Navigating Intrinsic Triangulations

NICHOLAS SHARP, Carnegie Mellon University
YOUSUF SOLIMAN, Caltech

KEENAN CRANE, Carnegie Mellon University

Fig. 1. Our data structure makes it possible to treat a crude input mesh (left) as a high-quality intrinsic triangulation (right) while exactly preserving the
original geometry. Existing algorithms can be run directly on the new triangulation as though it is an ordinary triangle mesh. Here, a mesh with tiny input
angles becomes a geometrically identical Delaunay triangulation with angles no smaller than 30°—a feat impossible for traditional, extrinsic remeshing.

We present a data structure that makes it easy to run a large class of algo-
rithms from computational geometry and scientific computing on extremely
poor-quality surface meshes. Rather than changing the geometry, as in
traditional remeshing, we consider intrinsic triangulations which connect
vertices by straight paths along the exact geometry of the input mesh. Our
key insight is that such a triangulation can be encoded implicitly by storing
the direction and distance to neighboring vertices. The resulting signpost
data structure then allows geometric and topological queries to be made
on-demand by tracing paths across the surface. Existing algorithms can be
easily translated into the intrinsic setting, since this data structure supports
the same basic operations as an ordinary triangle mesh (vertex insertions,
edge splits, etc.). The output of intrinsic algorithms can then be stored on an
ordinary mesh for subsequent use; unlike previous data structures, we use a
constant amount of memory and do not need to explicitly construct an over-
lay mesh unless it is specifically requested. Working in the intrinsic setting
incurs little computational overhead, yet we can run algorithms on extremely
degenerate inputs, including all manifold meshes from the Thingi10k data
set. To evaluate our data structure we implement several fundamental geo-
metric algorithms including intrinsic versions of Delaunay refinement and
optimal Delaunay triangulation, approximation of Steiner trees, adaptive
mesh refinement for PDEs, and computation of Poisson equations, geodesic
distance, and flip-free tangent vector fields.

Authors’ addresses: Nicholas Sharp, Carnegie Mellon University, 5000 Forbes Ave, Pitts-
burgh, PA, 15213; Yousuf Soliman, Caltech; Keenan Crane, Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART55 $15.00

https://doi.org/10.1145/3306346.3322979

CCS Concepts: » Mathematics of computing — Mesh generation.
Additional Key Words and Phrases: remeshing, discrete differential geometry

ACM Reference Format:

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. Navigating Intrin-
sic Triangulations. ACM Trans. Graph. 38, 4, Article 55 (July 2019), 16 pages.
https://doi.org/10.1145/3306346.3322979

1 INTRODUCTION

The geometry of a polyhedron has little to do with ‘V
the way it is triangulated. For instance, flipping a
diagonal of a triangulated cube does not change its
shape; in general, any two neighboring faces of a tri-
angulation can be laid out flat and connected along
the opposite diagonal (see inset). Although the new <>’
edge looks bent when drawn on the surface, each tri-
angle is still described by three ordinary edge lengths. Such intrinsic
triangulations effectively provide “scaffolding” on top of a fixed geo-
metric space: no information about shape is lost by changing the
way vertices are connected. However, the choice of triangulation
can have significant impact on the behavior of algorithms.
Intrinsic triangulations of geometric spaces have a long history in
mathematics, but have seen limited use in practical algorithms: ex-
isting data structures support only simple edge flips, precluding their
use for general geometry processing. Yet a full-blown intrinsic data
structure is quite powerful, since it decouples the triangulation used
to describe the domain from the one used to implement algorithms
on that domain. Hence, rather than trying to make algorithms more
robust one at a time, we can immediately run a large class of existing
algorithms on low-quality inputs, with little to no modification.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:2 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

Fig. 2. Our signpost data structure stores the direction and distance to each
neighbor, making triangulations easy to update and to query on-demand.

The basic idea of our signpost data structure is to implicitly en-
code an intrinsic triangulation by storing the direction and distance
from each vertex to its neighbors. Edges can then be traced out
on-demand by simply walking along the surface. However, all of
this machinery is easily abstracted away: since we support the same
standard queries as an ordinary mesh, the fact that an intrinsic trian-
gulation is being used “under the hood” can largely be hidden from a
developer of geometric software. This situation is reminiscent of the
usage pattern in, say, numerical linear algebra: although libraries
may perform sophisticated matrix transformations to improve accu-
racy or stability, a developer need not think about (or even know
about) these transformations in order to express high-level algo-
rithms. Likewise, we seek to abstract away the particular choice of
surface tessellation for geometry processing applications.

Two major categories of algorithms nat-

input urally fit into the intrinsic framework. First,
it enables one to apply standard techniques
from Euclidean computational geometry to
intrinsic

the polyhedral setting without simultane-
ously having to worry about geometric ap-
proximation: the polyhedron can be viewed
as an unchanging “background” domain,
just like the Euclidean plane. Second, for
finite element methods it allows one to de-
couple the mesh used to specify the domain
from the mesh used to define basis functions, providing the best of
both worlds: a concise description of the geometry, together with a
small number of high-quality elements (Figure 3).

Our main contribution is a new general-purpose data structure
for intrinsic triangulations that enables fundamental geometric al-
gorithms to be implemented in the intrinsic setting for the very
first time (Section 3). Most notably, intrinsic Delaunay refinement
(Section 4.2) provides a way to obtain a high-quality intrinsic tri-
angulation for any input domain (i.e., not merely Delaunay, but
also good angles, areas, etc.). These tools appear to be the “missing
ingredients” that allow intrinsic triangulations to be applied to a
much broader range of real-world geometry processing problems.

Fig. 3. Linear basis func-
tions on an input vs. in-
trinsic triangulation.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

1.1 Related Work

Geometry Processing in the Wild. There has been significant recent
work on robust geometric algorithms for low-quality, real-world
inputs. Much of this work depends on a volumetric interpretation
of geometry [Zhou et al. 2016; Hu et al. 2018; Sellan et al. 2019],
using functions defined over the ambient three-dimensional space to
achieve robustness [Jacobson et al. 2013; Barill et al. 2018]. Likewise,
robust surface triangulation methods from computational geometry
are largely based around tetrahedralization of a three-dimensional
domain [Boissonnat and Oudot 2005; Cheng et al. 2012]. To our
knowledge, ours is the first general approach to manifold surface
processing “in the wild,” which neither changes the input geometry
nor constructs an auxiliary volumetric data structure.

Data Structures. Few data struc- extrinsic intrinsic
tures are available for intrinsic tri- fip fip
angulations. Geodesic data structures / \\
from computational geometry focus

on planar regions [Goodrich and
Tamassia 1997], making them un-
suitable for 3D geometry processing;
other work analyzes sampling criteria,
but does not consider practical data structures [Boissonnat et al.
2013]. Work on the discrete Laplace-Beltrami operator of an intrinsic
Delaunay triangulation [Bobenko and Springborn 2005] inspired
development of the first (and to date, only) practical data structure
for intrinsic triangulations, the incremental overlay of Fisher et al.
[2007] which maintains an explicit list of edge crossings. We pro-
vide a detailed comparison in Section 6.3, but most importantly
this incremental overlay is designed to support edge flips and little
else—how to implement other operations is not clear, apart from a
tracing strategy as developed in this work. Several other algorithms
construct intrinsic Delaunay triangulations by tracing geodesics
from an intrinsic Voronoi diagram [Xin et al. 2011, 2012; Liu et al.
2017], but do not discuss data structures for subsequent processing.
Importantly, although we explore triangulation algorithms in Sec-
tion 4, we emphasize that our data structure is not specifically aimed
at Delaunay triangulations; rather, it provides a general framework
for any kind of intrinsic geometry processing (Section 5).

Further discussion of related work in the context of specific ap-
plications can be found throughout Sections 4 and 5.

Fig. 4. An intrinsic edge can cross an extrinsic edge many times, as seen
with this increasingly “twisted” cube. Rather than track these crossings
explicitly, we introduce an implicit encoding that has constant size.

¢ a b d c e
d b f
b d f
b
ee f a b h g
d a b c d
h L d c ¢

Fig. 5. Unlike an ordinary triangle mesh (top), an intrinsic triangulation
(bottom) can include edges that take any straight path between vertices.
However, each region bounded by three edges can still be unfolded into a
single planar triangle.

2 BACKGROUND

The intrinsic perspective on geometry means that surfaces are de-
scribed without reference to the way they sit in space, using only
measurements along the surface (lengths, areas, etc.). Although our
initial triangulation typically comes from a standard triangle mesh,
we do not require that subsequent triangulations be realizable as
collections of planar triangles in R3—only that each individual face
can be drawn as a triangle in the Euclidean plane (Figure 5). We
will assume throughout that the underlying domain has manifold
connectivity, and that any n-gons have been triangulated (though in
principle one could construct a similar representation with intrinsic
polygonal faces). We first give an account of intrinsic triangulations
in isolation; Section 3 describes a practical data structure that can
be used to encode an intrinsic triangulation of a given mesh.

2.1 Connectivity

The connectivity of an intrinsic triangulation is given by an abstract
triangulation M = (V,E,F) of a polyhedral surface. We denote
vertices of M by indices i € V, edges by pairs ij € E, and faces
by triples ijk € F; each edge is associated with two oppositely

N @)/ A

Fig. 6. To provide maximum flexibility, we permit intrinsic triangulations
that are not simplicial, allowing for instance triangles with repeated vertices
(left) or self edges (right).

