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Fig. 1. Given a collection of singular and feature curves on a volumetric domain (far left), we compute the smoothest rotational derivative that winds around
these curves (center left), and describes a symmetric 3D cross field (center right) which can be directly used for hexahedral meshing (far right).

A basic challenge in field-guided hexahedral meshing is to find a spatially-
varying frame that is adapted to the domain geometry and is continuous up
to symmetries of the cube. We introduce a fundamentally new representation
of such 3D cross fields based on Cartan’s method of moving frames. Our key
observation is that cross fields and ordinary frame fields are locally charac-
terized by identical conditions on their Darboux derivative. Hence, by using
derivatives as the principal representation (and only later recovering the field
itself), one avoids the need to explicitly account for symmetry during opti-
mization. At the discrete level, derivatives are encoded by skew-symmetric
matrices associated with the edges of a tetrahedral mesh; these matrices
encode arbitrarily large rotations along each edge, and can robustly capture
singular behavior even on coarse meshes. We apply this representation to
compute 3D cross fields that are as smooth as possible everywhere but on
a prescribed network of singular curves—since these fields are adapted to
curve tangents, they can be directly used as input for field-guided mesh gen-
eration algorithms. Optimization amounts to an easy nonlinear least squares
problem that behaves like a convex program in the sense that it always
appears to produce the same result, independent of initialization. We study
the numerical behavior of this procedure, and perform some preliminary
experiments with mesh generation.
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0 INTRODUCTION

A hexahedral mesh decomposes a solid region of three-dimensional
space into six-sided cells; such meshes play an important role in
numerical algorithms across geometry processing and scientific
computing. An attractive approach to mesh generation is to first
construct a guidance field oriented along features of interest, then
extract a mesh aligned with this field. However, there are major
open questions about how to even represent such fields in a way
that is compatible with the demands of hexahedral meshing—the
most elementary of which is how to identify frames that differ by
rotational symmetries of the cube. These so-called 3D cross fields
allow one to encode networks of singular features (Fig. 1, far left),
which are critical to achieving good element quality.

In differential geometry, Cartan’s method of moving frames pro-
vides a rich theory for spatially-varying coordinate frames, but to
date has not been used for hexahedral meshing—perhaps because,
classically, it does not consider fields with local rotational symmetry
(like cross fields). In this paper we show how the theory of moving
frames can be naturally applied in the symmetric case, and how
to incorporate constraints needed for hexahedral meshing, namely,
adaptation to a network of singular curves which correspond to mesh
edges of irregular degree. Specifically, we consider the following
problem: given a domain and a valid singularity network, find the
smoothest 3D cross field compatible with this network. Here, a valid
network means one that is compatible with the global topology of
some hexahedral mesh, as recently studied by Liu et al. [2018].

Computationally, our method amounts to solving an augmented
version of Cartan’s second structure equation

Much as the curl-free condition VXX = 0 characterizes vector fields
X that can be locally expressed as the gradient of a scalar potential,
the structure equation characterizes differential 1-forms « which
are the Darboux derivative of some spatially-varying frame field.
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Fig. 2. Within small neighborhoods, a 2D or 3D cross field can be repre-
sented by an ordinary frame field. Its derivatives w therefore obey standard
structure equations, which provide the basic constraints for our method.

Our key insight is that—at least locally—the derivative of a cross
field looks no different from the derivative of an ordinary frame field.
To generate cross fields we can therefore optimize the derivatives,
without having to encode explicit “jumps” or enumerate all possible
rotations. The final field is recovered via local integration, which
amounts to a simple breadth-first traversal of the domain. This
field can in turn be used as direct input to parameterization-based
meshing tools, yielding high-quality pure hexahedral meshes with
precise control over singular features (Fig. 1, far right).

0.1 Related Work

This paper is concerned solely with the representation and genera-
tion of 3D cross fields. A discussion of broader hexahedral meshing
is covered by several recent surveys [Armstrong et al. 2015; Yu
et al. 2015]; the specific problem of finding meshable fields with
prescribed singularities is nicely motivated by Liu et al. [2018].

0.1.1  Moving Frames. Familiar examples of moving frames include
the Frenet frame of a space curve, and the Darboux frame of a surface
patch; these so-called adapted frames arise naturally in applications
ranging from elastic rod simulation [Bergou et al. 2008] to geometric
design [Pan et al. 2015]. Richer elements of the theory have seen
little use in computer graphics: Lipman et al. [2005, 2007] consider a
surface representation similar in spirit to moving frames but do not
directly discretize the structure equations; moreover, these methods
have no reason to consider volumetric domains or singular cross
fields, as are needed for hexahedral meshing. More broadly, spe-
cialized numerical treatments of moving frames have been applied
sporadically to problems ranging from general relativity to inte-
grable systems theory [Olver 2000; Frauendiener 2006; Mansfield
et al. 2013], though none are suitable for the problem at hand.

0.1.2  Direction Field Representations. For surfaces, representation
of symmetric direction fields is fairly well understood—see surveys
by Vaxman et al. [2016] and de Goes et al. [2016]. However, due to
non-commutativity of 3D rotations many of these representations
do not easily generalize to volumes, or lead to optimization problems
that are difficult to solve. Moreover, whereas singularities in a 2D
cross field can always be realized as irregular vertices in a quad mesh,
singularities in a 3D cross field cannot always be realized as irregular
edges in a hexahedral mesh since the field direction may not be
tangent to the singular curve (Fig. 3). Therefore, although there are
many methods for generating smooth 3D cross fields, almost none
produce fields directly suitable for meshing.
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Periodic Functions. Early methods used periodic, sinusoidal func-
tions to capture the 4-fold rotational symmetry of 2D cross fields
[Hertzmann and Zorin 2000, Sec. 5]; likewise, several 3D methods
use a function with cube symmetry expressed as a sum of low-
frequency spherical harmonics [Huang et al. 2011], or equivalent
polynomials [Li et al. 2012]. Ensuring that spherical harmonic coef-
ficients correspond to rotations of this function entails high-degree
nonlinear constraints in a large number of variables—moreover,
since optimization can easily get stuck in local minima, practical
success of such methods appears to depend strongly on careful
initialization of the field [Li et al. 2012; Ray et al. 2016].

Representation Vectors. Symmetric fields can also be expressed as
a set of vectors at each point; in 2D, one can identify all elements of
this set with a single symmetric tensor [Palacios and Zhang 2007],
or a single complex number via the identification z P [Knoppel
etal. 2013]. In 3D, there does not appear to be any easy analogue—for
instance, 3D symmetric tensor fields do not exhibit the symmetry
needed for hex meshing [Palacios et al. 2017], and powers of quater-
nions identify rotations only around a single axis. Alternatively, one
can retain the full set of vectors and enumerate all possible rotations
during optimization, necessitating iterative local smoothing that
easily gets trapped in local minima [Gao et al. 2017].

Period Jumps. In 2D, cross fields can be encoded via angles 6 € R,
together with integer period jumps or matchings n € Z which en-
code identifications between equivalent angles (e.g., 01 = 62 + nx/2).
Optimization then entails mixed integer programming [Bommes et al.
2009], which in general is NP-hard. Liu et al. [2018] develop the first
such approach for 3D cross fields; like our method (and unlike all
other methods discussed so far) they ensure that fields are compati-
ble with the structure of a hexahedral mesh, providing direct control
over singularities. To determine period jumps, the method solves a
large system of nonlinear mixed integer equations; in the worst case,
it resorts to exhaustive search over the entire solution tree. It then
finds the smoothest cross field by relaxing a unit-norm constraint
on individual quaternions to a principal eigenvector problem over
the entire domain. Implementation involves intricate merging and
zippering procedures; moreover, the eigenvector relaxation does not
directly measure the smoothness of rotations (Sec. 4.4), and can in
principle introduce new singularities (zeros) that were not part of
the given network—see discussion of Vaxman et al. [2016, Figure 6].

Fig. 3. Control over the behavior of singularities is essential, since even
extremely smooth fields (left) may not be meshable. Using symmetric mov-
ing frames, we can ensure that one frame axis is always tangent to a given
singular curve (right), without having to determine this axis a priori.



Differential Representations. Our rep-
resentation naturally generalizes Crane
et al. [2010], who optimize the derivative
w of a 2D cross field rather than the field
itself. This approach avoids the need to ex-
plicitly identify equivalent frames during
optimization, leading to a convex problem
easily solved via a sparse linear system.
The symmetric nature of the field arises
purely from the fact that the derivative
may describe only quarter turns around
closed loops (Fig. 4). The only challenge
is ensuring that o is integrable, i.e., that it really is the derivative of
some cross field. In 2D, integrability is enforced via a simple linear
structure equation where w A @ = 0; in 3D we must discretize the
full structure equation, and consider singularities which are now
curves rather than isolated points (Sec. 3).

