Section 6.3). Moreover, since our extraction algo-

rithm is local to each triangle, it can easily be executed in parallel

(in principle, even in a shader program).

3.4.1 Point Query. Tracing queries

can be used to locate a given extrinsic

point p on the intrinsic triangulation

(and vice versa): if xyz is the triangle
containing p, one can just trace along

the intrinsic triangulation in the di-

rection φx̄p for a distance ℓx̄p (see

inset). Any data associated with the

intrinsic mesh can then be evaluated

using the resulting barycentric coordinates. Pseudocode is given in

Algorithm 11. Note that these point queries work only because we

carefully maintain angles φ with the same meaning on the intrin-

sic and extrinsic triangulation, i.e., they are always expressed with

respect to the same local polar coordinate system.

3.4.2 Overlay Extraction. If an overlay mesh is needed, we first

perform a tracing query along each intrinsic edge ij ∈ E, and store

a sorted list of barycentric coordinates t ∈ [0, 1] where ij crosses an
extrinsic edge (marked by “×” in the figure below). For each intrinsic

triangle ijk , we emit a collection of extrinsic triangles and quads;

there are just two cases to consider (illustrated inset below):

(1) All extrinsic edges intersecting ijk cross a common edge jk .
(2) There is no common edge, a sequence of extrinsic edges clips

each corner.

Case 1. For an intrinsic trian-

gle ijk , let c1, . . . , cr be the cross-

ings along the common edge jk ,
let j1, . . . , jn be the crossings along

edge ji , and let k1, . . . ,km be the

crossings along edge ki . For each

crossing along ji , emit a segment

connecting jp and cp ; likewise, for
each crossing along ki emit a seg-

ment connecting kp and cr−p+1. Fi-
nally, connect all remaining cross-

ings cp to vertex i .

Case 2. For each vertex i of the
intrinsic triangle ijk , let j1, . . . , jn
be the crossings along edge ij, and
let k1, . . . ,km be the crossings along

edge ik . We simply need to connect

a segment between jp and kp until

the sum of remaining crossings is less than or equal to the number

of crossings on edge jk . This algorithm is then repeated for the other

two vertices.

To get polygons, we simply emit faces corresponding to consec-

utive segments crossing the intrinsic triangle (as well as the final

hexagon in Case 2). If we assign a unique index to each crossing, the

final output is a standard vertex-face adjacency list description of

the overlay mesh (which can be triangulated if necessary). For some

applications, it may also be convenient to encode the relationship

between the overlay and the intrinsic or extrinsic mesh, e.g., by tag-

ging each overlay triangle with an index to its associated intrinsic

face.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Navigating Intrinsic Triangulations • 55:7

4 INTRINSIC RETRIANGULATION
As a key application, we show how different classes of retriangula-

tion algorithms can be easily implemented using the signpost data

structure. In contrast to classic remeshing, where one must balance

triangle quality (angles, areas, etc.) with geometric approximation

quality (e.g., closeness to the input surface), the intrinsic approach

allows one to focus solely on triangulation of a given polyhedron,

knowing that the underlying geometry will remain unchanged. De-
launay triangulations are particularly important since they furnish

valuable numerical and structural properties across a wide range of

algorithms; other special triangulations (such as those that minimize

total length or maximum vertex degree) would also be interesting

to consider in the intrinsic setting.

Intrinsic Delaunay Triangulation (iDT). A
triangulation exhibits the intrinsic Delaunay
property if for each edge ij ∈ E opposite a

pair of vertices k, l ∈ V

θ
i j
k + θ

ji
l ≤ π , (4)

which for planar triangulations is equivalent to the standard “empty

circumcircle” condition. Although other generalizations of the De-

launay condition have been studied for polyhedra (such as restricted
Delaunay [Cheng et al. 2012, Chapter 13]), the intrinsic Delaunay

condition is essential in many applications because it implies posi-

tivity of the cotangent weights, i.e.,

cotθ
i j
k + cotθ

ji
l ≥ 0.

This condition in turn guarantees good behavior of a wide vari-

ety of algorithms and numerical methods—for instance, it ensures

that many standard finite element matrices are M-matrices, which
facilitates the use of “best in class” numerical solvers [Spielman

2010]. It also ensures that the finite element Laplacian L exhibits

a maximum principle: a function u satisfying the discrete Laplace

equation Lu = 0 will smoothly interpolate fixed boundary data,

and has no interior extrema, i.e., no interior vertices that are local

maxima or minima [Bobenko and Springborn 2005]. This property

is invaluable for numerous applications; with our data structure, it

also extends to vector-valued functions, as discussed in Section 5.5.

10 100 104 10103 5 106

1

10

100

104

105

103

106

Fig. 10. By running the Delaunay edge flipping algorithm on a large data
set we observe a surprising trend: the number of flips required in practice is
rarely more than the number of edges in the input mesh. Here each blue
dot represents a mesh from the Thingi10k dataset.

input intrinsic flipping

intrinsic refinement intrinsic ODT

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

Fig. 11. Intrinsic versions of classic algorithms yield high quality triangu-
lations for any mesh. We can obtain a Delaunay triangulation without
increasing the vertex count (top right), achieve lower angle bounds (bottom
left), or balance angles and triangle areas (bottom right).

4.1 Delaunay Flipping
An iDT can always be obtained via

a simple flipping algorithm [Bobenko

and Springborn 2005]: enqueue all

edges; while the queue is not empty,

check if the next edge ij satisfies Equation 4; if not, apply an intrin-

sic edge flip and enqueue the four neighbors ik , il , jk , and jl . Note
that any edge that needs to be flipped can be flipped: for instance, an

edge shared by a nonconvex pair of triangles will have an opposite

angle sum less than π ; likewise, the two angles opposite an edge

with a degree-1 endpoint must belong to the same triangle, and

hence cannot sum to greater than π (see inset). For planar triangu-

lations this algorithm requires at most O(|V |2) flips [Fortune 1993];
for intrinsic triangulations there is no upper bound that depends

solely on the number of vertices, since there can be infinitely many

geodesics between a given vertex pair (see for example Figure 4).

However, the intrinsic algorithm is surprisingly efficient in practice

(Figure 10), perhaps because triangulations that come from an em-

bedded surface cannot have extremely long, winding edges. Note

that one could also initialize our signpost data structure with an iDT

obtained from a geodesic Voronoi diagram [Liu et al. 2017]. How-

ever, flipping remains essential for subsequent algorithms which

must incrementally improve a triangulation (Sections 4.2 and 4.3).