Navigating Intrinsic Triangulations + 55:3

oriented halfedges ij, ji € H. When indices appear on both sides
of an equation, all sums and products are restricted to elements
containing those indices. For instance, the expression a; := };; bij
indicates that the value of a at vertex i is equal to the sum of b over
all edges ij containing vertex i.

In general, M need not be simplicial: we allow irregular triangula-
tions where (for instance) two edges of a triangle are glued together,
or all three vertices coincide, as depicted in Figure 6. Formally, M is a
A-complex, as defined by Hatcher [2002, Section 2.1]. This more gen-
eral construction can represent important objects such as intrinsic
Delaunay triangulations, yet leads to no additional implementation
complexity beyond using an appropriate mesh data structure (see
Section 3.1). In practice, irregular vertices almost never occur, except
for a small number of extreme examples (e.g., in the Thingil0k data
set). Moreover, every A-complex can be subdivided into a standard
simplicial complex [Lundell and Weingram 1969, Theorem 6.1].

Extrinsic vs. Intrinsic Triangulation. Even
though the input mesh is not strictly re-
quired to be embedded in R”, for clarity we
refer to the initial triangulation as the ex-
trinsic triangulation and any subsequent
re-triangulation as the intrinsic triangu-
lation. We use a bar to denote extrinsic ver-
tices (%, 7, z, etc.) and ordinary letters for
intrinsic vertices (i, j, k, etc.); note however that intrinsic and extrin-
sic vertices will often coincide. In figures, we will often use the inset
styling to distinguish between intrinsic and extrinsic elements.

2.2 Discrete Metric

The geometry of an intrinsic triangulation is completely determined
by a discrete metric, i.e., a collection of edge lengths £ : E — R
satisfying the triangle inequality €;j + € > {y; in each face ijk € F.
Other geometric quantities, like the interior angle 9{ k at corner i of
triangle ijk € F, can be determined purely from the edge lengths, as
discussed in Section 3.1.1. If a triangulation has vertex coordinates
f + V. — R7, then initial edge lengths can of course be obtained
from the Euclidean distance ¢£;; = |fj — fi|. Importantly, however,
subsequent intrinsic edge lengths will not generally agree with the
Euclidean distance—see Figure 9.

2.3 Tangent Spaces

Tangent vectors on a poly-
hedral surface can be en-
coded in local polar co-
ordinates (r,¢) € R X
[0, 27) relative to an arbi-
trary (but fixed) reference
direction e at each vertex,
edge, or face, which cor-
responds to the direction
¢ = 0 (Figure 8). At edges
we simply let e;; be the

Fig. 7. Intrinsically, the neighborhood of a
direction along the edge; vertex i looks like a circular cone. The di-
likewise, at faces we let rection of any outgoing edge ik can be ex-
ejjk be parallel to one of pressed via an angle ¢; around this cone.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:4 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

P=i

Jjo

Fig. 8. A tangent vector X at a point p is encoded by an angle ¢ relative to
some fixed reference direction e at each vertex i, edge ij, or face ijk.

the three edges. At vertices, we take advantage of the fact that—
intrinsically—the local neighborhood looks like a circular cone (Fig-
ure 7). Following Knéppel et al. [2015, Section 3.1], we therefore
let e; be the direction from i to some canonical neighbor jj, and
interpret the angle ¢ as the arc length along the base of the cone.
More precisely, let

0 = Ty 0] o
be the total angle around vertex i, and define augmented angles

6% = 2n0/* j0;

which (by construction) sum to 27. All tangent directions at this
vertex are then expressed with respect to normalized angles. In
particular, if ijo, ij1, . . ., ijN denote the outgoing edges in counter-
clockwise order, then the directions ¢;;, of these edges are given
by the cumulative sums

. -1 pin>in
Pija = Tpso 0", @)
where the index n + 1 is taken modulo N. Note that these coordinate

systems remain fixed even if we modify the intrinsic triangulation
(e.g., by flipping the reference edge ijo).

3 DATA STRUCTURE

Whereas Section 2 defines intrinsic triangulations in isolation, we
now describe a data structure that encodes an intrinsic triangulation
of a given extrinsic mesh, as well as routines to modify and query
the triangulation. To do so we store, at each intrinsic vertex, the
distance and direction that one must travel in order to reach each
neighboring vertex—we call this construction the signpost data struc-
ture, in analogy with signs used to mark trajectories to neighboring
cities (Figure 2).

Our signpost data structure has at its core just two operations—
signpost updates and tracing queries—on top of which all other oper-
ations can be expressed (Section 3.2). From here one can easily im-
plement common geometric and topological primitives such as edge
flips and vertex insertions (Section 3.3). We also describe efficient
strategies for evaluating correspondence between the intrinsic and
extrinsic triangulation (Section 3.4). Here we discuss only generic,
low-level operations; we defer discussion of how to actually con-
struct a “good” triangulation to Section 4. Detailed pseudocode for
most methods is provided in Appendix B; we also plan on releasing
an open source implementation following publication.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

3.1 Signpost Data Structure

Our signpost data structure can be built on top of any standard
mesh data structure, such as a vertex-face adjacency list; we find it
most convenient to use a halfedge mesh, which supports irregular
triangulations (Section 2.1). Starting with the connectivity M =
(V,E, F), our signpost data structure then amounts to two additional
pieces of data:

e positive edge lengths £ : E — R, and
e angles ¢ : H — [0, 27r) for each halfedge.

The lengths ¢;; describe the shape of each triangle; the angle ¢;;
gives the direction of the halfedge from vertex i to vertex j, in the
local polar coordinate system at vertex i (Section 2.3). For each
vertex i inserted into the intrinsic mesh, we also store its location
via a pointer to the extrinsic edge or triangle it belongs to, and its
(two or three, resp.) barycentric coordinates b; within that element.

3.1.1 Geometric Quantities. Geometric quantities on the intrinsic
triangulation can easily be computed from the edge lengths ¢ (rather
than the vertex positions f, which would generally yield incorrect
results). Expressions for several quantities are given in Figure 9; note
that in floating point there are more accurate ways to evaluate such
quantities—see for instance [Shewchuk 1999]. The extrinsic location
fi € R3 of any intrinsic vertex i can still be obtained via barycentric
interpolation of extrinsic vertex coordinates if necessary (e.g., for
visualization, or sampling a function on R3). Other quantities can be
deduced, e.g., by isometrically unfolding local neighborhoods into
the plane and applying standard Euclidean formulas.

3.2 Atomic Operations

We now describe the atomic local operations on the signpost data
structure: a tracing query, which follows a signpost to its destination;
a signpost update, which updates the direction of a single signpost;
and a vertex update, which combines these two operations to update
the signposts around a vertex. As with many data structures, these
operations may initially appear abstract, but ultimately allow all
other operations to be implemented in a natural way (consider for
the splice operation in a quad edge mesh [Guibas and Stolfi 1985]).
In particular, they will be used to implement low level operations in
Sections 3.3 and 3.4, as well as higher-level triangulation algorithms
in Section 4.

S = (fl] +fjk +€k,)/2

2 2 2
G+ G — 4
20tk

ka: arccos

Aujie = \Js(s = £)(s =) (s — lxa)

by = \/ffk + (2 = 2y cos O1F

Fig. 9. Left: when working with an intrinsic triangulation, the length ¢;;
of an edge will in general be different from the extrinsic distance |f; — fi|
between its endpoints. Right: instead, quantities like triangle areas A; jx and
interior angles G{k can be easily computed from the intrinsic edge lengths.

3.2.1 Signpost Update. Maintaining the
signpost data structure requires that we
be able to update the direction of halfedges
from known length and angle information—
this update is an atomic operation used in
edge flips, vertex insertions, etc., as well as for initializing the sign-
post data structure itself (see Algorithm 4). Consider in particular
a triangle ijk where the angle ¢;; and all three edge lengths are al-
ready known. A signpost update computes the direction of halfedge
ik € H via the relationship

ik
Pik = @ij + é—’fﬁ,’ , 3)

where the interior angle 9{ ks computed from the edge lengths,
as discussed in Section 3.1.1. In other words, it simply computes
the direction of the next edge around the vertex by adding the
normalized Euclidean angle (Section 2.3).

3.2.2 Tracing Query. At any point p, a trac- q
ing query computes the point q reached by
walking a given distance s > 0 in a given
unit direction u (along either the intrinsic
or extrinsic mesh). Such queries correspond
to an evaluation of the discrete exponential
map, producing a straightest polyhedral ge-
odesic in the sense of Polthier and Schmies
[1998]. Conceptually, this query amounts to
little more than unfolding triangles along
the path and drawing a straight line (see inset). Since tracing is a
purely intrinsic operation, all calculations can be carried out in a
local 2D coordinate system for each triangle—we do not need to
work in 3D, or explicitly constrain the path to the surface.

Algorithmically, each vertex of the path
is found by computing 2D ray-line intersec-
tions with the edges of the current triangle,
and moving to the closest intersection point.
The direction of the ray is then transformed
into the coordinate system of the next tri-
angle (by constructing a vector that makes
the same angle with the shared edge), and
the process is repeated. The final output is
the barycentric coordinates of the point g, as
well as a pointer to the triangle containing q.
In some situations it is also useful to main-
tain a list of points crossed along the path (given by 1D barycentric
coordinates and edge pointers). Discussion of floating point imple-
mentation is discussed in Appendix A.

Note that to support the atomic operations of our data structure,
we do not need to consider paths through vertices (a case which
is carefully considered by Polthier and Schmies [1998]). The only
subtlety is tracing a vector u that starts at a vertex i. Assuming the
direction of u is given by a normalized angle ¢, € [0, 27), we first
iterate over the neighbors j, of i until we find the triangle containing
u, i.e,until ¢;;, < ¢y < @ij,,,. We then initiate a tracing query
starting at vertex i of triangle ij,j,+1 in the direction ®;¢,, /27, ie.,
we “un-normalize” the angle so that we can just work in ordinary
coordinates. This procedure is described in Algorithm 2.