Fig. 4. A 2D cross field en-
coded by the change in an-
gle w across each edge.

0.1.3  Contributions. Our main contributions are to (i) cast the prob-
lem of symmetric 3D cross field generation in the language of mov-
ing frames, and to (ii) develop a principled discretization of moving
frames suitable for hexahedral meshing. In doing so, we build a
bridge between a rich body of knowledge from differential geome-
try and the difficult computational challenge of mesh generation;
connections to established partial differential equations (PDEs) en-
able us to build on principled numerical foundations for discrete
differential forms [Hirani 2003; Desbrun et al. 2006]. Ultimately,
we obtain a simple, practical representation where cross fields are
encoded by an axis and angle of rotation across each edge. This
representation captures arbitrarily large rotations even on coarse
meshes (Fig. 9), and leads to a natural notion of field smoothness
that considers only orientation, rather than magnitude (Sec. 3.1).
Our main application is computing 3D cross fields adapted to a
given singularity network; preserving these singularities is critical
for ensuring that the field can actually be meshed. Computational
cost is dominated by a sparse nonlinear least squares problem arising
from equations that are at most quadratic and have no integer vari-
ables; such problems are easily solved using a small number of linear
solves, or scalable iterative solvers [DeVito et al. 2017]. In practice
this problem behaves like a convex program: it produces the same
result independent of initialization, and yields only the requested
singularities (Sec. 4.2). Representations that encode both direction
and magnitude are unattractive for this task since magnitudes may
go to zero (yielding unwanted singularities), or may get stuck in
local minima that do not exhibit the desired singularities. Moreover,
while Liu et al. [2018] must make all topological decisions a pri-
ori (e.g., total torsion around closed loops), our formulation allows
these choices to emerge naturally from the optimization of a simple
geometric energy (Sec. 3.2.2). See Sec. 4.4 for further comparisons.

0.2 Overview
Our algorithm can be broken down into two major steps:
o first find a 2D cross field on the domain boundary compatible
with the prescribed singularity network;
o then find a 3D cross field on the interior adapted to both the
singularities and the boundary normal.
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Note that, as in Crane et al. [2010], we do not aim to solve the
problem of finding singularities, but assume that a valid, “meshable”
network is provided as input (in the sense of Liu et al. [2018]). Since
both steps amount to solving very similar structure equations, we
begin with a unified treatment of 2D and 3D discretization in Sec. 1
before describing the boundary (2D) and volume (3D) optimization
problems (Secs. 2 and 3). App. A motivates this algorithm from the
smooth perspective; numerical experiments can be found in Sec. 4.

0.3 Background

Throughout we use SO(n) to denote the collection of n X n rotation
matrices Q'Q = QQT = 1, det(Q) > 0, where | is the identity.
We use so(n) to denote n X n skew-symmetric matrices AT = —A,
whose nonzero components describe the axis and magnitude of
a rotation. The corresponding rotation matrix is obtained via the
exponential map exp : so(n) — SO(n). For instance, every A € so(2)
is determined by a single angle 6, and we have the relationship
0 6 | exp cos sinf

[—9 O}H[—sinﬁ cos@]' )
In 3D, a unit axis u = (u1, uz, u3) € R? and angle € R determines
a skew-symmetric matrix A = 04, where

0= us3 0 -u |. (2)

The exponential map can then be evaluated via Rodrigues’ formula
exp(A) = | + sin 04 + (1 — cos 0)a?.

Importantly, the exponential map is not one-to-one: as the angle
increases, exp will return to the same rotation many times. For a
given Q € SO(n), the logarithmic map log : SO(n) — so(n) gives
the smallest matrix A such that exp(A) = Q, and can be evaluated
via the matrix logarithm. Throughout we will use the notation 0
and 4 to identify angles and vectors with skew-symmetric matrices,
as in Eqn. 1 and 2 (resp.); we will use [M|? = Zj:lMij to denote
the (squared) Frobenius norm of any n X n matrix M.

1 DISCRETIZATION

Our main object is a (2D or 3D) cross field E and its Darboux de-
rivative w, which encodes the change in the field from one point
to another. In 2D, integrable Darboux derivatives are characterized
by linear equations describing the consistency of rotations around
closed loops [Crane et al. 2010]. In 3D, the chief difficulty is that
exponentiation of rotations no longer obeys the familiar relationship

exp(A) exp(B) = exp(A + B), 3)

which means we can no longer convert statements about products
of rotations into corresponding linear equations. To obtain efficient
algorithms, we instead approximate exact but nonlinear discrete
integrability conditions by a truncated series expansion (Sec. 3.1).
Remarkably enough, this approximation turns out to be identical to
a principled discretization of the structure equation via discrete ex-
terior calculus (App. A.4), which in practice exhibits highly accurate
(second-order) enforcement of integrability (Sec. 4.2).
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1.1 Domain

The domain is represented by a connected,
manifold tetrahedral mesh XC embedded in R3.
We use K to denote the k-simplices of IC
I (e.g., Ky is the set of vertices). We likewise
use JK to denote the boundary surface, and
0Kk to denote the k-simplices contained in
OK. Ordered lists of vertex indices denote ori-
ented simplices, e.g., ij € K1 is an edge from
vertex i to vertex j, and ji is the same edge
but with opposite orientation. Sums are im-
plicitly restricted to simplices containing ver-
tices that appear on both the left- and right-
hand side of an expression—for instance, A; :=
Fig. 5. Quantities % YijkedK, Aijk defines the barycentric dual
associated with the area obtained by taking one-third the area of
tetrahedral mesh /C.  triangles ijk containing vertex i. We use N; to
denote the unit area-weighted vertex normal at any boundary ver-
tex i € AKy, 9{ to denote the interior angle at vertex i of triangle
ijk € K2, and £;; to denote the length of edge ij € K;.

1.1.1  Singularity Tubes. In 2D,

cross fields can have isolated i »
singular points where the direc- ¥
tion is undefined, and around f'}‘r b
which the field “spins” at a pre- A

7

scribed rate; 3D fields can like-
wise have networks of singular
curves that form closed loops
or terminate at the boundary.
To represent such networks, we
use a mesh K with a special
structure: singular curves are
represented by tubes of triangu-
lar prisms (Fig. 5, bottom) which terminate at boundary triangles or
meet at interior tetrahedra (see Sec. 4.1 for details).

Each curve has an index ¢ € R which determines how many
times the field rotates as it goes around the tube (Fig. 9); meshable
cross fields can have fractional indices 0 = +n/4 for n € Z. An index
o = 0 specifies a feature curve, along which the cross field is tangent
but not singular (Fig. 6). In order to be meshable, indices must at least
satisfy a condition analogous to Poincaré-Hopf, given in Liu et al.
[2018, Equation 2], and interior nodes must exhibit configurations
described in Liu et al. [2018, Sec. 3] (who note that global necessary
and sufficient conditions remain difficult to establish.)

JUWED

Fig. 7. Notation used to refer to elements of the singularity tubes.

Fig. 6. Field with a feature curve (red)
and boundary constraints (yellow).
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Fig. 8. Left: Two crosses are equivalent only if they differ by quarter rotations
around their own axes. Such motions correspond to inverting the current
rotation (E71), applying some symmetry of the standard cube (g), then
applying the original rotation (E). Right: Simply applying a quarter rotation
around an arbitrary axis generally yields a different cross.

Notation. We use Sy C Ky to denote the set of vertices contained
in the singular tubes, S to denote edges running along their length,
08, to denote triangles on tube boundaries, SA to denote triangles
at the top/bottom of triangular prisms, and 823 to denote all other
interior triangles, which serve only to triangulate the tube (Fig. 7).

1.2 Discrete Cross Field

LetT ¢ SO(n) denote the set of rotations that map the n-dimensional
cube [-1,1]" C R” to itself. Two rotations E;,E; € SO(n) are
equivalent up to cube symmetry if their difference E jEi_l equals
E,-gEl._1 for some g € T, as depicted in Fig. 8. A cross is then an
equivalence class of rotations, and a discrete cross field is a cross
at each vertex i, encoded by a representative rotation E; € SO(n).
In 3D, these values encode rotations of the standard basis, and the
cross axes are given by the columns (not the rows) of the rotation
matrix. In 2D, they encode rotations of a canonical tangent frame
at each vertex (Sec. 1.3). Since cubes and octahedra have the same
symmetry, 3D cross fields are also sometimes called octahedral fields.