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:8 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

4.2 Intrinsic Delaunay Refinement (iDR)

Fig. 13. We locate the
intrinsic circumcenter
by tracing along a vec-
tor u obtained from
the planar layout.

In practice one often cares about criteria be-

yond the Delaunay property, such as bounds

on angles or edge lengths. Delaunay refine-
ment progressively inserts vertices to achieve

user-specified criteria, while maintaining the

Delaunay property. This approach has been

studied extensively in the plane, but the in-

trinsic or geodesic case has received little

attention—Shewchuk [1997, Section 5.3.2]

merely suggests that the basic lemmas needed

for Chew’s algorithm should also apply in the

geodesic setting. Our signpost data structure

makes implementation of intrinsic Delaunay

refinement straightforward; in particular, we implement an intrinsic

version of Chew’s 2nd algorithm [Chew 1993; Shewchuk 1997]:

• Until the specified minimum angle bound is satisfied:

– Flip to Delaunay (Section 4.1)

– Find any triangle ijk that violates the angle bound

– Insert the circumcenter p of ijk (Section 3.3.2)

In the intrinsic setting we have to decide where to

insert the circumcenter p if it is not contained in its

triangle—previous literature does not provide a clear an-

swer in this case. If the circumcenter lies outside the tri-

angle ijk then there must be an obtuse angle at a unique

vertex a. Our approach is then to layout the triangle in

the plane, construct the vector u from a to the planar

circumcenter, then trace u along the surface to a point

p (see Figure 13). Note also that in the intrinsic setting,

the underlying domain may have skinny needle vertices

i where the total angle Θi is already smaller than the user-specified

minimum angle bound (see inset). The only change we make here is

that we do not perform refinement when the skinny angle is incident

on a degree-1 vertex, and hence cannot possibly be improved.

In practice this intrinsic refinement algorithm appears to work

quite well, reproducing the behavior of the planar algorithm. For

instance, on the MPZ dataset (away from only four needle-like ver-

tices) we achieve a minimum interior angle bound of 30
◦
(and hence

�
in

gi
10

k
#7

17
11

�
in

gi
10

k
#4

66
02

Fig. 12. As in the Euclidean case, we find that intrinsic Delaunay refinement
can achieve a minimum angle bound of 30◦, even on challenging models.

an upper bound of 120
◦
), which agrees with the guarantee made in

the planar case [Chew 1987]. Formally analyzing the behavior of

the intrinsic algorithm, and generalizing it to handle boundary or

constrained edges is an interesting question for future work.

A typical example from the MPZ dataset

is shown in Figure 12, center; on average

the number of inserted vertices was about

60% of the number of input vertices. We

also observe the characteristic grading be-

havior of Delaunay refinement that adapts

to different feature sizes (see inset). Note

that one can also continue refining accord-

ing to any other quantity of interest, such

as triangle areas, or using PDE error estimates as we explore in

Section 5.4.

4.3 Intrinsic Optimal Delaunay Triangulation (iODT)
An optimal Delaunay triangulation seeks to improve quality not

by pure refinement, but also by adjusting the placement of ver-

tices [Chen and Xu 2004]. We apply this idea in the intrinsic setting

by optimizing the location of inserted vertices—modifying the input

vertices is of course undesirable, since it would change the surface

geometry rather than just the triangulation. The basic strategy is to

iteratively move all vertices toward the triangle area weighted sum

of the circumcenters of incident triangles, then apply the flipping

algorithm from Section 4.1 [Chen and Holst 2011, Equation 4.13]. In

the intrinsic setting we can locate circumcenters as described in Sec-

tion 4.2; rather than averaging these locations, we simply average

the vectors to these locations, then use this average as our update di-

rection. Examples are shown in Figures 11, 14, and 16. Since vertices

of the input mesh cannot be moved, we insert new vertices on each

iteration by splitting edges longer than a user-defined target length

(à la Tournois et al. [2009]). In general we observe the same behavior

as in the Euclidean case: in contrast to Delaunay refinement, we get

a better distribution of areas, at the cost of some skinnier angles.

0° 90° 180°
Corner angle

0° 90° 180°
Corner angle

0° 90° 180°
Corner angle

Fig. 14. Our signpost data structure makes it easy to implement an intrin-
sic version of optimal Delaunay triangulation (iODT), which provides an
excellent balance between element size and angle distribution while exactly
preserving the input geometry.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Navigating Intrinsic Triangulations • 55:9

5 INTRINSIC GEOMETRY PROCESSING
Our data structure enables a broad range of techniques from com-

putational geometry and scientific computing to be directly applied

in the polyhedral setting; it also helps improve the accuracy and

reliability of existing surface processing algorithms. In this section

we consider several such examples.

5.1 Steiner Tree Approximation
Many applications require a short cut pass-

ing through all vertices of a polyhedron, so

that it can be isometrically unfolded into

the plane. A common approach is to cut

through extrinsic edges which approximate

the Steiner tree of the vertex set [Sheffer and
Hart 2002; Erickson andHar-Peled 2004]; for

a genus-0 surface the shortest such cut is simply the minimal span-

ning tree (MST). We can use our signpost data structure to get an

even shorter cut, by applying strategies previously only available in

the plane. Here, the Delaunay triangulation has the shortest possible

MST [Toussaint 1980]; an even shorter tree can be found by inserting

additional Steiner points. If a triangle ijk has angles all smaller than

2π/3, its local Steiner tree is obtained by inserting the Fermat point
F , given by barycentric coordinates bi := csc(θ

jk
i + π/3). Smith

et al. [1981] therefore suggest a strategy akin to Kruskal’s algorithm:

enqueue all edges and per-triangle Steiner trees; greedily add the

shortest element from the queue as long as it does not form a cycle.

We can directly implement this strategy in the intrinsic setting by

flipping to the iDT (à la Section 4.1), and using the vertex insertion

operation from Section 3.3.2. The resulting cut can be significantly

shorter than the extrinsic MST—for instance, by moving the left and

right vertices apart in Figure 15, top, the length ratio approaches

20%. Even shorter cuts could be obtained by applying more sophis-

ticated techniques from the Euclidean setting (such as [Laarhoven

and Ohlmann 2011]).

minimum spanning tree intrinsic Steiner tree

Fig. 15. Our data structure allows planar computational geometry algo-
rithms to be easily translated into the polyhedral setting. Here we apply a
classic Euclidean algorithm for Steiner tree approximation to find shorter
cuts through polyhedral surfaces.