Navigating Intrinsic Triangulations + 55:5

3.2.3 Vertex Update. Several local op-
erations (Section 3.3) compute new
lengths £;; for the edges incident on a P
single vertex i; the vertex update uses
these new lengths to update our other
quantities. To update the incoming an- Pl
gles ¢j; we simply apply a signpost
update (Section 3.2.1) to each halfedge
Jji using the known angles ¢, j+1 and 9; B) update the outgoing

i
JH1 Ty e

angles ¢;; we first establish the direction of an initial edge ijo by
performing a tracing query from jo to i along the direction u, then
measure the angle ¢;j, between —u and the reference direction of the
extrinsic triangle Xyz containing the intrinsic vertex i. This tracing
query also provides the new barycentric coordinates b;. To obtain
the remaining angles ¢;;, we add cumulative sums of interior angles

9{ AR (as in Equation 2) to the initial angle ¢;;,. Note that to facili-
tate subsequent tracing queries it is critical to express the outgoing
signpost angles ¢;; with respect to the canonical coordinate system
for the extrinsic triangle xyz (as defined in Section 2.3). Otherwise,
there is no way to determine how an intrinsic tangent vector u at i
gets mapped to an extrinsic tangent vector for subsequent tracing
queries (and vice versa).

3.3 Local Operations

Local mesh operations such as edge flipping and splitting can easily
be implemented using the atomic routines defined in the previous
section. This section develops standard operations needed for many
applications, including those in Sections 4 and 5. Other common
operations (such as edge insertion [Bern et al. 1993]) could also be
implemented. However, operations that remove extrinsic vertices
(such as edge collapses) do not have an obvious interpretation, since
intrinsically it is not clear what the resulting geometry should be; in
general, only vertices that were previously inserted can be removed
without changing the geometry of the domain.

3.3.1 Edge Flip. An edge flip
replaces a pair of triangles
ijk,jil € F with the trian-
gle pair klj,lki (see inset).
To update our signpost data
structure, we simply need to
compute the length of the
new edge, and the angles i
of the two new halfedges
(no barycentric coordinates
change during a flip). The new length £} can be computed as indi-
cated in Figure 9; the angles ¢;; and ¢y can be obtained by applying

signpost updates (Section 3.2.1) using the known angles ¢y ;, 9? k and
Oki GI’CI, resp. This procedure corresponds to the edge flip briefly
discussed in Sharp et al. [2019, Section 5.4]. Note that, as with planar
triangulations, an edge flip cannot be performed if the two triangles
form a nonconvex quadrilateral, or if either endpoint has degree one
(as in Figure 6, right). Interestingly, neither of these conditions needs
to be checked explicitly in the special case of Delaunay flips—see
Section 4.1 for further discussion.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:6 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

3.3.2 Vertex Insertion. Given the
barycentric coordinates for a point
p on the interior of an intrinsic tri-
angle ijk, a vertex insertion replaces
ijk with three new intrinsic triangles
ijp, jkp, kip. The new edge lengths
Lip, €jp, and €y, can be obtained by
applying the distance formula given
in Algorithm 6, and the remaining data is computed via the vertex
update procedure (Algorithm 7). Inserting a vertex on the interior
of an edge is nearly identical (Algorithm 8).

3.3.3 Vertex Repositioning.
Intrinsic vertices i that have
been inserted in the triangu- o
lation can be moved to a new Tjokas
location p without changing

‘
v

the geometry of the surface. ¢
In general, one can simply re-
move vertex i, triangulate the resulting polygon (which is intrin-
sically flat), and insert a vertex at p a la Section 3.3.2. For smaller
motions which only affect the vertex neighborhood of i, it is simpler
and more efficient to just update the local lengths and angles. In
particular, let v be the vector from i to p; a conservative check for
this case is that |v| is smaller than the minimal incident triangle
height. The new edge lengths can then be computed as

lpj = \/|v|2 + [l.zj - 2[v|¢;j cos a,

where a := ¢;j — ¢y is the angle between v and the original edge ij;
the angles ¢ of all incident halfedges are then computed via a vertex
update (Section 3.2.3). An implementation is given in Algorithm 10—
for the algorithms in this paper, we need only this local update.

3.4 Correspondence

There is always a 1:1 correspondence between points on an intrin-
sic triangulation and the underlying extrinsic triangulation. An
attractive feature of the signpost data structure is that we can query
this relationship directly, without building an auxiliary structure
(Section 3.4.1). This functionality makes our data structure easily
compatible with sample-based rendering like ray-tracing, e.g., by
interpolating a texture map or evaluating a finite element solution.

For downstream applications that do require a standard poly-
gon mesh, one can optionally extract an explicit overlay mesh (Sec-
tion 3.4.2), which is the common subdivision of the intrinsic and
extrinsic triangulation. Piecewise linear functions on the intrinsic
triangulation then become (finer) piecewise linear functions on the
overlay mesh, and can hence be used or visualized within a standard
geometry pipeline. (Note that, in general, this subdivision will not
exhibit special properties of the intrinsic mesh—e.g., an intrinsic
Delaunay mesh will not have a Delaunay overlay.) Extraction of
the overlay need only be performed once, after all triangulation
operations. In contrast, the data structure of Fisher et al. [2007] must
maintain the overlay during each local operation, which can incur
significant cost (Section 6.3). Moreover, since our extraction algo-
rithm is local to each triangle, it can easily be executed in parallel
(in principle, even in a shader program).

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

3.4.1 Point Query. Tracing queries
can be used to locate a given extrinsic
point p on the intrinsic triangulation
(and vice versa): if Xyz is the triangle
containing p, one can just trace along
the intrinsic triangulation in the di-
rection ¢z, for a distance £zp (see
inset). Any data associated with the
intrinsic mesh can then be evaluated
using the resulting barycentric coordinates. Pseudocode is given in
Algorithm 11. Note that these point queries work only because we
carefully maintain angles ¢ with the same meaning on the intrin-
sic and extrinsic triangulation, i.e., they are always expressed with
respect to the same local polar coordinate system.

3.4.2 Overlay Extraction. If an overlay mesh is needed, we first
perform a tracing query along each intrinsic edge ij € E, and store
a sorted list of barycentric coordinates ¢ € [0, 1] where ij crosses an
extrinsic edge (marked by “x” in the figure below). For each intrinsic
triangle ijk, we emit a collection of extrinsic triangles and quads;

there are just two cases to consider (illustrated inset below):

(1) All extrinsic edges intersecting ijk cross a common edge jk.
(2) There is no common edge, a sequence of extrinsic edges clips
each corner.

Case 1. For an intrinsic trian-
gle ijk, let c1,...,cr be the cross-
ings along the common edge jk,
let ji,...,jn be the crossings along
edge ji, and let kq,...,km be the
crossings along edge ki. For each
crossing along ji, emit a segment
connecting jp and Cp; likewise, for
each crossing along ki emit a seg-
ment connecting kp and ¢;—p+1. Fi-
nally, connect all remaining cross-
ings c¢p to vertex i.

Case 2. For each vertex i of the
intrinsic triangle ijk, let ji,...,Jjn
be the crossings along edge ij, and
let k1, ..., km be the crossings along
edge ik. We simply need to connect
a segment between jj, and k, until
the sum of remaining crossings is less than or equal to the number
of crossings on edge jk. This algorithm is then repeated for the other
two vertices.

To get polygons, we simply emit faces corresponding to consec-
utive segments crossing the intrinsic triangle (as well as the final
hexagon in Case 2). If we assign a unique index to each crossing, the
final output is a standard vertex-face adjacency list description of
the overlay mesh (which can be triangulated if necessary). For some
applications, it may also be convenient to encode the relationship
between the overlay and the intrinsic or extrinsic mesh, e.g., by tag-
ging each overlay triangle with an index to its associated intrinsic
face.

4 INTRINSIC RETRIANGULATION

As a key application, we show how different classes of retriangula-
tion algorithms can be easily implemented using the signpost data
structure. In contrast to classic remeshing, where one must balance
triangle quality (angles, areas, etc.) with geometric approximation
quality (e.g., closeness to the input surface), the intrinsic approach
allows one to focus solely on triangulation of a given polyhedron,
knowing that the underlying geometry will remain unchanged. De-
launay triangulations are particularly important since they furnish
valuable numerical and structural properties across a wide range of
algorithms; other special triangulations (such as those that minimize
total length or maximum vertex degree) would also be interesting
to consider in the intrinsic setting.

Intrinsic Delaunay Triangulation (iDT). A i
triangulation exhibits the intrinsic Delaunay
property if for each edge ij € E opposite a [‘
pair of vertices k,l € V

9;(1 + 9{1 <,] (4)

which for planar triangulations is equivalent to the standard “empty
circumcircle” condition. Although other generalizations of the De-
launay condition have been studied for polyhedra (such as restricted
Delaunay [Cheng et al. 2012, Chapter 13]), the intrinsic Delaunay
condition is essential in many applications because it implies posi-
tivity of the cotangent weights, i.e.,

cot 9;3 + cotG;l > 0.
This condition in turn guarantees good behavior of a wide vari-
ety of algorithms and numerical methods—for instance, it ensures
that many standard finite element matrices are M-matrices, which
facilitates the use of “best in class” numerical solvers [Spielman
2010]. It also ensures that the finite element Laplacian L exhibits
a maximum principle: a function u satisfying the discrete Laplace
equation Lu = 0 will smoothly interpolate fixed boundary data,
and has no interior extrema, i.e., no interior vertices that are local
maxima or minima [Bobenko and Springborn 2005]. This property
is invaluable for numerous applications; with our data structure, it
also extends to vector-valued functions, as discussed in Section 5.5.