1.3 Boundary Coordinate Systems

To encode the boundary (2D) frame field we
adopt the approach of Knéppel et al. [2013],
who express tangent vectors in local polar
coordinates (r, ¢) relative to some local co-
ordinate system at each vertex (see inset).
We first define normalized interior angles

é{k = 27[9{k/®,‘,

where ©; = ¥;ikeax, G{k. At each vertex
i € 0Ky, we then assign the angle ¢ = 0 to a fixed reference edge
ijo € 0K. The angles of all other edges iji, ..., ijq are given by
partial sums of the augmented angles 6:

a-1
Pija = Z H_{a’]a-#l .
p=0

The augmented angles also provide a definition of Gaussian curva-
ture per boundary triangle ijk € 9/Cy, given by the deviation from
the angle sum of a standard Euclidean triangle:

Kijk = é{k"ré]kl +éli€j—7'[. (4)
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Fig. 9. The index o determines how many times the field winds around a singular curve. Since we directly encode the angular change along each edge, we can

robustly handle large rotations even on very coarse meshes.

1.4 Parallel Transport

To compare frames at neighboring vertices, we use matrices R;; €
SO(n) that encode the change in local coordinates as we go from
i to j. For the volume (3D) field, all rotations are expressed in the
same basis, and hence R;; = I. For the 2D (boundary) field, let

pij = (@ji + ) = ij ®)
be the difference between the two angles encoding the shared edge
ij. The rotation R;; = exp(p;;) then describes the process of parallel
transport, i.e., moving along ij without unnecessary “twisting.” (Note
that pj; = —pjj, and hence Rj; = Rl._jl.) In general, parallel transport
of a frame from i to j can be expressed as E; + R;;E;.

An important relationship between curvature and parallel trans-
port is nicely preserved by the discretization from Sec. 1.3, namely,
the net rotation around any triangle ijk € 0/C; is determined by its
total Gaussian curvature:

RyiRjkRij = exp(Kjjp). (6)
This relationship, and a corresponding index theorem (discussed
carefully in Knoppel et al. [2013, Appendix B]), will enable us to
formulate a precise version of the trivial connections algorithm of
Crane et al. [2010] with frames at vertices rather than faces (Sec. 2).

1.5 Discrete Darboux Derivative

A discrete frame field is determined up to global rotation by the
change across each edge. Inspired by the theory of moving frames,
we will express this change relative to the frame itself. In particular,
we define the (discrete) Darboux derivative along edge ij as

wij = log(Ej(RijE;) ™), ™)
i.e., as the (smallest) “axis-angle” representation of the change from
E; to Ej, taking parallel transport into account (see also App. A.4).
For a cross field, we let E; be the representative rotation closest
to Rj;E;. Although we use the smallest difference when taking the
derivative of a given field E, in general we will allow w;; to have
any magnitude, permitting very large rotations (Fig. 9).

1.5.1 Discrete Integrability. The Darboux derivative w describes
how a given frame E changes across each edge. We can also ask the
opposite question: given values w;; € so(n) at edges, do there exist
frames E; at vertices whose Darboux derivative is equal to w? Any

such frame is called a development of w. One can clearly develop w
along any simple open path y = (i, . . ., ix): start with some initial
frame E;;, and use parallel transport to obtain the development

Ei i = exp(@iy,ipi)Rip, i Eiy- (8)

However, if y is a closed loop, there is no reason the final frame must
be equal to the initial one. In this case, w does not describe a well-
defined frame field, no matter how we pick E;,. More generally, for
a field to be well-defined over the whole mesh, w must be consistent
around every closed loop of edges. The (discrete) monodromy ®,,
quantifies the failure of this condition around a given loop y:

Dy, (y) = exp(wiy, io)RiN»ioENE(;l ©

(where E is defined by Eqn. 8). The values w then describe an
ordinary frame field if and only if ®,,(y) = | for all closed loops y.

1.5.2 Monodromy of Cross Fields. In a 2D or 3D cross field, the total
rotation around a closed loop no longer needs to be equal to the
identity: instead, it can look like a symmetry of the square or cube
(resp.). More precisely, let E; € SO(3) be any rotation representing
a cross at vertex i, and let y be a closed loop based at i. In order
for w to be the Darboux derivative of a cross field, the monodromy
around y must be conjugate to a cube symmetry, i.e.,

D, (y) = EigE;! (10)

for some g € T. If this condition holds, we say that w has trivial
(T )-monodromy around y, with respect to E;.

In 2D, Eqn. 10 is equivalent to simply asking that the monodromy
is an element of T, since here rotations commute and E,-gEi_1 =
E,-Ei_1 g = g.Butin 3D, merely asking that monodromy be an element
of T is not the right condition, as illustrated in Fig. 8: a rotation
that preserves a cross must be around the axes of the cross itself,
not the axes of the canonical cube. From here it is easy to show
that if Eqn. 10 is satisfied for some loop around each triangle (for
some fixed choice of cross field), then it is automatically satisfied
around all contractible loops; if it also satisfied around a collection of
generators for the first fundamental group, then it is satisfied around
all closed loops. This observation provides a discrete analogue of
the fundamental theorem discussed in App. A.2.1 and A.3.
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2 BOUNDARY CROSS FIELD (2D)

The first step of our algorithm is to solve an optimization problem
for a 2D cross field on the boundary surface, which provides bound-
ary data for our 3D problem (Sec. 3). The algorithm is essentially
the one described by Crane et al. [2010], with two important modi-
fications: first, we store frames at vertices rather than faces; second,
singularities on the boundary are determined by the singular and
feature curves of our 3D problem.

2.1 Objective (2D)
In 2D, the only objective term is the squared norm
ol := " wijloyl® (1)
ijedkK,
Since w encodes the deviation from ordinary parallel transport,

Eqn. 11 encourages the field to be “as parallel as possible” The
values w;; are the standard cotan weights

wij = %(cot 9]? + cot G{i), j (12)
ij on the boundary mesh dK. Eqn. 11 dis- @ !

cretizes an SO(2)-valued Dirichlet energy—
see App. A.4 for further discussion. i

where k,[ are the vertices opposite edge a
k

2.2 Constraints (2D)

As discussed in Sec. 1.5.2, w encodes a field E as long as it has trivial
monodromy around all closed loops. This condition is enforced via
linear constraints mirroring those from Crane et al. [2010, Sec. 3.3].

Local Integrability. Recall that parallel transport around a triangle
ijk € 0K yields a change in angle determined by the Gaussian
curvature K;ji (Eqn. 6). To consistently describe an ordinary frame
field on ijk, w must cancel this deviation, i.e., we must have

Wij +(/ij + W = _Kijk +27'[3ijk, (13)
for some integer o € Z. This condition also permits some number
of whole turns Q. := 270;, corresponding to a singularity at ijk.
For cross fields, 0 can be a multiple of 7/2 (describing quarter
turns) rather than a whole integer—any cross transported around a
contractible loop y will then be indistinguishable from the initial
cross (Fig. 4). The only requirement is that the prescribed indices
satisfy a discrete Poincaré-Hopf condition ¥’k cgxc, 0ijk = X» Where
x is the Euler characteristic of the boundary surface.

Nonsimply-Connected Surfaces. Letben,...,n,
a collection of generating cycles for the funda- i 75
mental group (as depicted in the inset). To en-
sure that  has trivial monodromy around non-
contractible loops, we apply linear constraints  Fig. 10. Generators
on a torus.
Z wij = Do (1p) (14)
ijenp

which cancel the monodromy ®(17,) due to parallel transport (i.e.,
just the sum of values p;; along 11p). The only change from Crane
et al. [2010, Sec. 2.1] is that these generators are now paths along
ordinary (primal) edges; in practice we use tunnel and handle loops
computed via [Dey et al. 2013].
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2.3 Optimization Problem (2D)

Overall, we obtain an optimization problem for the smoothest 2D
cross field with prescribed singularities (and generator monodromy):
min _[ol?
w:0K1—s0(2)
s.t. wjj + Wjk + Wy = _Kijk + Qijkv
Yijen, @ij = —Po(1p),

Vijk € 0kc,, (19
pefl,...,r}.
In practice we encode all values by real angles, yielding a convex

quadratic program whose solution is described by a linear system
(see [Crane et al. 2010, Sec. 2.4] and [Crane et al. 2013, Sec. 8.4.1]).