5.2 Finite Elements

#vertices

condition number
ODTODT
iODT
iDRiDR

107

1014

Fig. 17. Condition number for
FEM Laplacian with different tri-
angulations; values for regular 4-1
refinement (red) are off the chart.

The numerical behavior of finite el-

ement methods depends critically

on the quality of basis elements;

however, for a given budget of tri-

angles there is a trade off between

geometric accuracy and element

quality. The intrinsic approach of-

fers the best of both worlds, since

the triangulation used to define

a finite element basis can be de-

coupled from the mesh used to

describe the domain geometry. Moreover, unlike finite element

schemes that use curved elements [de Goes et al. 2016; Feng et al.

2018] or adapt basis functions to accommodate low-quality triangu-

lation [Schneider et al. 2018], an intrinsic triangulation can be used

with any existing finite element code that supports ordinary trian-

gular elements, including those based on adaptive basis refinement.

To study numerical performance, we solve a standard Poisson

equation ∆u = f on several retriangulations of a coarse input mesh

with poor element quality. The stiffness matrix is built exactly as

with an ordinary triangle mesh, via the cotan formula [MacNeal

1949, Equation 3.19]; we likewise use the standard Galerkin mass

matrix. For an equal number of vertices, the intrinsic retriangulation

(via either iDR or iODT) yields better condition numbers (Figure 17)

than an extrinsic version of ODT, which is more restricted in the

vertices it can reposition (and hence the angles it can improve).

Intrinsic triangulations also produced significantly lower L2 error—
even for meshes with very little extrinsic curvature (Figure 16).

Asymptotically (as edge length goes to zero) intrinsic and extrinsic

schemes will behave similarly, but the intrinsic approach provides

significant error reduction while still keeping mesh sizes small.

input mesh right hand side (f) solution (u)

intrinsic Delaunay
re�nement

regular 4-1
subdivision

intrinsic
ODT

extrinsic
ODT

more accurate

1x 1.6x 3.0x2.7x

1x 2.0x 3.4x2.4x

Fig. 16. Even for domains with large, flat regions, solving a Poisson equation
is about twice as accurate with an intrinsic triangulation. Rows show two
refinements, with matching element counts in the last three columns.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:10 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

originalhe
at

 m
et

ho
d

iDT iDR

exactID: 12506

mean error: 59.6% mean error: 20.4% mean error: 0.7%

Fig. 18. Working with intrinsic triangulations allows one to accurately and
efficiently approximate the exact polyhedral distance using PDE based
methods like the heat method.

5.3 Geodesic Distance
PDE-based methods for computing geodesic distance such as the

heat method [Crane et al. 2013] are attractive because they are

easy to implement and can take advantage of fast linear solvers;

window-based methods provide the exact polyhedral distance, but

are generally slower and more difficult to implement. We can use

an intrinsic triangulation to get the best of both worlds: highly

accurate distance via fast PDE-based methods. Figure 18 shows the

heat method on several intrinsic triangulations: by just using the

iDT the error is dramatically reduced; further refinement with iDR

reduces the error to less than 1%.

5.4 Adaptive Mesh Refinement
Many algorithms in geometry processing depend on PDEs where

interesting behavior is highly localized in space—for such problems

we can use our signpost data structure to adaptively refine the

region of interest, rather than uniformly refining the entire surface.

Previously, adaptive mesh refinement (AMR) on surfaces has been

achieved via tetrahedralization of the enclosed volume [Demlow

and Olshanskii 2012]; the signpost data structure enables us to

apply AMR directly to the surface mesh, while taking advantage

of the larger space of intrinsic triangulations. The basic idea is to

use a local a posteriori error estimate as an additional refinement

criterion in iDR (Section 4.2). We apply the basic error estimates

described in Morin et al. [2002] and Mekchay and Nochetto [2005]

(see supplement for details), though more sophisticated estimators

could be used just as easily.

In Figure 19 we compare uniform versus adaptive refinement for

computing the harmonic Green’s function and short-time heat kernel,
finding that adaptive refinement is 2–10 times faster than uniform

refinement (taking all computation into account); such kernels are

widely used for shape analysis and distance approximation [Patané

2016]. In Figure 20 we compute a simple surface parameterization

via harmonic mapping. Here the iDT ensures injectivity due to the

maximum principle (Section 4), though distortion persists near the

boundary; our intrinsic AMR scheme provides additional resolution

exactly where it is needed. Such techniques could also be applied to

more sophisticated mapping algorithms, such as those needed for

quadrilateral remeshing [Bommes et al. 2013].

-0.5 0.0 0.5 1.0

0.002

0.004

0.006

Input
AMR
iDR
Reference

harmonic Green’s function short time heat kernel

-0.5 0.0 0.5 1.0

0.2
0.4
0.6
0.8
1.0

harmonic Green’s function short time heat kernel

|V | time error |V | time error

input 214 0.006 s 0.341 214 0.007 s 0.622

AMR 3029 2.299 s 0.008 1551 0.898 s 0.007

iDR 54916 5.611 s 0.006 81702 8.466 s 0.008

Fig. 19. Intrinsic AMR allows extremely accurate computations of standard
kernels from geometry processing with very few elements. Left: harmonic
Green’s function. Right: short time heat kernel. Performing uniform iDR to
achieve the same accuracy requires 18x and 54x as many vertices, respec-
tively.

input iDT AMR

Fig. 20. Mappings computed on low-quality meshes can exhibit flipped
triangles, as shown here for a harmonic mapping (left). An iDT guarantees
the map is flip-free (center), and AMR intelligently reduces distortion (right).

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Navigating Intrinsic Triangulations • 55:11

input
ED=1200.2

iDT
ED=123.5

iDR
ED=47.0

Fig. 21. Our signpost data structure is also well suited for tangent vector
field processing. Here we draw streamlines of the vector field with small-
est Dirichlet energy ED (showing vectors in the inset); using an intrinsic
triangulation yields a much smoother field.

5.5 Tangent Vector Field Processing
Since our signpost data structure already maintains tangent coordi-

nate systems across all operations, it is naturally suited for problems

involving tangent vector fields, as well as other tangent direction

fields (e.g., cross fields).