#flips P

106 | #ﬂips:#edgis/ -
-~

105 L

104 L

103 L

100 ¢

10 ¢~

10 100 103 104 10° 106 #edges

Fig. 10. By running the Delaunay edge flipping algorithm on a large data
set we observe a surprising trend: the number of flips required in practice is
rarely more than the number of edges in the input mesh. Here each blue
dot represents a mesh from the Thingi10k dataset.

Navigating Intrinsic Triangulations + 55:7

input intrinsic flipping
V] = 2875 V] = 2875

corners
corners

0° 30° 60° 90° 180°
corner angle

0° 30° 60° 90° 180°
corner angle

intrinsic ODT
|V] = 10000

intrinsic refinement
V| = 17117

corners
corners

0° 30° 60° 90° 180°
corner angle

0° 30° 60° 90° 180°
corner angle

Fig. 11. Intrinsic versions of classic algorithms yield high quality triangu-
lations for any mesh. We can obtain a Delaunay triangulation without
increasing the vertex count (top right), achieve lower angle bounds (bottom
left), or balance angles and triangle areas (bottom right).

4.1 Delaunay Flipping

An iDT can always be obtained via
a simple flipping algorithm [Bobenko
and Springborn 2005]: enqueue all
edges; while the queue is not empty, P

check if the next edge ij satisfies Equation 4; if not, apply an intrin-
sic edge flip and enqueue the four neighbors ik, il, jk, and jl. Note
that any edge that needs to be flipped can be flipped: for instance, an
edge shared by a nonconvex pair of triangles will have an opposite
angle sum less than 7; likewise, the two angles opposite an edge
with a degree-1 endpoint must belong to the same triangle, and
hence cannot sum to greater than r (see inset). For planar triangu-
lations this algorithm requires at most O(|V|?) flips [Fortune 1993];
for intrinsic triangulations there is no upper bound that depends
solely on the number of vertices, since there can be infinitely many
geodesics between a given vertex pair (see for example Figure 4).
However, the intrinsic algorithm is surprisingly efficient in practice
(Figure 10), perhaps because triangulations that come from an em-
bedded surface cannot have extremely long, winding edges. Note
that one could also initialize our signpost data structure with an iDT
obtained from a geodesic Voronoi diagram [Liu et al. 2017]. How-
ever, flipping remains essential for subsequent algorithms which
must incrementally improve a triangulation (Sections 4.2 and 4.3).

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:8 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

4.2 Intrinsic Delaunay Refinement (iDR)

- - In practice one often cares about criteria be-
yond the Delaunay property, such as bounds
on angles or edge lengths. Delaunay refine-
ment progressively inserts vertices to achieve
user-specified criteria, while maintaining the
Delaunay property. This approach has been
studied extensively in the plane, but the in-
trinsic or geodesic case has received little
.Fig'.B'_ W_e locate the attention—Shewchuk [1997, Section 5.3.2]
intrinsic circumcenter merely suggests that the basic lemmas needed
by tracing a,long aVeC for Chew’s algorithm should also apply in the
tor u obtained from . : .
the planar layout. geodes1.c setting. Ou.r mgn;.)ost. da.ta structure
makes implementation of intrinsic Delaunay
refinement straightforward; in particular, we implement an intrinsic
version of Chew’s 2nd algorithm [Chew 1993; Shewchuk 1997]:

o Until the specified minimum angle bound is satisfied:
— Flip to Delaunay (Section 4.1)
— Find any triangle ijk that violates the angle bound
— Insert the circumcenter p of ijk (Section 3.3.2)

~

In the intrinsic setting we have to decide where to
insert the circumcenter p if it is not contained in its
triangle—previous literature does not provide a clear an-
swer in this case. If the circumcenter lies outside the tri-
angle ijk then there must be an obtuse angle at a unique
vertex a. Our approach is then to layout the triangle in
the plane, construct the vector u from a to the planar
circumcenter, then trace u along the surface to a point
p (see Figure 13). Note also that in the intrinsic setting,
the underlying domain may have skinny needle vertices
i where the total angle ©; is already smaller than the user-specified
minimum angle bound (see inset). The only change we make here is
that we do not perform refinement when the skinny angle is incident
on a degree-1 vertex, and hence cannot possibly be improved.

In practice this intrinsic refinement algorithm appears to work
quite well, reproducing the behavior of the planar algorithm. For
instance, on the MPZ dataset (away from only four needle-like ver-
tices) we achieve a minimum interior angle bound of 30° (and hence

0,=30°

Thingi10k #46602

Thingi10k #71711

Opmin : 0.13° — 30° Omin: 2.3° — 30° Omin: 0.66° — 30°

Fig. 12. As in the Euclidean case, we find that intrinsic Delaunay refinement
can achieve a minimum angle bound of 30°, even on challenging models.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

an upper bound of 120°), which agrees with the guarantee made in
the planar case [Chew 1987]. Formally analyzing the behavior of
the intrinsic algorithm, and generalizing it to handle boundary or
constrained edges is an interesting question for future work.

A typical example from the MPZ dataset
is shown in Figure 12, center; on average
the number of inserted vertices was about
60% of the number of input vertices. We
also observe the characteristic grading be-
havior of Delaunay refinement that adapts
to different feature sizes (see inset). Note
that one can also continue refining accord-
ing to any other quantity of interest, such
as triangle areas, or using PDE error estimates as we explore in
Section 5.4.

4.3 Intrinsic Optimal Delaunay Triangulation (iODT)

An optimal Delaunay triangulation seeks to improve quality not
by pure refinement, but also by adjusting the placement of ver-
tices [Chen and Xu 2004]. We apply this idea in the intrinsic setting
by optimizing the location of inserted vertices—modifying the input
vertices is of course undesirable, since it would change the surface
geometry rather than just the triangulation. The basic strategy is to
iteratively move all vertices toward the triangle area weighted sum
of the circumcenters of incident triangles, then apply the flipping
algorithm from Section 4.1 [Chen and Holst 2011, Equation 4.13]. In
the intrinsic setting we can locate circumcenters as described in Sec-
tion 4.2; rather than averaging these locations, we simply average
the vectors to these locations, then use this average as our update di-
rection. Examples are shown in Figures 11, 14, and 16. Since vertices
of the input mesh cannot be moved, we insert new vertices on each
iteration by splitting edges longer than a user-defined target length
(a la Tournois et al. [2009]). In general we observe the same behavior
as in the Euclidean case: in contrast to Delaunay refinement, we get
a better distribution of areas, at the cost of some skinnier angles.

0° 90° 180° 0° 90° 180° 0° 90° 180°
Corner angle Corner angle Corner angle

Fig. 14. Our signpost data structure makes it easy to implement an intrin-

sic version of optimal Delaunay triangulation (iODT), which provides an

excellent balance between element size and angle distribution while exactly

preserving the input geometry.

5 INTRINSIC GEOMETRY PROCESSING

Our data structure enables a broad range of techniques from com-
putational geometry and scientific computing to be directly applied
in the polyhedral setting; it also helps improve the accuracy and
reliability of existing surface processing algorithms. In this section
we consider several such examples.

5.1 Steiner Tree Approximation

Many applications require a short cut pass-
ing through all vertices of a polyhedron, so
that it can be isometrically unfolded into
the plane. A common approach is to cut
through extrinsic edges which approximate
the Steiner tree of the vertex set [Sheffer and
Hart 2002; Erickson and Har-Peled 2004]; for
a genus-0 surface the shortest such cut is simply the minimal span-
ning tree (MST). We can use our signpost data structure to get an
even shorter cut, by applying strategies previously only available in
the plane. Here, the Delaunay triangulation has the shortest possible
MST [Toussaint 1980]; an even shorter tree can be found by inserting
additional Steiner points. If a triangle ijk has angles all smaller than
27 /3, its local Steiner tree is obtained by inserting the Fermat point
¥, given by barycentric coordinates b; := csc(@{ ky 7/3). Smith
et al. [1981] therefore suggest a strategy akin to Kruskal’s algorithm:
enqueue all edges and per-triangle Steiner trees; greedily add the
shortest element from the queue as long as it does not form a cycle.
We can directly implement this strategy in the intrinsic setting by
flipping to the iDT (a la Section 4.1), and using the vertex insertion
operation from Section 3.3.2. The resulting cut can be significantly
shorter than the extrinsic MST—for instance, by moving the left and
right vertices apart in Figure 15, top, the length ratio approaches
20%. Even shorter cuts could be obtained by applying more sophis-
ticated techniques from the Euclidean setting (such as [Laarhoven
and Ohlmann 2011]).

minimum spanning tree intrinsic Steiner tree

Fig. 15. Our data structure allows planar computational geometry algo-
rithms to be easily translated into the polyhedral setting. Here we apply a
classic Euclidean algorithm for Steiner tree approximation to find shorter
cuts through polyhedral surfaces.