Singular Points and Sharp Features. To en- j .
sure the 2D field is compatible with the 3D “. .7
AIPXOR ™ 2
curve network, we set Q; jk = 2704k for any Wij *Eg
singularity tube of index ¢ terminating at a i 0

boundary triangle ijk € 0KC;. For domains N; £

with sharp features (such as the edge of a cube), \ X /
one can also specify a graph of sharp edges—
this graph can be interpreted as the skeleton
of a surface where all faces are axis-aligned,
and all nonzero dihedral angles are equal to
+m/2. The value of Q;j at any vertex of this
graph is then the angle defect of the axis-aligned surface; since
we put singularities at triangles, sharp corners are replaced with a
small singular triangle (Fig. 11). Singular curves that do not touch
the boundary (e.g., a loop around a solid torus) have no impact on
boundary singularities, and all other values of Q are set to zero.

Fig. 11. Data along
sharp (yellow) fea-

ture curves.

2.4 Field Integration (2D)

To obtain the final frames we perform a breadth-first traversal:
starting at any vertex iy € 0/Cp, we transport some initial frame
E; € SO(2) to all other boundary vertices via Eqn. 8. (The particular
choice of frame has no effect on our 3D problem, which only uses
the frame derivatives.) The constraints in Eqn. 15 ensure that the
change in the resulting field E across any edge ij exactly agrees
with w;j, independent of the starting point ig. In this sense, the 2D
theory is “exact”: any w satisfying our constraints exactly describes
a 2D cross field, up to a global rotation.

Extrinsic Field. For the 3D problem, we will need an extrinsic
version of the 2D field, i.e., an element E? € SO(3) for each boundary
vertex i € Ky, which we obtain by projecting each 2D frame
onto the plane of the vertex normal N;, and using N; to complete
the orthonormal basis. We also store the Darboux derivative «° of
the extrinsic field on each edge ij € dKC;. Evaluating the discrete
Darboux derivative log(E;.) (E?)_l) directly is not satisfactory since
(i) it may exhibit spurious quarter rotations across edges not in the
breadth-first tree, and (ii) the log map may not properly account for
large rotations. Instead, we construct the smallest rotation Q;; €
SO(3) from N; to Nj, then set w?j = log(Qij) + wijN; (using the
triangle rather than vertex normal for edges with one endpoint on a
sharp feature—see edge ij in Fig. 11). This value encodes a twist-free
change of tangent plane, plus a (potentially very large) rotation
®;;jN; around the normal. The final values of E9 and w? are the only
data we need for the 3D stage of the algorithm.



3 VOLUME CROSS FIELD (3D)

To obtain the 3D cross field, we minimize an energy that measures
(i) the smoothness of values w : K1 — $0(3) and (ii) their failure
to be integrable, subject to linear constraints that adapt the field to
the boundary and the singular curve network. Note that we do not
adapt all three directions of the 3D frame to the given (2D) boundary
frame—we ask only that it preserve the 2D singularities (Sec. 3.2.1).

Vi

which measures the Dirichlet energy of the field (App. A.4). The
weights are now given by w;;j = A;;j/{;j, where {;; is the length of
edge ij, and A;; is the area of its circumcentric dual face (see inset).
This energy is particularly appropriate for field-guided meshing
since it considers only smoothness in orientation and not magnitude.

3.1 Objective (3D)

Field Smoothness. As in 2D, smoothness is
quantified via

ol := " wijlogl®,  (16)

ijeky

Local Integrability. The 3D analogue of Eqn. 13 is given by the
discrete structure equation

(dw)ijk = (@ A )ik + Qjks (17)
Here d denotes the discrete exterior derivative

(dw)ijic = wij +
and the symbol A denotes the discrete wedge product

@ABijk = adr D, Ay (@paBrp — Proopq).  (18)
pqresgk

a)jk + Wi,

where SJ; are the three even permutations

of ijk, A;jr € R is the area of triangle ijk,
and .AJ € R are the (unsigned) Voronoi areas
obtamed by connecting the circumcenter of ;
ijk to its edge midpoints (see inset). In 3D, the
values Q;jr € s0(3) now describe both the
speed and axis of rotation around singular
curves (see Sec. 3.2.2).

There are two ways to derive Eqn. 17: either discretize a smooth
structure equation (App. A.4), or expand the monodromy around tri-
angle ijk (i.e., exp(wg;) exp(wjx) exp(wij)) via the Baker-Campbell-
Hausdorff formula. The first-order terms yield the discrete exterior
derivative; the second-order terms yield the discrete wedge product.
Since higher-order terms are omitted, values w satisfying Eqn. 17
do not exactly characterize a discrete frame—rather than a hard
constraint, we therefore use a penalty

R(a)) = Z |(dw)ljk - (0) A (/))Uk + Q[]klz (19)
ijkek;

Here K3 = IC2\ (0K, US?) denotes the set of triangles in K that are
neither on the domain boundary, nor on the interior of singularity
tubes—for these triangles, integrability of w will be encoded by linear
constraints in Secs. 3.2.1 and 3.2.2, resp. In practice this penalty yields
values o that are extremely close to integrable (even on very coarse
meshes), as demonstrated in Sec. 4.2.
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3.2 Constraints (3D)

3.2.1 Boundary Adaptation. Along the domain boundary, the field
must agree with singular curves at their endpoints; for hex meshing
it should also be adapted to the surface normal. Suppose that at
boundary vertices i € 0Ky we write the field as E; = exp(aiﬁi)E?,
i.e, as a rotation of the reference frame E° (from Sec. 2.4) by an
angle a; around the normal. Letting these angles be free parameters
in the optimization, and letting N;; := %(Nl- + Nj), the constraint

wij = w?j + (aj — a;i)Nij, ij € 0K (20)

then allows the field to freely rotate around the normal (App. A.4),
while ensuring the total rotation around closed loops—and in partic-
ular, around singular triangles—is fixed: consider summing a; — a;
around any loop (see also App. A.4.1). For most domains this con-
straint also ensures trivial monodromy around all noncontractible
loops (not just those on the boundary); see App. A.2.1.

3.2.2  Curve Adaptation. For hexahedral meshing, the monodromy
Qjjk € s0(3) around any singular curve must have magnitude kz/2
for some k € Z, and direction parallel to the curve tangent T. We
must also apply linear constraints that ensure frames are adapted
(i.e., tangent) to the curve. Both conditions are essential: a fractional
turn around an arbitrary axis does not define a consistent frame
(Fig. 8); a field that merely makes some consistent rotation—but not
around the curve tangent—is generally not meshable (Fig. 3, left).

Monodromy. Recall the notation from Sec. 1.1.1. For triangles ijk €
S? we set the value of Q;j to Z”Uijkﬁijk’ giving the unit normal
Njjx the same orientation as the tube. Since these triangles already
contain all tube vertices, we omit the structure equation (Eqn. 17)
from interior triangles ijk € S. B , which would be redundant. Finally,
for the nonsingular triangles ijk € dS, we set Q;j; = 0.

Adaptation. To adapt frames
to singularity and feature curves,
we include linear constraints
akin to Eqn. 20 for each edge
ij € 81 running along a singular-
ity tube. For each vertex i € Sy,
let T; denote the unit normal
Njji of the associated triangle

=S Tina

ijk (see inset) and let E? be an arbitrary reference frame adapted
to Sy at i (e.g., the frame of least twist). For each edge ij € Sy, let
Tij = %(Ti +T;) and let w?j be the Darboux derivative of E® (Eqn. 7).
We can then specify two different kinds of constraints—either
wjj = a)?j + aijTij, (21)
or
wjj = a)?j + (aj — a;)Tyj. (22)

In both cases, the values a)?j

account for the bending of the curve,
ensuring that the frame remains adapted as it moves from i to j.
The T; j terms determine the frame’s torsion along the curve: using
free parameters a; j € R per edge permits any torsion whatsoever,
whereas taking differences of free parameters ; € R per vertex
forces the total torsion around closed loops to equal the total torsion

of the reference frame E° (since the differences sum to zero).
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Fig. 12. Even when the constraint set has disconnected components, integrability of w is typically sufficient to ensure that the frame is correctly adapted
to boundary normals and curve tangents—even in the absence of symmetry. Here we show a domain with disconnected feature curves (a), disconnected
boundary components (b), and singular loops that make no contact with the boundary (c). A rare exception is shown in (d), where the cross field on two nested
cubes can be globally represented by an ordinary rotation field; here we can simply connect components by a feature curve (in red) to ensure proper alignment.