Flip-Free Vector Fields. In a variety of applications one requires

a smooth tangent direction field, e.g., for field-aligned quad mesh-

ing [Bommes et al. 2013] or for guiding texture synthesis [Knöppel

et al. 2015]. Such a field can be obtained by prescribing vectors

at the boundary and solving the vector-valued Laplace equation

∆∇X = 0, where ∆∇ denotes the connection Laplacian. Here we can
use the finite difference connection Laplacian described in Sharp

et al. [2019, Section 5.3]. The intrinsic Delaunay criteria provides

a vector-valued analogue of the scalar maximum principle for this

discretization: tangent vectors at each point will be contained in the

convex cone of their immediate neighbors [Sharp et al. 2019, Section

5.4] as seen in Figure 22. The signpost data structure enables this

property to be extended to refinements of the input mesh, rather

than simply the iDT (which may still provide poor accuracy).

Globally Optimal Direction Fields. We can compute the smoothest

direction field on a domain without boundary by minimizing the

vector Dirichlet energy; this amounts to solving an eigenvalue prob-

lem via the finite element connection Laplacian described in Knöp-

pel et al. [2013, Sec. 6.1.1]. Figure 21 shows a dramatic increase in

smoothness going from the input triangulation, to the iDT, to the

iDR. In general, we can find polyhedra where the minimal vector

Dirichlet energy is not always achieved by the iDT (in contrast with

Rippa’s theorem in the scalar case [Rippa 1990]), though in practice

it always appears to provide much smoother vector fields. An inter-

esting question, therefore, is whether there is a natural energy for

which an iDT always yields the smoothest field.

input iDT

Fig. 22. Intrinsic triangulations that satisfy the Delaunay condition help
prevent flips in tangent direction fields. Here we compute the smoothest
field interpolating given vectors at the boundary.

6 EVALUATION
We use the applications described in Section 4 and Section 5 to

analyze the numerical robustness and runtime performance of our

signpost datastructure. With careful treatment of floating point

calculations, we found that our data structure is robust enough

to operate on all models found “in the wild.” Moreover, since the

majority of processing involves familiar local mesh operations, there

are no big surprises in terms of speed—for instance, running iDR

and extracting the overlay on a mesh of about 50k triangles (which

makes heavy use of all operations) takes about 0.57 seconds.

6.1 Experimental Setup
Implementation. Signposts can in principle be used to augment a

number of different underlying mesh data structures; we found it

convenient to use a halfedge mesh, which supports all the necessary

topological operations, as well as irregular triangulations. In partic-

ular, we implemented our data structure in C++ on top of a standard

halfedge mesh library; Appendix A provides details of the numerical

implementation. Timings were measured using a single thread of

an Intel Core i7 3.5GHz CPU; for quad precision calculations (used

only for the robustness benchmarks in Section 6.2), we used the

GCC libquadmath library [Free Software Foundation 2008].

Data Set. We performed experiments on a wide variety of real-

world models from the Princeton Shape Benchmark [Shilane et al.

2004] (1800 meshes), the MPZ data set from [Myles et al. 2014,

Section 8] (117 meshes), and the manifold meshes found in the

Thingi10k dataset [Zhou and Jacobson 2016] (∼8k meshes) which

includes many extremely degenerate models (zero-area faces, poorly

triangulated CAD models, etc.). For Thingi10k we used MeshLab to
convert all files to PLY format [Cignoni et al. 2008], and omitted 10

meshes that either contained invalid data (such as B-splines) or were

nonmanifold after conversion. The only preprocessing we perform

is to remove a few zero-area triangles by extrinsically flipping or

collapsing edges opposite acute angles smaller than 10
−10

radians

or obtuse angles greater than π − 10−10 radians, resp.. This process
yields an utterly negligible change in the geometry, and was also

necessary for obtaining geometrically meaningful results from the

algorithm of Fisher et al. [2007].

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:12 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

signpost: 397K
total crossings computed

incremental: 19.6M

(�ingi10k #474823)
1x 2x 3x 4x

10

30

50

70
#models in MPZ dataset

speedup relative to incremental

Fig. 23. Even for basic tasks like finding crossings for an intrinsic Delaunay
triangulation, our data structure is faster than the incremental overlay of
Fisher et al. (left). In extreme cases, the incremental scheme may compute
far more crossings than are actually needed for the final overlay (right).

6.2 Robustness
Judicious management of numerical precision is important for any

intrinsic triangulation data structure. Note that there can be no

robustness issues due to discretization error: in exact arithmetic, all

calculations yield an exact description of the intrinsic geometry.

Therefore, problems arise only due to floating point error, typically

on pathological inputs. For instance, the basic edge flipping scheme

(which simply keeps track of edge lengths) can produce INF or NaN

values due to inaccurate floating point calculation; even with cor-

rect length calculations, the incremental overlay [Fisher et al. 2007]

can yield meshes that are topologically valid, but where intrinsic

edges look nothing like geodesics due to inaccurate calculation of

barycentric coordinates (see Figure 27). The main challenge with

the signpost data structure is ensuring that tracing queries are topo-

logically valid—see Appendix A for a detailed discussion.

In practice, we found the signpost data structure to be remark-

ably robust. To examine numerical robustness, we performed the

Delaunay flip algorithm (Section 4.1) on the data sets described in

Section 6.1, and verified that the overlay extracted à la Section 3.4.2

describe the correct combinatorics of the common subdivision. This

test succeeds for all 1800 meshes in the Princeton Shape Bench-

mark and 117 meshes in the MPZ dataset. On the more challenging

Thingi10k dataset, extraction succeeds on 97% of the meshes when

using double precision; the remaining 3% can be handled by either

randomly perturbing vertex coordinates by 10
−8

of the bounding

box diameter (which yields no appreciable difference in geometry),

or by falling back to quad precision (in which case geometry is pre-

served exactly). Overall, for all practical purposes, our data structure

is able to operate on 100% of meshes found “in the wild.”

6.3 Comparisons
Incremental Overlay. We compared our signpost data structure

to the incremental overlay scheme of [Fisher et al. 2007], which

represents an intrinsic triangulation by continually maintaining an

explicit list of edge crossings. In contrast, the signpost data struc-

ture can simply extract crossings once, after all other processing

has terminated (Section 3.4.2). Both data structures were imple-

mented on top of the same halfedge data structure, and in both

cases we performed extensive profiling and code-level optimization.