Navigating Intrinsic Triangulations + 55:9

5.2 Finite Elements o 10
condition number _1le

The numerical behavior of finite el- 5, e
ement methods depends critically =?ggT L
on the quality of basis elements; 2*107 """/
. . 107 -

however, for a given budget of tri- 1x10° e~ /j
angles there is a trade off between 5x104 £
geometric accuracy and element 500 1k 5k 10k 50k
quality. The intrinsic approach of- Fvertices
fers the best of both worlds, since Fig. 17. Condition number for
the triangulation used to define FEM Laplacian with different tri-
a finite element basis can be de- angulations; values for regular 4-1
coupled from the mesh used to refinement (red) are off the chart.
describe the domain geometry. Moreover, unlike finite element
schemes that use curved elements [de Goes et al. 2016; Feng et al.
2018] or adapt basis functions to accommodate low-quality triangu-
lation [Schneider et al. 2018], an intrinsic triangulation can be used
with any existing finite element code that supports ordinary trian-
gular elements, including those based on adaptive basis refinement.

To study numerical performance, we solve a standard Poisson
equation Au = f on several retriangulations of a coarse input mesh
with poor element quality. The stiffness matrix is built exactly as
with an ordinary triangle mesh, via the cotan formula [MacNeal
1949, Equation 3.19]; we likewise use the standard Galerkin mass
matrix. For an equal number of vertices, the intrinsic retriangulation
(via either iDR or iODT) yields better condition numbers (Figure 17)
than an extrinsic version of ODT, which is more restricted in the
vertices it can reposition (and hence the angles it can improve).
Intrinsic triangulations also produced significantly lower L? error—
even for meshes with very little extrinsic curvature (Figure 16).
Asymptotically (as edge length goes to zero) intrinsic and extrinsic
schemes will behave similarly, but the intrinsic approach provides
significant error reduction while still keeping mesh sizes small.

input mesh right hand side (f) solution (u)
«
Ll

regular 4-1 extrinsic intrinsic intrinsic Delaunay
subdivision ODT ODT refinement

1x 2.7x 3.0x

¢
1x 2.0x 2.4x 3.4x

more accurate
Fig. 16. Even for domains with large, flat regions, solving a Poisson equation

is about twice as accurate with an intrinsic triangulation. Rows show two
refinements, with matching element counts in the last three columns.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:10 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

exact

|V| = 28010 V| = 52513

[V] = 28010

heat method

original iDT iDR

mean error: 59.6% mean error: 20.4% mean error: 0.7%

Fig. 18. Working with intrinsic triangulations allows one to accurately and
efficiently approximate the exact polyhedral distance using PDE based
methods like the heat method.

5.3 Geodesic Distance

PDE-based methods for computing geodesic distance such as the
heat method [Crane et al. 2013] are attractive because they are
easy to implement and can take advantage of fast linear solvers;
window-based methods provide the exact polyhedral distance, but
are generally slower and more difficult to implement. We can use
an intrinsic triangulation to get the best of both worlds: highly
accurate distance via fast PDE-based methods. Figure 18 shows the
heat method on several intrinsic triangulations: by just using the
iDT the error is dramatically reduced; further refinement with iDR
reduces the error to less than 1%.

5.4 Adaptive Mesh Refinement

Many algorithms in geometry processing depend on PDEs where
interesting behavior is highly localized in space—for such problems
we can use our signpost data structure to adaptively refine the

region of interest, rather than uniformly refining the entire surface.

Previously, adaptive mesh refinement (AMR) on surfaces has been
achieved via tetrahedralization of the enclosed volume [Demlow
and Olshanskii 2012]; the signpost data structure enables us to
apply AMR directly to the surface mesh, while taking advantage
of the larger space of intrinsic triangulations. The basic idea is to
use a local a posteriori error estimate as an additional refinement
criterion in iDR (Section 4.2). We apply the basic error estimates
described in Morin et al. [2002] and Mekchay and Nochetto [2005]
(see supplement for details), though more sophisticated estimators
could be used just as easily.

In Figure 19 we compare uniform versus adaptive refinement for
computing the harmonic Green’s function and short-time heat kernel,
finding that adaptive refinement is 2-10 times faster than uniform
refinement (taking all computation into account); such kernels are
widely used for shape analysis and distance approximation [Patané
2016]. In Figure 20 we compute a simple surface parameterization
via harmonic mapping. Here the iDT ensures injectivity due to the
maximum principle (Section 4), though distortion persists near the
boundary; our intrinsic AMR scheme provides additional resolution
exactly where it is needed. Such techniques could also be applied to
more sophisticated mapping algorithms, such as those needed for
quadrilateral remeshing [Bommes et al. 2013].

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

harmonic Green’s function short time heat kernel

— Input
— AMR
— iDR
— Reference

-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0

harmonic Green’s function short time heat kernel

V] time error V] time | error
input 214 0.006 s 0.341 214 0.007 s | 0.622
AMR | 3029 | 2.299s 0.008 1551 | 0.898 s | 0.007
iDR 54916 | 5.611s 0.006 81702 | 8.466s | 0.008

Fig. 19. Intrinsic AMR allows extremely accurate computations of standard
kernels from geometry processing with very few elements. Left: harmonic
Green’s function. Right: short time heat kernel. Performing uniform iDR to
achieve the same accuracy requires 18x and 54x as many vertices, respec-
tively.

input iDT AMR

Fig. 20. Mappings computed on low-quality meshes can exhibit flipped
triangles, as shown here for a harmonic mapping (left). An iDT guarantees
the map is flip-free (center), and AMR intelligently reduces distortion (right).

input iDT iDR
E,=1200.2 E,=1235 E,=47.0

Fig. 21. Our signpost data structure is also well suited for tangent vector
field processing. Here we draw streamlines of the vector field with small-
est Dirichlet energy Ep (showing vectors in the inset); using an intrinsic
triangulation yields a much smoother field.

5.5 Tangent Vector Field Processing

Since our signpost data structure already maintains tangent coordi-
nate systems across all operations, it is naturally suited for problems
involving tangent vector fields, as well as other tangent direction

fields (e.g., cross fields).

Flip-Free Vector Fields. In a variety of applications one requires
a smooth tangent direction field, e.g., for field-aligned quad mesh-
ing [Bommes et al. 2013] or for guiding texture synthesis [Knoppel
et al. 2015]. Such a field can be obtained by prescribing vectors
at the boundary and solving the vector-valued Laplace equation
N'X = 0, where A denotes the connection Laplacian. Here we can
use the finite difference connection Laplacian described in Sharp
et al. [2019, Section 5.3]. The intrinsic Delaunay criteria provides
a vector-valued analogue of the scalar maximum principle for this
discretization: tangent vectors at each point will be contained in the
convex cone of their immediate neighbors [Sharp et al. 2019, Section
5.4] as seen in Figure 22. The signpost data structure enables this
property to be extended to refinements of the input mesh, rather
than simply the iDT (which may still provide poor accuracy).

Globally Optimal Direction Fields. We can compute the smoothest
direction field on a domain without boundary by minimizing the
vector Dirichlet energy; this amounts to solving an eigenvalue prob-
lem via the finite element connection Laplacian described in Knop-
pel et al. [2013, Sec. 6.1.1]. Figure 21 shows a dramatic increase in
smoothness going from the input triangulation, to the iDT, to the
iDR. In general, we can find polyhedra where the minimal vector
Dirichlet energy is not always achieved by the iDT (in contrast with
Rippa’s theorem in the scalar case [Rippa 1990]), though in practice
it always appears to provide much smoother vector fields. An inter-
esting question, therefore, is whether there is a natural energy for
which an iDT always yields the smoothest field.

Navigating Intrinsic Triangulations « 55:11

[]

input iDT

Fig. 22. Intrinsic triangulations that satisfy the Delaunay condition help
prevent flips in tangent direction fields. Here we compute the smoothest
field interpolating given vectors at the boundary.

6 EVALUATION

We use the applications described in Section 4 and Section 5 to
analyze the numerical robustness and runtime performance of our
signpost datastructure. With careful treatment of floating point
calculations, we found that our data structure is robust enough
to operate on all models found “in the wild.” Moreover, since the
majority of processing involves familiar local mesh operations, there
are no big surprises in terms of speed—for instance, running iDR
and extracting the overlay on a mesh of about 50k triangles (which
makes heavy use of all operations) takes about 0.57 seconds.

6.1 Experimental Setup

Implementation. Signposts can in principle be used to augment a
number of different underlying mesh data structures; we found it
convenient to use a halfedge mesh, which supports all the necessary
topological operations, as well as irregular triangulations. In partic-
ular, we implemented our data structure in C++ on top of a standard
halfedge mesh library; Appendix A provides details of the numerical
implementation. Timings were measured using a single thread of
an Intel Core i7 3.5GHz CPU; for quad precision calculations (used
only for the robustness benchmarks in Section 6.2), we used the
GCC libquadmath library [Free Software Foundation 2008].

Data Set. We performed experiments on a wide variety of real-
world models from the Princeton Shape Benchmark [Shilane et al.
2004] (1800 meshes), the MPZ data set from [Myles et al. 2014,
Section 8] (117 meshes), and the manifold meshes found in the
Thingil0k dataset [Zhou and Jacobson 2016] (~8k meshes) which
includes many extremely degenerate models (zero-area faces, poorly
triangulated CAD models, etc.). For Thingi10k we used MeshLab to
convert all files to PLY format [Cignoni et al. 2008], and omitted 10
meshes that either contained invalid data (such as B-splines) or were
nonmanifold after conversion. The only preprocessing we perform
is to remove a few zero-area triangles by extrinsically flipping or
collapsing edges opposite acute angles smaller than 10710 radians
or obtuse angles greater than 7 — 107'° radians, resp.. This process
yields an utterly negligible change in the geometry, and was also
necessary for obtaining geometrically meaningful results from the
algorithm of Fisher et al. [2007].