While Eqn. 22 provides ex-
plicit control when there are
multiple solutions (say, a solid
torus without boundary adap-
tation), it is typically easier to
use Eqn. 21, since the torsional
period need not be chosen a pri-
ori. Consider for example the
twisted prism shown in the in-
set: to obtain a torsion compat-
ible with the boundary normals one could either use Eqn. 22 and
design an initial frame E° along the singular (red) curve that rotates
by 47/3 around the vertical axis, or use Eqn. 21 and simply let the
free parameters @;; automatically determine the correct torsion (as
done for the prism). Fig. 13 shows a similar example for closed loops.

Finally, for sharp feature curves along the boundary we simply
set wjj = oo?j where o is the Darboux derivative of the cross field
best adapted to the curve tangent and the boundary normals at each
vertex (see edge ab in Fig. 11). Since crosses must remain adapted
to the normals, a free torsion parameter is not needed.

Fig. 13. We can allow the torsion of the frame along singular and feature
curves to be free during optimization—and hence do not have to determine
torsional periods a priori. Here for instance the frame automatically makes
the correct number of twists as it travels around the red loop (from left to
right: 0, 1, and 2), keeping it compatible with the boundary normals.
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3.2.3 Disconnected Components. A special case to consider are
domains where the constraint set is disconnected (as in Fig. 12).
Since constraints on w prescribe only the local change in the field—
and not its absolute orientation—it is not immediately obvious that
a field adapted to one boundary component will be adapted to all
others. Crane et al. [2010, Section 2.8] describe a similar situation
in 2D, where disconnected components of directional constraints
are joined by paths with prescribed angle sums. The same strategy
cannot be applied in 3D, due to the failure of Eqn. 3.

However, the situation turns out to be easier in 3D than in 2D:
any integrable 1-form w already describes a frame that is correctly
adapted to all constraints. The basic reason is illustrated in Fig. 8:
suppose a cross field E had Darboux derivative w, but was not cor-
rectly adapted to the constraint set at some vertex i € Cp. Due
to the constraints in Sections 3.2.1 and 3.2.2, the monodromy of w
around any loop y based at i must be a cube symmetry around the
axes of the adapted frame. In general, then, developing an incorrectly
adapted frame E; around such a loop would yield an inequivalent
frame E: i.e., © would not actually be the Darboux derivative of
E—a contradiction. The only exception is when all loops based at all
boundary points have monodromy equal to the identity, i.e., when
the solution can be globally expressed as an ordinary frame field
rather than a cross field. (See also discussion in App. A.3.1.)

In short, as long as w is integrable, special treatment of discon-
nected components is typically not needed. For example, Fig. 12¢
shows correct adaptation to both singular curves and boundary
normals on an asymmetric torus with four disconnected singular
loops of index +1/4. In contrast, Fig. 12d, left shows misalignment
on an example where the solution can be expressed as an ordinary
frame field. Here, connecting the two components by an index-0
feature curve with free torsion (d la Eqn. 21) restores proper align-
ment. In practice we often find that no additional constraints are
needed even when the solution can be represented by an ordinary
frame field—see for instance Fig. 12a and b. Further analysis of this
behavior is an interesting question for future work.
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Fig. 14. Our discretization of Cartan’s structure equation exhibits second
order convergence with respect to mean edge length h, providing good
numerical behavior even on coarse models.

3.3 Optimization Problem (3D)

Our overall optimization problem is a nonlinear least squares prob-
lem subject to linear constraints:

min [lwl? + aR(w)
w:KC1—s0(3)
a:B—-R
s.t. wij = w?j + %(aj - ai)Nij, Yij € 0K (23)

wij :w?j+%aijfij, Vij € S1.

Here, B is the set of vertices and edges where the adaptation con-
straints have real degrees of freedom a. The relative strength of the
two objectives is controlled by the parameter a > 0, which affects
only the rate of convergence (we use a = 1000 in all examples). In
practice, we observe that this problem appears to produce globally
optimal solutions, since any (empirically) initial guess leads to an
identical minimizer—see Sec. 4.2 for further discussion.

Field Integration (3D). To recover the final field E, we propagate
w across the domain via breadth-first parallel transport exactly as
in 2D (Sec. 2.4), except that the parallel transport matrices are now
just R;j = I. Since w determines E only up to a global rotation we
start with an adapted frame on the domain boundary, though the
particular choice of initial vertex i € 9Ky does not matter—see in
particular Fig. 16.

4 EVALUATION AND RESULTS
4.1 Domain Generation

The volume mesh K is generated by specifying (i) the domain bound-
ary, as an ordinary triangle mesh, and (ii) a collection of triangular
singularity tubes, terminating at triangles on the domain bound-
ary. The composite triangle mesh is then handed to any standard
method for constrained Delaunay triangulation—we use TetGen [Si
2015] with default settings, and do not perform any subsequent
processing to the mesh. Mesh sizes in our examples ranged from
22k to 222k tets, with an average size around 100k tets. We construct
tubes by sweeping a triangle along a given collection of polylines;
tubes meeting at an interior node are joined by a single tetrahedron.
For complex or noisy singularity networks this simple sweeping
procedure can be error prone, though is of course not fundamental
to our approach—see Sec. 5 for further discussion.
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Fig. 15. Due purely to discretization error, rotations exp(w;;) exhibit an
extremely small failure to close around triangles ijk, which vanishes rapidly
under refinement. Left: cross section of the example shown in the upper-left.
Right: convergence with respect to mean edge length h.

4.2 Validation

Numerical experiments help validate our formulation. Fig. 14 plots
the residual of the discrete structure equation (Eqn. 17) with respect
to mesh refinement, indicating second-order convergence; as is
standard for singular PDEs, we measure error on a fixed subdomain
away from singular curves. In Fig. 15 we quantify the integrability
of w by measuring the magnitude of the monodromy in each face
ijk (a la Eqn. 9), which is no more than a small fraction of a degree
even on the coarsest mesh. Here again we observe the expected
second order convergence, strongly suggesting that any lack of
integrability is purely due to discretization error, rather than a
failure of the solver to produce an optimal solution. Fig. 16 further
confirms that our solution is almost perfectly integrable not only
locally but also globally: here we propagate « in breadth-first order
either from the domain boundary (where the field is known), or
from an arbitrary point on the interior; in each case, the global
accumulation of error is small enough that the maximum change in
any cross is no more than about 1°. We also check that the integrated
frame E is closely adapted to the normal of the domain boundary
and the tangents of the singularity curves: across all examples in the
paper, the average error ranges from 0.014° to 1.72° with a standard
deviation of 0.64°, even for the large index singularities in Fig. 9
and highly twisted boundary in Fig. 13. Overall, the discretization
appears to be extremely accurate, even on coarse meshes.

Initialization. Fig. 17 shows the solutions obtained when initial-
izing w with random values, constant values, or the solution to an
easier problem where we omit the quadratic term w A w from Eqn. 19
and can hence just solve a linear system. In each case the minimizer
is identical, up to floating point error. This behavior is representative
of our experience across a wide variety of examples: we always get
the same solution, independent of initialization; we do not require a
carefully-designed solver or optimization strategy. Though Eqn. 23
is not convex, such experiments strongly suggest that the solutions
we obtain are globally optimal, much as eigenvalue problems are
nonconvex, yet easily admit global minimizers. Further analysis of
this problem is an interesting topic for future work.
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Fig. 16. Even on a fairly coarse mesh (4k vertices, pictured top left), local
integrability error is small enough that we obtain a virtually identical cross
field whether we integrate w via a breadth-first search from the domain
boundary (a), or from an arbitrary interior point (b, c and d).

initializer

solution

random zero

linear solve

Fig. 17. Independent of initial guess (left), our optimization problem yields
an identical solution (right) up to floating point error. Here we plot w as a
vector per edge.

Local Smoothing. We also compared the raw output of our algo-
rithm with the field obtained by performing additional local smooth-
ing, using a simple iterative scheme akin to Gao et al. [2017]. At
each iteration the frame E; is replaced with the Karcher mean of its
neighbors, i.e., the minimizer of the energy 3;; wijd(Ei, E j)z, where
d(-,-) is the distance on SO(3), and E; € SO(3) is the representative
of the cross at j closest to E;. Even on coarse meshes, this procedure
yields virtually no change to our solution (Fig. 18). In other words,
our smoothness energy captures what one might naturally desire at
the discrete level: it minimizes the difference in rotation between
adjacent crosses. (Note that we do not use this smoothing procedure
for any other examples.)
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Fig. 18. Applying additional local smoothing makes an imperceptible change
to our solution, indicating that it also does a good job of minimizing ro-
tational differences at the discrete level. Here we visualize a cross section
before and after smoothing, as well as the change in angle due to smoothing.