Further speedups could easily be achieved in our extraction proce-

dure (which is trivially parallelizable across edges), though here we

0.60ssignpost:
[Fisher et al]: 17.32s

28xspeedup:

0.20ssignpost:
[Fisher et al]: 4.27s

21xspeedup:

Fig. 24. Flipping to the intrinsic Delaunay triangulation and extracting the
edge crossings in the overlay mesh is extremely efficient with the signpost
data structure. Prior methods update the overlay mesh every flip, while our
approach reads it off after the fact. (Thingi10k #79741 & 1432740)

use a serial implementation. Figure 23, left shows the relative per-

formance for computing the edge crossings of an intrinsic Delaunay

triangulation on the MPZ dataset. (Note that more sophisticated al-

gorithms like iDR cannot be compared since they are not supported

by the incremental scheme.) On the most challenging examples in

the Thingi10k dataset, the signpost data structure was as much as

28x faster (Figure 24). The basic reason for the performance gap is

that the cumulative number of crossings computed by the incremen-

tal overlay may be dramatically larger than the number of crossings

needed for the final triangulation (Figure 23, right).

Extrinsic Delaunay. We also compared to the method of Liu et al.

[2015] (using their implementation), which uses extrinsic edge splits

and flips of flat edges to achieve the intrinsic Delaunay condition;

the benefit is that the output is a standard (extrinsic) triangle mesh.

There are however two downsides, namely (i) it may be necessary to

generate a large number of elements, and (ii) even though elements

are Delaunay, they may otherwise have poor quality (e.g., small

angles or areas). The former can be addressed via simplification, at

the cost of changing the geometry; however Liu et al. propose no
approach for improving element quality. In practice, we observe that

on models from Thingi10k, Liu et al.’s algorithm can initially inflate

mesh size by a factor of 10–100x (for instance, model #97588). In

Fig. 25. Left: an extrinsic Delaunay triangulation which preserves geometry
requires dramatically more vertices. Center: the intrinsic Delaunay trian-
gulation requires no additional elements. Right : Even a modest number of
additional intrinsic vertices can dramatically increase element quality.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Navigating Intrinsic Triangulations • 55:13

Fig. 26. A mechanical part (left) is made Delaunay with extrinsic splits and
simplifications (center), or with intrinsic flips (right). For an equal number of
elements, the extrinsic method loses important geometric detail, whereas
the intrinsic triangulation exactly preserves the given shape.

contrast, the iDT exactly preserves the geometry and has the same

number of elements as the input; any subsequent increase in mesh

size serves purely to improve triangulation quality. In Figure 25 the

coarsest simplification that can be produced via Liu et al. without
modifying the geometry has about 15x more triangles than the

iDT; moreover, iDR can produce a far higher-quality triangulation,

using far fewer elements. Figure 26 likewise shows that for the same

budget of triangles, the intrinsic approach yields a much better

approximation of geometry. A recent method of Yi et al. [2018] uses

global nonlinear optimization to obtain extrinsic Delaunay meshes

with lower geometric error, albeit at dramatically higher cost—for

instance, over 1000x times slower than building and extracting our

iDT on the three models in Yi et al. [2018, Table 3]. This method

also does not consider element quality (angles, areas, etc).

7 LIMITATIONS AND FUTURE WORK
The essential trade-offs of working with intrinsic triangulations are

well-known. At the most basic level, one simply does not have an

ordinary triangle mesh, though as we have seen, most algorithms

can still be executed as usual. Some basic translation into the intrin-

sic setting may be needed (e.g., computing areas from edge lengths

rather than vertex positions), but these are typically easy to abstract

away. Although extracting the overlay mesh yields an extrinsic rep-

resentation of the triangulation, the overlay mesh is generally not

suitable for computation, and will not inherit desirable properties of

the intrinsic triangulation (such as the Delaunay property). Nonethe-

less, many applications do not require the overlay mesh: a typical

pipeline might consist of constructing an intrinsic triangulation,

solving a PDE, and finally copying the solution back to the original

triangulation. In such an application, the overlay mesh might be

used only to visualize the intermediate data structure.

The intrinsic operations we present are formulated from the per-

spective of improving the triangulation of a given domain while

preserving that domain exactly, and thus do not address concerns

such as denoising, or repairing spurious topological features. Fur-

thermore, we assume throughout that inputs are manifold meshes;

an interesting question is how to extend our data structure to gen-

eral nonmanifold meshes, e.g., by augmenting signposts with local

topological information.

Since the applications described in Section 4 and Section 5 serve

primarily to evaluate our data structure, there are of course many

unexplored questions. For instance, in the case of Delaunay refine-

ment we do not consider domains with boundary, though this topic

has been extensively studied in the plane. Finally, it would be valu-

able to consider more generalized notions of intrinsic triangulations,

especially those that are not required to include the vertices of the

input mesh. In fact, the signpost data structure can already be used

as-is to describe embedded graphs with geodesic edges; extending it

to perform operations that actually remove extrinsic vertices (such
as edge collapses) would open the door to yet further algorithms

such as intrinsic simplification. On the whole, the ability to eas-

ily work with intrinsic triangulations provides fertile soil for new

developments in robust geometry processing.

ACKNOWLEDGMENTS
This work was supported by a Packard Fellowship, NSF Award

1717320, an NSF Graduate Research Fellowship, a Kortschak Schol-

ars Graduate Fellowship, and gifts from Autodesk, Adobe, and Face-

book.

REFERENCES
Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W. Levin, and Alec Jacobson. 2018.

Fast Winding Numbers for Soups and Clouds. ACM Transactions on Graphics (2018).
Marshall W. Bern, Herbert Edelsbrunner, David Eppstein, Scott A. Mitchell, and

Tiow Seng Tan. 1993. Edge Insertion for Optimal Triangulations. Discrete & Compu-
tational Geometry 10 (1993).

A. I. Bobenko and B. A. Springborn. 2005. A discrete Laplace-Beltrami operator for

simplicial surfaces. ArXiv Mathematics e-prints (March 2005). arXiv:math/0503219

Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. 2013. Constructing Intrinsic
Delaunay Triangulations of Submanifolds. Research Report RR-8273. INRIA.

Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably good sampling and meshing

of surfaces. Graphical Models 67, 5 (2005).
David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,

and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Computer
Graphics Forum 32, 6 (2013).

Long Chen and Michael J. Holst. 2011. Efficient Mesh Optimization Schemes based on

Optimal Delaunay Triangulations. Comput. Methods Appl. Mech. Engrg. 200 (2011).
Long Chen and Jin-chao Xu. 2004. Optimal delaunay triangulations. Journal of Compu-

tational Mathematics (2004).
Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Genera-

tion (1st ed.). Chapman & Hall/CRC.

L. P. Chew. 1987. Constrained Delaunay Triangulations. In Proceedings of the Third
Annual Symposium on Computational Geometry (SCG ’87). ACM.

L. P. Chew. 1993. Guaranteed-quality Mesh Generation for Curved Surfaces. In Pro-
ceedings of the Ninth Annual Symposium on Computational Geometry (SCG ’93).
ACM.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-

elli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool.