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:12 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

#models in MPZ dataset total crossings computed
70| signpost: 397K

50! L inecremental: 19.6M

307

1 ’»,—[—l—

1x 2x 3x 4x
speedup relative to incremental

/(Thingilok #474823)

Fig. 23. Even for basic tasks like finding crossings for an intrinsic Delaunay
triangulation, our data structure is faster than the incremental overlay of
Fisher et al. (left). In extreme cases, the incremental scheme may compute
far more crossings than are actually needed for the final overlay (right).

6.2 Robustness

Judicious management of numerical precision is important for any
intrinsic triangulation data structure. Note that there can be no
robustness issues due to discretization error: in exact arithmetic, all
calculations yield an exact description of the intrinsic geometry.
Therefore, problems arise only due to floating point error, typically
on pathological inputs. For instance, the basic edge flipping scheme
(which simply keeps track of edge lengths) can produce INF or NaN
values due to inaccurate floating point calculation; even with cor-
rect length calculations, the incremental overlay [Fisher et al. 2007]
can yield meshes that are topologically valid, but where intrinsic
edges look nothing like geodesics due to inaccurate calculation of
barycentric coordinates (see Figure 27). The main challenge with
the signpost data structure is ensuring that tracing queries are topo-
logically valid—see Appendix A for a detailed discussion.

In practice, we found the signpost data structure to be remark-
ably robust. To examine numerical robustness, we performed the
Delaunay flip algorithm (Section 4.1) on the data sets described in
Section 6.1, and verified that the overlay extracted a la Section 3.4.2
describe the correct combinatorics of the common subdivision. This
test succeeds for all 1800 meshes in the Princeton Shape Bench-
mark and 117 meshes in the MPZ dataset. On the more challenging
Thingil0k dataset, extraction succeeds on 97% of the meshes when
using double precision; the remaining 3% can be handled by either
randomly perturbing vertex coordinates by 1078 of the bounding
box diameter (which yields no appreciable difference in geometry),
or by falling back to quad precision (in which case geometry is pre-
served exactly). Overall, for all practical purposes, our data structure
is able to operate on 100% of meshes found “in the wild”

6.3 Comparisons

Incremental Overlay. We compared our signpost data structure
to the incremental overlay scheme of [Fisher et al. 2007], which
represents an intrinsic triangulation by continually maintaining an
explicit list of edge crossings. In contrast, the signpost data struc-
ture can simply extract crossings once, after all other processing
has terminated (Section 3.4.2). Both data structures were imple-
mented on top of the same halfedge data structure, and in both
cases we performed extensive profiling and code-level optimization.
Further speedups could easily be achieved in our extraction proce-
dure (which is trivially parallelizable across edges), though here we

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

signpost: 0.60s
[Fisher et al]: 17.32s
speedup: 28x

signpost: 0.20s
[Fisher et al]: 4.27s
speedup: 21x

Fig. 24. Flipping to the intrinsic Delaunay triangulation and extracting the
edge crossings in the overlay mesh is extremely efficient with the signpost
data structure. Prior methods update the overlay mesh every flip, while our
approach reads it off after the fact. (Thingi10k #79741 & 1432740)

use a serial implementation. Figure 23, left shows the relative per-
formance for computing the edge crossings of an intrinsic Delaunay
triangulation on the MPZ dataset. (Note that more sophisticated al-
gorithms like iDR cannot be compared since they are not supported
by the incremental scheme.) On the most challenging examples in
the Thingil0k dataset, the signpost data structure was as much as
28x faster (Figure 24). The basic reason for the performance gap is
that the cumulative number of crossings computed by the incremen-
tal overlay may be dramatically larger than the number of crossings
needed for the final triangulation (Figure 23, right).

Extrinsic Delaunay. We also compared to the method of Liu et al.
[2015] (using their implementation), which uses extrinsic edge splits
and flips of flat edges to achieve the intrinsic Delaunay condition;
the benefit is that the output is a standard (extrinsic) triangle mesh.
There are however two downsides, namely (i) it may be necessary to
generate a large number of elements, and (ii) even though elements
are Delaunay, they may otherwise have poor quality (e.g., small
angles or areas). The former can be addressed via simplification, at
the cost of changing the geometry; however Liu et al. propose no
approach for improving element quality. In practice, we observe that
on models from Thingil0Ok, Liu et al’s algorithm can initially inflate
mesh size by a factor of 10-100x (for instance, model #97588). In

Delaunay: yes
V] = 360
Ormin = 7.31°

Delaunay: yes
[V] = 5236
Omin = 0.30°

Delaunay: yes
V| = 1766
Omin = 34.01°

intrinsic Delaunay

[Liu et al. 2015] refinement

intrinsic flips

Fig. 25. Left: an extrinsic Delaunay triangulation which preserves geometry
requires dramatically more vertices. Center: the intrinsic Delaunay trian-
gulation requires no additional elements. Right: Even a modest number of
additional intrinsic vertices can dramatically increase element quality.

Delaunay: no

Delaunay: yes
V| ="1577

Delaunay: yes
V| = 1577

V| = 1577

original

[Liu et al. 2015]

intrinsic flips

Fig. 26. A mechanical part (left) is made Delaunay with extrinsic splits and
simplifications (center), or with intrinsic flips (right). For an equal number of
elements, the extrinsic method loses important geometric detail, whereas
the intrinsic triangulation exactly preserves the given shape.

contrast, the iDT exactly preserves the geometry and has the same
number of elements as the input; any subsequent increase in mesh
size serves purely to improve triangulation quality. In Figure 25 the
coarsest simplification that can be produced via Liu et al. without
modifying the geometry has about 15x more triangles than the
iDT; moreover, iDR can produce a far higher-quality triangulation,
using far fewer elements. Figure 26 likewise shows that for the same
budget of triangles, the intrinsic approach yields a much better
approximation of geometry. A recent method of Yi et al. [2018] uses
global nonlinear optimization to obtain extrinsic Delaunay meshes
with lower geometric error, albeit at dramatically higher cost—for
instance, over 1000x times slower than building and extracting our
iDT on the three models in Yi et al. [2018, Table 3]. This method
also does not consider element quality (angles, areas, etc).

7 LIMITATIONS AND FUTURE WORK

The essential trade-offs of working with intrinsic triangulations are
well-known. At the most basic level, one simply does not have an
ordinary triangle mesh, though as we have seen, most algorithms
can still be executed as usual. Some basic translation into the intrin-
sic setting may be needed (e.g., computing areas from edge lengths
rather than vertex positions), but these are typically easy to abstract
away. Although extracting the overlay mesh yields an extrinsic rep-
resentation of the triangulation, the overlay mesh is generally not
suitable for computation, and will not inherit desirable properties of
the intrinsic triangulation (such as the Delaunay property). Nonethe-
less, many applications do not require the overlay mesh: a typical
pipeline might consist of constructing an intrinsic triangulation,
solving a PDE, and finally copying the solution back to the original
triangulation. In such an application, the overlay mesh might be
used only to visualize the intermediate data structure.

The intrinsic operations we present are formulated from the per-
spective of improving the triangulation of a given domain while
preserving that domain exactly, and thus do not address concerns
such as denoising, or repairing spurious topological features. Fur-
thermore, we assume throughout that inputs are manifold meshes;
an interesting question is how to extend our data structure to gen-
eral nonmanifold meshes, e.g., by augmenting signposts with local
topological information.

Navigating Intrinsic Triangulations « 55:13

Since the applications described in Section 4 and Section 5 serve
primarily to evaluate our data structure, there are of course many
unexplored questions. For instance, in the case of Delaunay refine-
ment we do not consider domains with boundary, though this topic
has been extensively studied in the plane. Finally, it would be valu-
able to consider more generalized notions of intrinsic triangulations,
especially those that are not required to include the vertices of the
input mesh. In fact, the signpost data structure can already be used
as-is to describe embedded graphs with geodesic edges; extending it
to perform operations that actually remove extrinsic vertices (such
as edge collapses) would open the door to yet further algorithms
such as intrinsic simplification. On the whole, the ability to eas-
ily work with intrinsic triangulations provides fertile soil for new
developments in robust geometry processing.

ACKNOWLEDGMENTS

This work was supported by a Packard Fellowship, NSF Award
1717320, an NSF Graduate Research Fellowship, a Kortschak Schol-
ars Graduate Fellowship, and gifts from Autodesk, Adobe, and Face-
book.

REFERENCES

Gavin Barill, Neil Dickson, Ryan Schmidt, David LW. Levin, and Alec Jacobson. 2018.
Fast Winding Numbers for Soups and Clouds. ACM Transactions on Graphics (2018).

Marshall W. Bern, Herbert Edelsbrunner, David Eppstein, Scott A. Mitchell, and
Tiow Seng Tan. 1993. Edge Insertion for Optimal Triangulations. Discrete & Compu-
tational Geometry 10 (1993).

A. I Bobenko and B. A. Springborn. 2005. A discrete Laplace-Beltrami operator for
simplicial surfaces. ArXiv Mathematics e-prints (March 2005). arXiv:math/0503219

Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. 2013. Constructing Intrinsic
Delaunay Triangulations of Submanifolds. Research Report RR-8273. INRIA.

Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably good sampling and meshing
of surfaces. Graphical Models 67, 5 (2005).

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Computer
Graphics Forum 32, 6 (2013).

Long Chen and Michael J. Holst. 2011. Efficient Mesh Optimization Schemes based on
Optimal Delaunay Triangulations. Comput. Methods Appl. Mech. Engrg. 200 (2011).