4.3 Performance

The main cost in our algorithm is solving the optimization problem
for w on the volume (Eqn. 23); here we used a standard Levenberg—
Marquardt solver without line search [Moré 1978], though many
efficient alternatives are available [DeVito et al. 2017]. Each iter-
ation entails solving a roughly [3E| X |3E| positive definite linear
system; we made no effort whatsoever to optimize our code, and
simply use the backslash command in MATLAB (which performs
sparse Cholesky factorization); Eqn. 15 was solved using quadprog
in MATLAB, but can easily be reformulated as a sparse linear system
(Sec. 2.3). With this implementation, setting up and solving our two
optimization problems on a mesh with 130,000 edges takes a couple
minutes on a 4GHz Intel Core i7 with 16GB of RAM. The number
of iterations does not seem to depend strongly on mesh resolution:
all of our examples take about 5-10 iterations to converge. Other
steps did not contribute significantly to computational cost.

4.4 Comparisons

The only other method which generates a meshable field compatible
with a given set of singular curves is the one of Liu et al. [2018].
Since both methods produced fields with the same global topology,
we compared field smoothness, quantified using either (i) the quater-
nion Dirichlet energy optimized by Liu et al. [2018, Equation 23], or
(ii) the £2 norm of angle differences between frames. More precisely,
we sum over interior faces to get

da = (Zijk wWijklijka — Qijkp1)Y?,  and

do = (Zijk Wijkeizjk)l/z-
Here q;jkq» 9ijkb are quaternions expressing the frames in the two
tets containing ijk, ;i is the smallest angle between the same two
frames, and the weight w;;; € R is triangle area divided by the
dual edge length (i.e., the diagonal Hodge star on dual 1-forms). To
provide a fair comparison, we sample our fields onto the meshes
used by Liu et al. On average we find that our fields exhibit about
20% and 32% lower energy with respect to ¢ and ¢g, resp. In other
words, they are smoother even with respect to Liu et al’s own
measure of smoothness—which is not too surprising, given their use
of an eigenvalue relaxation. In the context of meshing, the rotational
smoothness ¢y is likely a more natural measure of field quality, since
frame magnitude plays no role.



Fig. 19. Fields computed via our method; for each model we show the input
network (top), Darboux derivative w (middle) and 3D cross field (bottom).

In terms of performance, the bottleneck in our algorithm is a non-
linear least squares problem; for Liu et al.it is a principal eigenvalue
problem. In 2D both problems are efficiently solved via a small se-
quence of sparse linear systems using a fixed (symbolic or numeric)
factorization, but in 3D sparse direct solvers generally exhibit poor
scaling and hence neither method can benefit from the amortized
gains of prefactorization. Iterative solvers for least squares [DeVito
et al. 2017] or eigenvalue problems provide an attractive alternative,
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Fig. 20. Hexahedral meshes generated from our fields; for each mesh we
show a “fallaway” view to visualize interior element quality. Even coarse
meshes (top row) respect the given singularity structure, and generally
exhibit good element quality.

though a real-world performance comparison is far from clear given
the broad range of options. Other aspects of computation (such as
our 2D problem, or the merging & zippering in Liu et al.) seem not
to contribute significantly to practical runtime. Storage cost is also
similar: we store three real values per edge (encoding an element
of s0(3)); Liu et al. store four real values per tet (encoding a quater-
nion); in practice the ratio of edges to tets in a Delaunay mesh is
roughly 6:5, making the overall ratio of DOFs very close to 1:1.

4.5 Examples

Fields. Examples of fields computed via our method are shown
in Figures 1, 6, 9, 12, 13 and 19. In each case the input to the al-
gorithm was a description of the domain boundary (blue), a valid
network of singularity curves (red), and curves along sharp features
(yellow); input data comes from Liu et al. [2018]. The Darboux deriv-
ative w is plotted by drawing vectors that show the axis and angle
of rotation (dark blue). The length of these vectors indicates the
rotational smoothness of the field, verifying that non-smoothness
occurs only near singularities and sharp corners, and falls off rapidly
everywhere else. To visualize the cross field E obtained from w, we
trace integral curves through an interpolated field given by the
barycentric weighted Karcher mean on SO(3).
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87:12 « Etienne Corman and Keenan Crane

Meshing. Though our aim in this paper is not to build a full
end-to-end meshing pipeline, we performed several preliminary
experiments. In particular, we performed field-aligned parameteri-
zation via CubeCover [Nieser et al. 2011] and extracted hexahedral
meshes using HexEx [Lyon et al. 2016]. To get frames on tetrahedra
(needed by CubeCover) we computed the Karcher mean of frames
at vertices; we also inserted the barycenter of each singular face
ijk € S? (updating our mesh via TetGen) and omitted these vertices
when taking averages. No additional processing was used; likewise,
we made no modifications to the meshing algorithms, apart from
using CoMISo in CubeCover [Bommes et al. 2012]. Matchings for
CubeCover were obtained by finding the closest rotation, but in
principle we should be able to make this step even more robust near
singularities by using angle information from . Several examples
are shown in Fig. 20, where we plot the minimum scaled Jacobian for
each cell; here 1 is ideal and negative values indicate inversion (see
[Vyas and Shimada 2009, Section 8.1] for a definition). To visualize
element quality on the domain interior, we also provide a “fallaway”
view where we run a rigid body simulation on elements removed
by a cutaway plane. We applied no post-processing, and generally
obtained high-quality elements with no inversions; in all cases the
input singularity structure was preserved exactly.

5 LIMITATIONS AND FUTURE WORK

The main limitation of our method is that the user is required to
specify a valid singularity network—an enticing question is how
moving frames may help with automatic generation of such net-
works. Here our PDE-constrained optimization problem may fit
nicely with recent techniques for computing optimal singularities
via measure relaxation [Soliman et al. 2018]. There is currently no
clear reason why our nonlinear least squares problem should always
yield a globally optimal (or even integrable) solution, as it appears
to do in practice (Fig. 17); a deeper understanding of this phenom-
enon may prove valuable. Pure rotation fields with disconnected
boundary components may be misaligned (Sec. 3.2.3), but this issue
is largely addressed via extra feature curves.
A practical nuisance is building

nicely-shaped tube geometry—on com- B
plicated examples (as shown in the in- SR
set), our naive extrusion code often W\ A
generates self-intersections (red) which
cause TetGen to fail. This limitation is of
course not fundamental to our formu- ] A
lation, and might be easily addressed v \y ¥
using more flexible node geometry (e.g., : /
octahedra rather than just tetrahedra) which would also allow
higher-degree nodes. Alternatively, it may be useful to consider
a numerical treatment that does not depend on a special mesh struc-
ture, such as finite element or boundary element methods [Arnold
et al. 2006; Solomon et al. 2017]. Finally, the machinery of moving
frames is not tied in any way to the rotation group SO(3), or to
symmetries of the cube (see App. A). Hence, much of our algorithm
can be directly applied to other Lie groups G and/or other symmetry
groups, which may facilitate more general field-guided anisotropic
meshing problems (e.g., for boundaries with sharp dihedral angles),
as recently explored in 2D [Diamanti et al. 2014; Jiang et al. 2015].
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A SMOOTH FORMULATION

Our formulation is based on Cartan’s method of moving frames—the
basic idea is to express the derivatives of a frame field with respect
to the field itself, akin to using body-centered angular velocities. Just
as the fundamental theorem of calculus asserts that an ordinary
function is determined by its derivative (up to a constant shift), an
analogous theorem tells us that a frame field can be recovered from
its Darboux derivative, up to a global rotation (Thm. A.2). In this
section we provide essential background on moving frames, and
show how they can be extended to symmetric 3D cross fields.

Traditionally, moving frames are introduced using orthonormal
coordinate frames on R" [do Carmo 1994]; a more modern approach
is to consider a principal bundle, where orthonormal frames are re-
placed by elements of some Lie group G [Sharpe 2000]. This perspec-
tive helps make sense of 3D cross fields, since the space of crosses
can be described as the quotient of the rotation group G = SO(3) by
the cube symmetries I'. Although this space is no longer a group, it
is still a manifold on which the Darboux derivative locally satisfies
the usual structure equation. Globally, the only difference is that
monodromies are no longer trivial, but instead look like symmetries
of the cube. An interesting consequence is that, in most cases, an
integrable Darboux derivative now uniquely determines a cross field,
i.e., there is no longer a choice of global rotation (App. A.3.1).