In Eurographics Italian Chapter Conference. The Eurographics Association.
Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A

new approach to computing distance based on heat flow. ACM Transactions on
Graphics (TOG) 32, 5 (2013).

Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision

exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016).
Alan Demlow and Maxim A Olshanskii. 2012. An adaptive surface finite element

method based on volume meshes. SIAM J. Numer. Anal. 50, 3 (2012).
Jeff Erickson and Sariel Har-Peled. 2004. Optimally Cutting a Surface into a Disk.

Discrete & Computational Geometry 31, 1 (2004).

Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018.

Curved optimal delaunay triangulation. ACM Trans. Graph. 37, 4 (2018).
M. Fisher, B. Springborn, P. Schröder, and A. I. Bobenko. 2007. An algorithm for

the construction of intrinsic delaunay triangulations with applications to digital

geometry processing. Computing 81, 2 (01 Nov 2007).

Steven Fortune. 1993. A note on Delaunay diagonal flips. Pattern Recognition Letters 14,
9 (1993).

Free Software Foundation. 2008. GCC libquadmath.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:14 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

Michael T Goodrich and Roberto Tamassia. 1997. Dynamic Ray Shooting and Shortest

Paths in Planar Subdivisions via Balanced Geodesic Triangulations. Journal of
Algorithms 23, 1 (1997).

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the Manipulation of General

Subdivisions and the Computation of Voronoi. ACM Trans. Graph. 4, 2 (April 1985).
A. Hatcher. 2002. Algebraic Topology. Cambridge University Press.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018).

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-outside

Segmentation Using Generalized Winding Numbers. ACM Trans. Graph. 32, 4,
Article 33 (July 2013).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal

direction fields. ACM Transactions on Graphics (TOG) 32, 4 (2013), 59.
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns

on surfaces. ACM Transactions on Graphics (TOG) 34, 4 (2015), 39.
Jon W. Van Laarhoven and Jeffrey W. Ohlmann. 2011. A randomized Delaunay trian-

gulation heuristic for the Euclidean Steiner tree problem in Rd . J. Heuristics 17, 4
(2011).

Yong-Jin Liu, Dian Fan, Chun-Xu Xu, and Ying He. 2017. Constructing Intrinsic

Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams. ACM Trans.
Graph. 36, 2, Article 15 (April 2017).

Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. 2015. Efficient Construction and

Simplification of Delaunay Meshes. ACM Trans. Graph. 34, 6, Article 174 (Oct. 2015).
Albert T. Lundell and Stephen Weingram. 1969. Regular and Semisimplicial CW Com-

plexes. 77–115.
Richard MacNeal. 1949. The Solution of Partial Differential Equations by Means of

Electrical Networks. Ph.D. Dissertation. California Institute of Technology.
Khamron Mekchay and Ricardo H Nochetto. 2005. Convergence of adaptive finite

element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal.
43, 5 (2005).

Pedro Morin, Ricardo H Nochetto, and Kunibert G Siebert. 2002. Convergence of

adaptive finite element methods. SIAM review 44, 4 (2002).

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global

parametrization. ACM Transactions on Graphics (TOG) 33, 4 (2014).
Giuseppe Patané. 2016. STAR: Laplacian Spectral Kernels and Distances for Geometry

Processing and Shape Analysis. In Proceedings of the 37th Annual Conference of the
European Association for Computer Graphics: State of the Art Reports. Eurographics
Association.

Konrad Polthier and Markus Schmies. 1998. Straightest Geodesics on Polyhedral

Surfaces. (1998).

Samuel Rippa. 1990. Minimal roughness property of the Delaunay triangulation. Com-
puter Aided Geometric Design 7, 6 (1990).

Max Schindler and Evan Chen. 2012. Barycentric Coordinates in Olympiad Geometry.

Teseo Schneider, Yixin Hu, Jeremie Dumas, Xifeng Gao, Daniele Panozzo, and Denis

Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. 37, 5 (2018).

Silvia Sellán, Herng Yi Cheng, Yuming Ma, Mitchell Dembowski, and Alec Jacobson.

2019. Solid Geometry Processing on Deconstructed Domains. Computer Graphics
Forum (2019).

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The Vector Heat Method.

ACM Trans. Graph. 38, 2 (2019).
Alla Sheffer and John C. Hart. 2002. Seamster: Inconspicuous Low-distortion Texture

Seam Layout. In Proceedings of the Conference on Visualization ’02 (VIS ’02). IEEE
Computer Society.

Jonathan Shewchuk. 1999. Lecture Notes on Geometric Robustness. Technical Report.
University of California at Berkeley.

Jonathan Richard Shewchuk. 1997. Delaunay Refinement Mesh Generation. Ph.D.

Dissertation. Carnegie Mellon University. Tech Report CMU-CS-97-137.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. The

Princeton Shape Benchmark. In Shape Modeling International.
J. Macgregor Smith, D. T. Lee, and Judith S. Liebman. 1981. An O(n log n) heuristic for

steiner minimal tree problems on the euclidean metric. Networks 11, 1 (1981).
Daniel A Spielman. 2010. Algorithms, Graph Theory, and Linear Equations in Laplacian

Matrices. In Proceedings of the International Congress of Mathematicians, Vol. 4.
Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving

Delaunay refinement and optimization for practical isotropic tetrahedron mesh

generation. 28, 3 (2009), 75.

Godfried Toussaint. 1980. The Relative Neighborhood Graph of a Finite Planar Set.

Pattern Recognition 12 (1980).

Shi-Qing Xin, Shuang-Min Chen, Ying He, Guo-Jin Wang, Xianfeng Gu, and Hong Qin.

2011. Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangula-

tion. In ISVD. IEEE Computer Society.

Shi-Qing Xin, Xiang Ying, and YingHe. 2012. Constant-time All-pairs Geodesic Distance

Query on Triangle Meshes. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (I3D ’12). ACM.

input reference[Fisher et al. 2006]

Fig. 27. Even though the incremental overlay of Fisher et al. guarantees
topological correctness, it can still yield geometrically inaccurate edges—as
shown here for the Delaunay triangulation of a near-degenerate input.

(a)

(b) (c)

Fig. 28. Even on a nice mesh, a naïve tracing query from p to q may generate
spurious crossings (in red) due to floating point error. Our robust tracing
procedure helps provide reliable behavior even on highly degenerate models.