Long Chen and Jin-chao Xu. 2004. Optimal delaunay triangulations. Journal of Compu-
tational Mathematics (2004).

Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Genera-
tion (1st ed.). Chapman & Hall/CRC.

L. P. Chew. 1987. Constrained Delaunay Triangulations. In Proceedings of the Third
Annual Symposium on Computational Geometry (SCG '87). ACM.

L. P. Chew. 1993. Guaranteed-quality Mesh Generation for Curved Surfaces. In Pro-
ceedings of the Ninth Annual Symposium on Computational Geometry (SCG '93).
ACM.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-
elli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool.
In Eurographics Italian Chapter Conference. The Eurographics Association.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A
new approach to computing distance based on heat flow. ACM Transactions on
Graphics (TOG) 32, 5 (2013).

Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision
exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016).

Alan Demlow and Maxim A Olshanskii. 2012. An adaptive surface finite element
method based on volume meshes. SIAM J. Numer. Anal. 50, 3 (2012).

Jeff Erickson and Sariel Har-Peled. 2004. Optimally Cutting a Surface into a Disk.
Discrete & Computational Geometry 31, 1 (2004).

Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018.
Curved optimal delaunay triangulation. ACM Trans. Graph. 37, 4 (2018).

M. Fisher, B. Springborn, P. Schréder, and A. I. Bobenko. 2007. An algorithm for
the construction of intrinsic delaunay triangulations with applications to digital
geometry processing. Computing 81, 2 (01 Nov 2007).

Steven Fortune. 1993. A note on Delaunay diagonal flips. Pattern Recognition Letters 14,
9 (1993).

Free Software Foundation. 2008. GCC libquadmath.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:14 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

Michael T Goodrich and Roberto Tamassia. 1997. Dynamic Ray Shooting and Shortest
Paths in Planar Subdivisions via Balanced Geodesic Triangulations. Journal of
Algorithms 23, 1 (1997).

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi. ACM Trans. Graph. 4, 2 (April 1985).

A. Hatcher. 2002. Algebraic Topology. Cambridge University Press.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018).

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-outside
Segmentation Using Generalized Winding Numbers. ACM Trans. Graph. 32, 4,
Article 33 (July 2013).

Felix Kn6ppel, Keenan Crane, Ulrich Pinkall, and Peter Schroder. 2013. Globally optimal
direction fields. ACM Transactions on Graphics (TOG) 32, 4 (2013), 59.

Felix Knoppel, Keenan Crane, Ulrich Pinkall, and Peter Schréder. 2015. Stripe patterns
on surfaces. ACM Transactions on Graphics (TOG) 34, 4 (2015), 39.

Jon W. Van Laarhoven and Jeffrey W. Ohlmann. 2011. A randomlzed Delaunay trian-
gulation heuristic for the Euclidean Steiner tree problem in R4, 3. Heuristics 17, 4
(2011).

Yong-Jin Liu, Dian Fan, Chun-Xu Xu, and Ying He. 2017. Constructing Intrinsic
Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams. ACM Trans.
Graph. 36, 2, Article 15 (April 2017).

Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. 2015. Efficient Construction and
Simplification of Delaunay Meshes. ACM Trans. Graph. 34, 6, Article 174 (Oct. 2015).

Albert T. Lundell and Stephen Weingram. 1969. Regular and Semisimplicial CW Com-
plexes. 77-115.

Richard MacNeal. 1949. The Solution of Partial Differential Equations by Means of
Electrical Networks. Ph.D. Dissertation. California Institute of Technology.

Khamron Mekchay and Ricardo H Nochetto. 2005. Convergence of adaptive finite
element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal.
43, 5 (2005).

Pedro Morin, Ricardo H Nochetto, and Kunibert G Siebert. 2002. Convergence of
adaptive finite element methods. SIAM review 44, 4 (2002).

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global
parametrization. ACM Transactions on Graphics (TOG) 33, 4 (2014).

Giuseppe Patané. 2016. STAR: Laplacian Spectral Kernels and Distances for Geometry
Processing and Shape Analysis. In Proceedings of the 37th Annual Conference of the
European Association for Computer Graphics: State of the Art Reports. Eurographics
Association.

Konrad Polthier and Markus Schmies. 1998. Straightest Geodesics on Polyhedral
Surfaces. (1998).

Samuel Rippa. 1990. Minimal roughness property of the Delaunay triangulation. Com-
puter Aided Geometric Design 7, 6 (1990).

Max Schindler and Evan Chen. 2012. Barycentric Coordinates in Olympiad Geometry.
Teseo Schneider, Yixin Hu, Jeremie Dumas, Xifeng Gao, Daniele Panozzo, and Denis
Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. 37, 5 (2018).
Silvia Sellan, Herng Yi Cheng, Yuming Ma, Mitchell Dembowski, and Alec Jacobson.
2019. Solid Geometry Processing on Deconstructed Domains. Computer Graphics

Forum (2019).

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The Vector Heat Method.
ACM Trans. Graph. 38, 2 (2019).

Alla Sheffer and John C. Hart. 2002. Seamster: Inconspicuous Low-distortion Texture
Seam Layout. In Proceedings of the Conference on Visualization *02 (VIS 02). IEEE
Computer Society.

Jonathan Shewchuk. 1999. Lecture Notes on Geometric Robustness. Technical Report.
University of California at Berkeley.

Jonathan Richard Shewchuk. 1997. Delaunay Refinement Mesh Generation. Ph.D.
Dissertation. Carnegie Mellon University. Tech Report CMU-CS-97-137.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. The
Princeton Shape Benchmark. In Shape Modeling International.

J. Macgregor Smith, D. T. Lee, and Judith S. Liebman. 1981. An O(n log n) heuristic for
steiner minimal tree problems on the euclidean metric. Networks 11, 1 (1981).

Daniel A Spielman. 2010. Algorithms, Graph Theory, and Linear Equations in Laplacian
Matrices. In Proceedings of the International Congress of Mathematicians, Vol. 4.

Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving
Delaunay refinement and optimization for practical isotropic tetrahedron mesh
generation. 28, 3 (2009), 75.

Godfried Toussaint. 1980. The Relative Neighborhood Graph of a Finite Planar Set.
Pattern Recognition 12 (1980).

Shi-Qing Xin, Shuang-Min Chen, Ying He, Guo-Jin Wang, Xianfeng Gu, and Hong Qin.
2011. Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangula-
tion. In ISVD. IEEE Computer Society.

Shi-Qing Xin, Xiang Ying, and Ying He. 2012. Constant-time All-pairs Geodesic Distance
Query on Triangle Meshes. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (I3D ’12). ACM.

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

input [Fisher et al. 2006] reference

EE

Fig. 27. Even though the incremental overlay of Fisher et al. guarantees
topological correctness, it can still yield geometrically inaccurate edges—as
shown here for the Delaunay triangulation of a near-degenerate input.

@)

(b) i

Fig. 28. Even on a nice mesh, a naive tracing query from p to ¢ may generate
spurious crossings (in red) due to floating point error. Our robust tracing
procedure helps provide reliable behavior even on highly degenerate models.

Ran Yi, Yong-Jin Liu, and Ying He. 2018. Delaunay Mesh Simplification with Differential
Evolution. In ACM Transactions on Graphics, Vol. 37.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-
ments for Solid Geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016).

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

A NUMERICS

For most meshes, one can simply implement our data structure ex-
actly as described in Section 3 in double precision, using no special
treatment of numerics. However, as noted by Fisher et al. [2007,
Section 2.2], careful treatment of floating point can improve the ro-
bustness of intrinsic operations for particularly challenging meshes.
For the worst 5% of meshes in Thingil0k, we found it valuable to
carefully treat the floating point evaluation of tracing queries, as
described below. For triangle pairs where three vertices are nearly
collinear, we found we could improve the accuracy of the length
update formula described in Fisher et al. [2007, Sec. 2.2] by comput-
ing a Taylor series expansion around large and small angles. We
also found that an alternative angle representation (described in
supplemental material) helps to improve run time performance (by
avoiding transcendental functions), but is not critical for robustness.
Ultimately, all operations needed for our signpost data structure can

be expressed using only rational arithmetic (+, —, *, +) and square
roots, meaning that in principle it could be implemented using exact
numerical libraries that do not support transcendental operations.

Tracing Queries. Even on high-quality input meshes, a naive float-
ing point implementation of tracing can yield a sequence of edge
crossings that does not encode the correct path. We apply several
common-sense improvements, such as only performing ray-edge
intersections with edges ij that do not contain the ray origin, and
clamping edge barycentric coordinates to the interval [0, 1]. Simi-
larly, if a tracing query ever terminates at a point with barycentric
coordinates (b;, bj,bx) = (e,¢,1 — t) for some ¢ close to zero (as
depicted in Figure 28, (b)), we simply snap this vertex to the edge
Jjk and update the ray direction u accordingly. In situations where
we know the target point q a priori (e.g., in the case of overlay ex-
traction), we can also use purely topological invariants to improve
numerical robustness. In particular, we know that the sequence of
crossings produced by a correct path should end with a crossing
into the star St(o) of the simplex o containing q. Removing any
subsequent crossings (indicated by red crosses in Figure 28, (a)) and
connecting the final valid crossing to the target g therefore yields a
path that is topologically valid, even if there is error in the barycen-
tric coordinates. Another possibility is that we do not quite reach
St(o) (as in Figure 28, (c)); in this case, it is almost always sufficient
to search immediate neighbors of the triangle containing the path
endpoint for o, then connect to g along a straight line segment.
Although more elaborate strategies could be applied, this simple
scheme enables us to handle all but the most pathological examples
in standard precision (see Section 6.2).