We begin with a brief review of Lie groups, followed by a dis-
cussion of moving frames and their connection to 3D cross fields.
Throughout we make use of differential forms—see Crane et al. [2013]
for a pedagogical introduction, and do Carmo [1994] or Abraham
et al. [1988] for a more detailed reference.

A.1 Lie Groups

Lie groups and Lie algebras provide a unified picture of spatial trans-
formations and their derivatives (resp.). The basic idea is that, since
transformations can vary continuously, they can be viewed as points
on a smooth manifold; since they can be composed in a natural way,
they also have the structure of a group. For concreteness we consider
the special case of rotations around the origin in R”, represented by
n X n orthogonal matrices with positive determinant (Sec. 0.3). This
example captures the most essential features of the general case and
will be needed to describe cross fields; the cartoon in Fig. 21 helps
provide intuition for the discussion below.
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Fig. 21. Rotations of R™ can be viewed as a smooth manifold SO(n), where
a curve y describes a continuous family of rotations, and its tangents hence
encode angular velocities. For example, the exponential map exp(tA) de-
scribes rotation at a constant velocity A for time ¢ (right), starting at the
identity I. The Lie algebra so(n) is the set of velocities A at the identity; any
velocity at a point Q € SO(n) can be expressed as AQ for some A € so(n).

Group Structure. Rotations exhibit several natural properties: the
composition of two rotations Qy, Q2 is another rotation Qg o Qg;
there is an identity rotation | that does nothing; every rotation Q
can be undone by some inverse Q~!; and different groupings of
rotations have the same effect, i.e., (Q; 0 Q2) o Q3 = Q; 0 (Qz 0 Q3).
In general, any collection of objects with this behavior is called
a group. Since rotations are represented by orthogonal matrices,
the collection of all rotations is called the special orthogonal group
SO(n), where special refers to the fact that rotations also preserve
orientation (det(Q) > 0).

Manifold Structure. Much as a smooth
surface can be expressed as the zero
level set of a smooth function f : R” —
R, we can view the group O(n) of or-
thogonal matrices as the zero set of the O(n)
function f(Q) = Q'Q -1 taking matrices to symmetric matrices.
This set has two components: one with positive determinant, corre-
sponding to the rotation group SO(n), and another with negative
determinant, corresponding to reflections (which do not form a
group). This perspective allows us to think of rotations as a continu-
ous space where nearby points represent similar rotations. Formally,
since the zero matrix is a regular value of f, SO(n) is a smooth
manifold of dimension n(n — 1)/2—see [Warner 2013, Example 1.40].

Lie Algebra. The identity rotation | can be thought of as a special
point on SO(n). Infinitesimal rotations of R” are then described by
vectors A in the tangent space T}SO(n), also known as the Lie algebra
so(n). Each Lie algebra element is represented by a skew-symmetric
matrix AT = —A. To see why, consider a time-varying rotation Q(t)
starting at Q(0) = I. Differentiating the relationship QTmQ@) =1
at t = 0 yields %QT 0) = —%Q(O), i.e., any infinitesimal rotation
of the identity has the form AT = —A, as discussed in Sec. 0.3.
Infinitesimal changes to any other rotation Q can then be expressed
as AQ for some A € so(n). The Lie bracket [A1,A2] := AjAz — A2Aq
on so(n) captures the failure of small rotations to commute.
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y=Eoy

Fig. 22. A frame field on a region U C R" can be viewed as a map E to
the space SO(n) of rotations. The Darboux derivative w(y’) expresses the
change in the field as one walks along a curve y, relative to E itself.

Exponential Map. Given a unit tangent vector A at the identity, the
exponential map exp(tA) gives the point obtained by walking along
the Lie group for a time ¢ in the direction A along a straightest path
or geodesic. In SO(n), exp(tA) is the rotation obtained by starting
at the identity and integrating the angular velocity A for time ¢. In
2D for instance, where a skew-symmetric matrix A is determined
by a single number 6 € R, exp(A) is just the corresponding rotation
matrix given in Eqn. 1. Hence, when using angles to represent 2D
frames we are working in the Lie algebra; when working with 2 x 2
rotation matrices we are working in the Lie group.

A.2  Moving Frames

How can we express the change in a spatially-varying frame field?
Consider a solid region U ¢ R? bounded by a smooth surface U.
A moving frame on U is a smoothly-varying orthonormal frame
E: U — SO(3) ¢ R¥3 taking each point p € U to a rotation E(p)
(Fig. 22). The first-order change in E at a point p € U is described by
the differential dE, which maps any vector X € R3 to the directional
derivative along X:

E(p+eX)—-E
dEp(X) := lim M
e—0 £
The key idea behind moving frames is to express this change with
respect to the frame itself, via the Darboux derivative

wp(X) := (dEp(X))E,". (24)

The transformation E;,l takes us from the global coordinate frame
to a local, moving frame that depends on the point p. In terms of the
Lie group SO(3), it takes a vector tangent to the point E, € SO(3),
and maps it to a tangent at the identity I, i.e, to an element of the Lie
algebra s0(3). The Darboux derivative is therefore an so(3)-valued
1-form, i.e., a linear map w : TU — s0(3) from tangent vectors to
Lie algebra elements.

A.2.1 Integrability. Given a 1-form w, can we construct a corre-
sponding frame E? For any initial value Ey € SO(3), we can at least
integrate o along a simple path y : [0,L] — U to get a development
7 : [0,L] — SO(3) whose Darboux derivative agrees with «:

wody = (dj)7 .
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In general, however, a closed curve y(0) = y(L) may not have a
development, since the frames at the two endpoints may not agree.
This failure to close is called the monodromy of w around y:

Dy (y) = F(L)7(0)"".

For w to consistently describe a frame over all of U, it must there-
fore have trivial monodromy @, (y) = | around all closed loops y.
Equivalently, w must satisfy a structure equation that accounts for
monodromy around small, contractible loops; it must also exhibit
trivial monodromy around a collection of large, noncontractible
loops that generate the fundamental group 71 (U).

Structure Equation. Viewing E as a map into SO(3) ¢ R3*3, and
© as a matrix-valued 1-form, we can write Eqn. 24 as

dE = wE. (25)
Taking the exterior derivative yields
0 =d(dE) = (dw)E — w AdE = (dw)E — w A wE, (26)

where in the final step we apply Eqn. 25. Since E is invertible at
each point, Eqn. 26 is equivalent to Cartan’s 2nd structure equation

do =w A w. (27)
For s0(3)-valued 1-forms a, f, the wedge product is given by

(@A PXY) = 5 ([@(X), BY)] = [a(Y), X)),

where [, -] is the Lie bracket (App. A.1). The structure equation
provides a local integrability condition [Sharpe 2000, Thm. 6.1]:

THEOREM A.1. On any simply-connected region B C U, an s0(3)-
valued 1-form w satisfying Eqn. 27 is the Darboux derivative of some
moving frame E : B — SO(3).

Nonsimply-Connected Domains. For domains with nontrivial topol-
ogy (e.g., a solid torus), we must also ensure that w encodes a well-
defined frame around noncontractible loops. If w already satisfies
Eqn. 27, then two homotopic loops yi, y2 starting and ending at
the same basepoint b € U will have the same monodromy [Sharpe
2000, Thm. 7.7]; picking a different basepoint merely conjugates the
monodromy by a fixed element of SO(3) [Sharpe 2000, Thm. 7.11]. It
is therefore enough to ensure that w has trivial monodromy around
a representative loop y from each class in the fundamental group
m1(U, b) based at any point b € U [Sharpe 2000, Thm. 7.14]:

THEOREM A.2 (FUNDAMENTAL THEOREM OF NONABELIAN CAL-
cuLus). Let w be an so(3)-valued 1-form on a path connected do-
main U C R3. Then w is the Darboux derivative of a moving frame
E:U — SO(3) if and only if

(i) it satisfies the structure equation dw = w A ©, and

(ii) it has trivial monodromy around some representative loop y in
each class of w1 (U).

Moreover, for any two loops y1, y2 € 71(U, b), the monodromy of
the concatenated loop y1 + ¥z is just the product ®(y;)®(y2) [Sharpe
2000, Prp. 7.10]. Hence, it is sufficient to have trivial monodromy
around a collection of generators for 1 (U).