Ran Yi, Yong-Jin Liu, and Ying He. 2018. Delaunay Mesh Simplification with Differential

Evolution. In ACM Transactions on Graphics, Vol. 37.
Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-

ments for Solid Geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016).
Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

A NUMERICS
For most meshes, one can simply implement our data structure ex-

actly as described in Section 3 in double precision, using no special

treatment of numerics. However, as noted by Fisher et al. [2007,

Section 2.2], careful treatment of floating point can improve the ro-

bustness of intrinsic operations for particularly challenging meshes.

For the worst 5% of meshes in Thingi10k, we found it valuable to

carefully treat the floating point evaluation of tracing queries, as

described below. For triangle pairs where three vertices are nearly

collinear, we found we could improve the accuracy of the length

update formula described in Fisher et al. [2007, Sec. 2.2] by comput-

ing a Taylor series expansion around large and small angles. We

also found that an alternative angle representation (described in

supplemental material) helps to improve run time performance (by

avoiding transcendental functions), but is not critical for robustness.

Ultimately, all operations needed for our signpost data structure can

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Navigating Intrinsic Triangulations • 55:15

be expressed using only rational arithmetic (+,−, ∗,÷) and square

roots, meaning that in principle it could be implemented using exact

numerical libraries that do not support transcendental operations.

Tracing Queries. Even on high-quality input meshes, a naïve float-

ing point implementation of tracing can yield a sequence of edge

crossings that does not encode the correct path. We apply several

common-sense improvements, such as only performing ray-edge

intersections with edges ij that do not contain the ray origin, and

clamping edge barycentric coordinates to the interval [0, 1]. Simi-

larly, if a tracing query ever terminates at a point with barycentric

coordinates (bi ,bj ,bk) = (ε, t , 1 − t) for some ε close to zero (as

depicted in Figure 28, (b)), we simply snap this vertex to the edge

jk and update the ray direction u accordingly. In situations where

we know the target point q a priori (e.g., in the case of overlay ex-

traction), we can also use purely topological invariants to improve

numerical robustness. In particular, we know that the sequence of

crossings produced by a correct path should end with a crossing

into the star St(σ) of the simplex σ containing q. Removing any

subsequent crossings (indicated by red crosses in Figure 28, (a)) and

connecting the final valid crossing to the target q therefore yields a

path that is topologically valid, even if there is error in the barycen-

tric coordinates. Another possibility is that we do not quite reach

St(σ) (as in Figure 28, (c)); in this case, it is almost always sufficient

to search immediate neighbors of the triangle containing the path

endpoint for σ , then connect to q along a straight line segment.

Although more elaborate strategies could be applied, this simple

scheme enables us to handle all but the most pathological examples

in standard precision (see Section 6.2).

B PSEUDOCODE
Pseudocode for building and manipulating an intrinsic triangula-

tion is provided below. We assume that the intrinsic triangulation

is initialized from a standard triangle mesh with vertex positions

in R3, which represents the most common use case. For brevity,

we will use S = (M, ℓ,φ,b,Θ) to denote a signpost mesh, which

includes the underlying mesh M = (V, E, F) together with the edge

lengths ℓ : E → R>0, halfedge angles φ : H → R, and barycen-

tric coordinates b : V → [0, 1]3. We also include the vertex angle

sums Θ : V→ R>0 (Equation 1), which are invariant with respect

to changes to the triangulation and can hence be computed just

once during initialization (rather than recomputing it from the edge

lengths ℓ each time). Finally, we will use ℓi jk as shorthand for the

tuple of edge lengths (ℓi j , ℓjk , ℓki).

All routines not explicitly given below are either elementary

geometric calculations, or basic topological operations whose im-

plementation depends on the choice of mesh data structure:

• Degree(M, i)—number of edges in the meshM that contain

vertex i .
• NewVertex(M)—add a new vertex to M and return it.

• EraseTriangles(M, i1j1k1, i2j2k2, . . .)—remove the given tri-

angles from the mesh M.

• InsertTriangles(M, i1j1k1, i2j2k2, . . .)—add the given trian-

gles to the mesh M.

• Angle(ℓi j , ℓjk , ℓki)—for a triangle with edge lengths ℓi j , ℓjk ,

ℓki , returns the interior angle θ
jk
i .

• BaseLength(a,b,θ)—returns the third side length of a trian-

gle with sides of length a and b meeting at an angle θ
• AngleBetween(α , β)—given two angles α , β ∈ R encoding

points on the unit circle, returns the smallest (unsigned) angle
between them.

• Argument(u,v)—given two vectorsu,v ∈ R2 gives the angle
from u to v in the range [0, 2π).

The only exception is the routine TraceVector(S, ijk,p,u), which
returns the triangle ijk and barycentric coordinates q ∈ [0, 1]3 for
the point reached by starting at a point p (given in barycentric

coordinates) and walking along the direction u/|u | for a distance
|u |; implementation of this routine is discussed in Section 3.2.2 and

Appendix A.

Algorithm 1 UpdateSignpost(S, ijk)

Input: A triangle ijk of a signpost mesh S. Assumes ijk has valid

edge lengths and a valid angle φi j .

Output: An updated signpost mesh with valid angle φik .

1: θ
jk
i ← Angle(ℓi jk)

2: φik ← φi j + 2πθ
jk
i /Θi ▷Section 3.2.1

3: return S

Algorithm 2 TraceFromVertex(S, i, r ,φ)

Input: A tangent vector at a vertex i specified via a magnitude r
and an angle φ ∈ [0, 2π).

Output: An extrinsic triangle xyz and point in barycentric coordi-

nates p ∈ [0, 1]3.
1: n ← 0

2: θ ← φi j0
3: while θ < φ do
4: θ ← θ + 2πθ

jn jn+1
i /Θi

5: n ← n + 1
6: end while
7: φ̃ ← Θi (φ − θ)/2π
8: returnTraceVector(ijn jn+1, (1, 0, 0), r , φ̃)

Algorithm 3 UpdateVertex(S, i)

Input: A vertex i . Assumes all edge lengths of S are valid, and all

angles φ in the link of i are known.
Output: An updated signpost mesh with valid angles φi j and φ ji for

each edge ij incident on i .
1: for n = 0, . . . ,Degree(M, i) − 1 do ▷update incoming angles
2: UpdateSignpost(S, jn jn+1i)
3: (xyz,bi) ← TraceFromVertex(S, j0, ℓj0i ,φ j0i)
4: φi j0 ← Argument(exyz ,−uj0→i)

5: for n = 1, . . . ,Degree(M, i) − 1 do ▷update outgoing angles
6: φi jn ← φi jn−1 + Angle(ℓi jn−1 jn)

7:

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:16 • Nicholas Sharp, Yousuf Soliman, and Keenan Crane

Algorithm 4 InitSignpostMesh(M, f)

Input: A triangle mesh M and vertex positions f : V→ R3.
Output: A signpost mesh S encoding the input triangulation.