B PSEUDOCODE

Pseudocode for building and manipulating an intrinsic triangula-
tion is provided below. We assume that the intrinsic triangulation
is initialized from a standard triangle mesh with vertex positions
in R3, which represents the most common use case. For brevity,
we will use S = (M, ¢, ¢, b, ©) to denote a signpost mesh, which
includes the underlying mesh M = (V, E, F) together with the edge
lengths £ : E — Ry, halfedge angles ¢ : H — R, and barycen-
tric coordinates b : V — [0, 1]*. We also include the vertex angle
sums © : V — R (Equation 1), which are invariant with respect
to changes to the triangulation and can hence be computed just
once during initialization (rather than recomputing it from the edge
lengths ¢ each time). Finally, we will use ¢;;; as shorthand for the
tuple of edge lengths (¢ij, €, €x;)-

All routines not explicitly given below are either elementary
geometric calculations, or basic topological operations whose im-
plementation depends on the choice of mesh data structure:

e DEGREE(M, i)—number of edges in the mesh M that contain
vertex i.

o NEWVERTEX(M)—add a new vertex to M and return it.

o ERASETRIANGLES(M, i1j1k1, izj2ka, . . .)—remove the given tri-
angles from the mesh M.

o INSERTTRIANGLES(M, i1j1k1, izjaks, . . .)—add the given trian-
gles to the mesh M.

Navigating Intrinsic Triangulations « 55:15

o ANGLE((jj, €k, {x;)—for a triangle with edge lengths (i, £,

{y;, returns the interior angle 9{ k
o BASELENGTH(a, b, §)—returns the third side length of a trian-
gle with sides of length a and b meeting at an angle 0
o ANGLEBETWEEN(q, f)—given two angles «, f € R encoding
points on the unit circle, returns the smallest (unsigned) angle
between them.
o ARGUMENT(u, v)—given two vectors u,v € R? gives the angle
from u to v in the range [0, 27).
The only exception is the routine TRACEVECTOR(S, ijk, p, u), which
returns the triangle ijk and barycentric coordinates g € [0, 1]? for
the point reached by starting at a point p (given in barycentric
coordinates) and walking along the direction u/|u| for a distance
|u|; implementation of this routine is discussed in Section 3.2.2 and
Appendix A.

Algorithm 1 UpDATESIGNPOST(S, ijk)

Input: A triangle ijk of a signpost mesh S. Assumes ijk has valid
edge lengths and a valid angle ¢;;.
Output: An updated signpost mesh with valid angle ¢;.
I: Q{k «— ANGLE(;t)
ik
2 @ik — @ij +270]" /©;
3: return S

Algorithm 2 TRACEFROMVERTEX(S, i, 1, ¢)

Input: A tangent vector at a vertex i specified via a magnitude r
and an angle ¢ € [0, 27).
Output: An extrinsic triangle xyz and point in barycentric coordi-
nates p € [0,1]3.
:n«0
2: 0 «— Pijo
3: while 0 < ¢ do
4 9<—9+2n9{"]””/®i
5: nen+1
6: end while
7§ — Oilp - 0)/2r
8: returnTRACEVECTOR(ijnjn+1,(1,0,0),7, @)

Algorithm 3 UPDATEVERTEX(S, i)

Input: A vertex i. Assumes all edge lengths of S are valid, and all
angles ¢ in the link of i are known.
Output: An updated signpost mesh with valid angles ¢;; and ¢j; for
each edge ij incident on i.
1: forn=0,...,DEGREE(M,i) — 1 do
UPDATESIGNPOST(S, jnjn+1L)

N}

: (xyz, b;) < TRACEFROMVERTEX(S, jo, £jyi» ©jyi)
 Qijy — ARGUMENT(eW, —Ujy—i)

: forn=1,...,DEGREE(M, i) — 1 do

Pijn < Pijuy + ANGLE(Cij, _,j,)

o U o W

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

55:16 « Nicholas Sharp, Yousuf Soliman, and Keenan Crane

Algorithm 4 INITSIGNPOSTMESH(M, f)

Algorithm 8 SpLITEDGE(S, b)

Input: A triangle mesh M and vertex positions f : V — R3.
Output: A signpost mesh S encoding the input triangulation.
1: S (M,¢,b,0)
2. for each ij € E do {;j « |fj - fil

3: for eachi € V do

4: Q;«0

5 forn =0,...,DEGREE(M, i) — 1 do
6: ®i — ®i + ANGLE(f,'jnjnH)

7: Qijy < 0

8: forn=0,...,DEGREE(M, i) — 2 do
9: UPDATESIGNPOST(S, ijnjn+1)

10: return S

Algorithm 5 FLIPEDGE(S, if)

Input: An interior edge ij, with opposite vertices k and [.

Output: An updated signpost mesh, with edge ij flipped (Sec-
tion 3.3.1).

: Hgk « ANGLE((;jx) + ANGLE(C;y ;)

: ERASETRIANGLES(M, ijk, jil)

: INSERTTRIANGLES(M, ilk, jkI)

Crp — BASELENGTH(Zik,fﬂ,ka)

: UPDATESIGNPOST(S, Ljk)

: UPDATESIGNPOST(S, kil)

: return S

N U W =

Algorithm 6 DISTANCE({12, {23, €31, P, q)

Input: Three lengths {12, {23,631 € Ry satisfying the triangle
inequality, and barycentric coordinates p, g € [0, 1]* for two
points in this triangle.

Output: The distance between the points specified by p and g (using

a formula from Schindler and Chen [2012, Section 3.2]).
Lue—qg-—p
2 d e« —([fzulug + €§3u2u3 + f§1u3u1)
3. return Vd

Algorithm 7 INSERTVERTEX(S, b)

Input: A point on the interior of a triangle ijk, specified via positive
barycentric coordinates b; + bj + by = 1.
Output: An updated signpost mesh, with a vertex inserted at b (Sec-
tion 3.3.2).
1: p < NEWVERTEX(M)
2: ERASETRIANGLES(M, ijk)
3: INSERTTRIANGLES(M, ijp, jkp, kip)
4: Cip « DISTANCE(C; g, i, b)
5: Ljp < DISTANCE(C; k., j» b)
6: {xp < DISTANCE((;jk, k, b)
7: UPDATEVERTEX(S, p)
8: return S

ACM Trans. Graph., Vol. 38, No. 4, Article 55. Publication date: July 2019.

Input: A point on the interior of an edge ij with opposite vertices
k, 1, specified via positive barycentric coordinates b; +b; = 1.

Output: An updated signpost mesh, with a vertex inserted at b (Sec-

tion 3.3.2).

: p &« NEWVERTEX(M)

ERASETRIANGLES(M, ijk, jil)

: INSERTTRIANGLES(M, ipk, kpj, jpl, Ipi)

: fip — fijbi

: fjp — [ijbj

t’kp — DISTANCE(fijk,k, (bi,bj,0))

: Klp — DISTANCE(KJ»H,I, (bi, bj,0))

: UPDATEVERTEX(S, p)

: return S

N N B LI S VR R

Algorithm 9 VEcTORTOPOINT((;;, £ ks Creis D)

Input: The three side lengths of a triangle ijk, and barycentric
coordinates p; + p;j + py for a point in this triangle.
Output: The polar coordinates (r, @) for the vector from i to p, where

¢ is expressed relative to edge ij.
: Ipi < DISTANCE({} . 1, p)
rjp < DISTANCE(¢; k., s p)
P Qip — ANGLE(fij, Tips rpi)
: return (rip, 9ip)

AW N e

Algorithm 10 MovEVERTEX(S, i, iab, p)

Input: An inserted vertex i, and a point in an intrinsic triangle iab,
specified by nonnegative barycentric coordinates p; + pg +
Py =1

Output: An updated signpost mesh, where i has been moved to p
(Section 3.3.3).

: (r, @) < VECTORTOPOINT((; 41, P)

P~ Qigt @

: forn=0,...,DEGREE(M,i) — 1 do

o < ANGLEBETWEEN(¢, ¢j,,)

N O Y

. . 2402 _opp.
5: Cpj, & \/r +0;; = 2rtij, cosa

6: UPDATEVERTEX(S, i)
7: return S

Algorithm 11 POINTQUERY(S, Xyz, p)

Input: A point in triangle xyz of the extrinsic mesh, given in
barycentric coordinates p; + p; + pr = 1.
Output: The intrinsic triangle ijk and barycentric coordinates
pi-pj» px for the corresponding point on the intrinsic mesh.
t: (r,p) « VECTORTOPOINT(KW, p)
2. (ijk,p) < TRACEVECTOR(S, Xyz, X, 1, ¢)
3: return (ijk, p)

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Connectivity
	2.2 Discrete Metric
	2.3 Tangent Spaces

	3 Data Structure
	3.1 Signpost Data Structure
	3.2 Atomic Operations
	3.3 Local Operations
	3.4 Correspondence

	4 Intrinsic Retriangulation
	4.1 Delaunay Flipping
	4.2 Intrinsic Delaunay Refinement (iDR)
	4.3 Intrinsic Optimal Delaunay Triangulation (iODT)

	5 Intrinsic Geometry Processing
	5.1 Steiner Tree Approximation
	5.2 Finite Elements
	5.3 Geodesic Distance
	5.4 Adaptive Mesh Refinement
	5.5 Tangent Vector Field Processing

	6 Evaluation
	6.1 Experimental Setup
	6.2 Robustness
	6.3 Comparisons

	7 Limitations and Future Work
	Acknowledgments
	References
	A Numerics
	B Pseudocode