1: S← (M, ℓ,φ,b,Θ) ▷allocate storage
2: for each ij ∈ E do ℓi j ← | fj − fi | ▷get edge lengths

3: for each i ∈ V do
4: Θi ← 0 ▷compute total angle around vertex i
5: for n = 0, . . . ,Degree(M, i) − 1 do
6: Θi ← Θi + Angle(ℓi jn jn+1)

7: φi j0 ← 0 ▷compute signpost directions
8: for n = 0, . . . ,Degree(M, i) − 2 do
9: UpdateSignpost(S, ijn jn+1)
10: return S

Algorithm 5 FlipEdge(S, ij)

Input: An interior edge ij, with opposite vertices k and l .
Output: An updated signpost mesh, with edge ij flipped (Sec-

tion 3.3.1).

1: θ lki ← Angle(ℓi jk) + Angle(ℓil j)

2: EraseTriangles(M, ijk, jil) ▷update connectivity
3: InsertTriangles(M, ilk, jkl)
4: ℓkl ← BaseLength(ℓik , ℓil ,θ

lk
i) ▷length of flipped edge

5: UpdateSignpost(S, l jk) ▷direction of halfedge lk
6: UpdateSignpost(S,kil) ▷direction of halfedge kl
7: return S

Algorithm 6 Distance(ℓ12, ℓ23, ℓ31,p,q)

Input: Three lengths ℓ12, ℓ23, ℓ31 ∈ R>0 satisfying the triangle

inequality, and barycentric coordinates p,q ∈ [0, 1]3 for two
points in this triangle.

Output: The distance between the points specified by p and q (using

a formula from Schindler and Chen [2012, Section 3.2]).

1: u ← q − p
2: d ← −(ℓ2

12
u1u2 + ℓ

2

23
u2u3 + ℓ

2

31
u3u1)

3: return
√
d

Algorithm 7 InsertVertex(S,b)

Input: A point on the interior of a triangle ijk , specified via positive
barycentric coordinates bi + bj + bk = 1.

Output: An updated signpost mesh, with a vertex inserted at b (Sec-

tion 3.3.2).

1: p ← NewVertex(M) ▷update connectivity
2: EraseTriangles(M, ijk)
3: InsertTriangles(M, ijp, jkp,kip)
4: ℓip ← Distance(ℓi jk , i,b) ▷update edge lengths
5: ℓjp ← Distance(ℓi jk , j,b)
6: ℓkp ← Distance(ℓi jk ,k,b)
7: UpdateVertex(S,p) ▷update signpost angles
8: return S

Algorithm 8 SplitEdge(S,b)

Input: A point on the interior of an edge ij with opposite vertices

k, l , specified via positive barycentric coordinatesbi+bj = 1.

Output: An updated signpost mesh, with a vertex inserted at b (Sec-

tion 3.3.2).

1: p ← NewVertex(M) ▷update connectivity
2: EraseTriangles(M, ijk, jil)
3: InsertTriangles(M, ipk,kpj, jpl , lpi)
4: ℓip ← ℓi jbi ▷update edge lengths
5: ℓjp ← ℓi jbj
6: ℓkp ← Distance(ℓi jk ,k, (bi ,bj , 0))
7: ℓlp ← Distance(ℓjil , l , (bi ,bj , 0))
8: UpdateVertex(S,p) ▷update angles
9: return S

Algorithm 9 VectorToPoint(ℓi j , ℓjk , ℓki ,p)

Input: The three side lengths of a triangle ijk , and barycentric

coordinates pi + pj + pk for a point in this triangle.

Output: The polar coordinates (r ,φ) for the vector from i to p, where
φ is expressed relative to edge ij.

1: rpi ← Distance(ℓi jk , i,p) ▷distance from p to i
2: r jp ← Distance(ℓi jk , j,p) ▷distance from j to p
3: φip ← Angle(ℓi j , r jp , rpi) ▷angle from ij to ip
4: return (rip ,φip)

Algorithm 10 MoveVertex(S, i, iab,p)

Input: An inserted vertex i , and a point in an intrinsic triangle iab,
specified by nonnegative barycentric coordinates pi + pa +
pb = 1.

Output: An updated signpost mesh, where i has been moved to p
(Section 3.3.3).

1: (r ,φ) ← VectorToPoint(ℓiab ,p) ▷vector from i to p
2: φ ← φia + φ ▷Θi = 2π , since i is inserted vertex
3: for n = 0, . . . ,Degree(M, i) − 1 do ▷iterate over neighbors
4: α ← AngleBetween(φ,φi jn)

5: ℓpjn ←
√
r2 + ℓ2i jn − 2rℓi jn cosα ▷update edge lengths

6: UpdateVertex(S, i) ▷update signpost angles
7: return S

Algorithm 11 PointQuery(S,xyz,p)

Input: A point in triangle xyz of the extrinsic mesh, given in

barycentric coordinates p̄i + p̄j + p̄k = 1.

Output: The intrinsic triangle ijk and barycentric coordinates

pi ,pj ,pk for the corresponding point on the intrinsic mesh.

1: (r ,φ) ← VectorToPoint(ℓxyz ,p) ▷vector from x̄ to p
2: (ijk,p) ← TraceVector(S,xyz,x , r ,φ)
3: return (ijk,p)

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Connectivity
	2.2 Discrete Metric
	2.3 Tangent Spaces

	3 Data Structure
	3.1 Signpost Data Structure
	3.2 Atomic Operations
	3.3 Local Operations
	3.4 Correspondence

	4 Intrinsic Retriangulation
	4.1 Delaunay Flipping
	4.2 Intrinsic Delaunay Refinement (iDR)
	4.3 Intrinsic Optimal Delaunay Triangulation (iODT)

	5 Intrinsic Geometry Processing
	5.1 Steiner Tree Approximation
	5.2 Finite Elements
	5.3 Geodesic Distance
	5.4 Adaptive Mesh Refinement
	5.5 Tangent Vector Field Processing

	6 Evaluation
	6.1 Experimental Setup
	6.2 Robustness
	6.3 Comparisons

	7 Limitations and Future Work
	Acknowledgments
	References
	A Numerics
	B Pseudocode