P In fact, suppose that every closed
loop in U is freely homotopic to some
loop on the boundary dU, i.e., that U is
totally peripheral (TP) [Brin et al. 1985].
Then it is enough to have trivial mon-
not TP odromy around all loops on the bound-
ary, which we ensure by asking the
monodromy of « to agree with the
Darboux derivative w® of some fixed
boundary frame E° (Sec. 3.2.1). This
strategy works on most domains—for
instance, the solid torus has a single
generator homotopic to a loop on the boundary (inset, top). In the
rare case where U is not totally peripheral, such as the complement
of a trefoil knot (inset, bottom) one could explicitly compute the
generators [Kim et al. 2008] and include them as feature curves (a
la Sec. 3.2.2), though this strategy was not needed in our examples.

\ "77"/
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A.2.2  Curvature and Singularities. The failure of a 1-form w to be
integrable is captured by the curvature 2-form

Q:=dw-o0Ao.

Geometrically, Q(u,v) describes the limit
monodromy around an infinitesimal paral-
lelogram with edges u, v (Ambrose-Singer).
If Q = 0, then w is at least locally integrable.
For a 2-manifold M,‘a key ol~)ser‘va.t10n C\:Qp(u, v)
from Crane et al. [2010] is that w is still inte-
grable almost everywhere even if Q is nonzero on a collection of
isolated singular points p1, ..., pn € M. More specifically, suppose

n
Q= Z 270i6p;,
i=1

where 5p is a Dirac delta at p, and 0; € Z is the index of the
singularity at p;. Then o encodes a well-defined frame field on
M\ {p1,...,pn}, where it still describes whole rotations around
closed loops (Fig. 4).

Likewise, in 3D, we can encode a network of singular curves
¥1(8), - . ., yn(s) with prescribed indices o1, . . ., o, (resp.) by letting
Q be a distribution supported on these curves. In particular, let

n
Q(s) = Y oMy, Ti(s),
i=1

where T;(s) is the tangent to y; at s, and H}l, is the Hausdorff measure
associated with y (ie., H},(B) = fydes for any subset B ¢ U). A

1-form w satisfying the augmented structure equation
do=0wNow+Q (28)

then exhibits the prescribed number of rotations for small loops
around y, and some whole number of rotations around all loops
inU\ (y1U---Uyy). If we also want the field to be adapted to
a singular curve y (e.g., to ensure the field is locally meshable, as
illustrated in Fig. 3), we can require that © = ©° + T, where o is
the Darboux derivative of some fixed cross field on y and the 1-form
a : Ty — R parameterizes the torsion along y (see Sec. 3.2.2 for

further discussion).
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Fig. 23. Even if a cross field F cannot be represented by any globally contin-
uous function 6, there are always several local trivializations fina simply
connected neighborhood B, around each point p, which differ only by
quarter rotations. Since the derivatives d0y. are all the same, they can be
used to define a globally continuous derivative d 0.

A.3  Symmetric Moving Frames

To represent 3D cross fields, we depart from the ordinary theory of
moving frames and replace SO(3) with its quotient by cube symme-
tries. Since SO(3) has no normal subgroups, this quotient cannot
be a (Lie) group; nonetheless, we can still take a quotient in the
topological sense to obtain a smooth manifold where each point
specifies a unique cross. Even in the absence of group structure,
the manifold structure remains sufficient to express integrability
conditions on w.

More precisely, let I' € SO(3) denote the rotational symmetries
of the standard cube (sometimes called the rotational octahedral
group), and let C := SO(3)/T" denote the quotient of the manifold
SO(3) by the right action of T, i.e., two rotations E1, Ez € SO(3)
are considered equivalent if E; = E1g for some g € T. It is then a
standard result that C is a smooth manifold, with a smooth covering
map P : SO(3) — C [Lee 2003, Proposition 9.26].

A (T-)symmetric moving frame on U is thenamap F : U — C.
Although F is not a section of a principal bundle (since C is not
a Lie group), we can still define a Darboux derivative globally. A
good analogy is a 2D cross field on a region Q c R? expressed
as a function 6 : Q — R giving the angle of one of the four cross
directions (Fig. 23). Though we cannot always find a 6 that is globally
differentiable, we can find a local trivialization 6 By - R that is
differentiable in a neighborhood B, around any given point p € Q.
Moreover, the derivative of this function does not depend on which
function 6 we pick, since they all differ by constant shifts ¢ € ZZ.

Likewise, in a simply-connected neighborhood B;, ¢ U around
each nonsingular point p € U, a 3D cross field F can be represented
by some ordinary frame field, i.e., a map F: Bp — SO(3) such that
P o F = F. All such maps have the same Darboux derivative: if @
satisfies dF = wF, then it also satisfies d(Fg) = w(Fg) forany g € T,
since d(Fg) = (dF)g. Hence, we obtain a global definition for the
Darboux derivative « : U — s0(3) of a symmetric moving frame
F: at any point p, wp is just the Darboux derivative of any local
trivialization. As long as w satisfies the usual structure equation, it
then encodes a well-defined 3D cross field over any nonsingular and
simply-connected region of U. If it satisfies the augmented structure
equation (Eqn. 28) for an Q with fractional indices o; € ZZ, then it
describes a 3D cross field with singular curves.
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A.3.1  Nonsimply-Connected Domains. More generally, let U be any
path connected domain, and let w be an so(3)-valued 1-form on U
satisfying the local structure equation. Suppose that the monodromy
of each generating loop y € m1(U, b) is conjugate to some cube
symmetry g € I with respect to the same frame E;, € SO(3), i.e.,
D, (y) = Engzl. Let y be the development of w along y, starting
at y(0) = Ep. Then the (right) quotient of y by T is a closed loop in
C, i.e, there is a well-defined 3D cross field along y. By arguments
virtually identical to those in Sharpe [2000, Chapter 3.7], the same
will be true for any loop based at any point, i.e., w is then the Darboux
derivative of some 3D cross field on U. Moreover, this cross field
is almost always unique: if we try to develop w around a loop y
starting with any frame Ep, that is not equivalent to Ep, then in
general the final frame will not be equivalent to the initial frame,
i.e., we do not obtain a consistent cross field (consider Fig. 8). The
only exception is when the monodromy around every loop is trivial
in the usual sense, i.e, if g is always equal to the identity—in this
case, as with ordinary frame fields, @ determines the field only up
to a choice of global rotation.

A4 Relationship to Discrete Algorithm

The discrete algorithm in Secs. 2 and 3 is a straightforward discretiza-
tion of the smooth formulation described above. In particular:

Darboux Derivative. The discrete Darboux derivative (Sec. 1.5)
can be given the following interpretation. Consider a frame rotating
at a constant angular velocity w;;/¢;; along each edge ij, where ;;
is the edge length. The values w;; then coincide with the integral of
the smooth Darboux derivative w along each edge (which can be

arbitrarily large). Moreover, since R;; = R}

i we have

wij = log(E;j(RijE;)™") = —log(Ei(R;iEj)™") = —wji,

i.e., it reverses sign with a change in orientation. Hence, w; jisa
discrete differential 1-form in the sense of discrete exterior calcu-
lus [Hirani 2003; Desbrun et al. 2006].

Dirichlet Energy. The smoothness of a map E : U — SO(3) can
be measured via the Dirichlet energy

Ep = [ |dE[* dV. (29)

Since E is orthogonal we have |dE|? = |(dE)E™!| = |w|?, and can
hence write the Dirichlet energy as

D= [y lwl*av.

The same energy can also be applied to cross fields, since « depends
only on a local trivialization (App. A.3). The discretization in Eqn. 11
and 16 is then obtained via the diagonal norm on discrete differential
1-forms [Desbrun et al. 2006, Section 5.4].

Integrability Conditions and Constraints. As outlined in Sec. 3.1,
our discrete structure equation is a direct translation of the smooth
structure equation using the discrete exterior derivative and primal-
primal wedge product from discrete exterior calculus [Hirani 2003,
Sections 3.6 & 7.1]; it also coincides with a 2nd-order expansion via
the Baker-Campbell-Hausdorff formula. Eqn. 20 is derived by view-
ing both @ and N as piecewise linear functions interpolating values
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ai, Nj (resp.) at vertices. Since da is piecewise constant, integrating
Eqn. 30 along edge ij yields

f 1) +(da)Nds —w1]+f
ij iy

Nearly identical calculations yield Equations 21 and 22.

w i*3 (a] a,)(N,+N])

A.4.1  Rotational Invariance of Boundary Singularities. Consider a
pair of 3D frame fields E, E on the boundary dU, and assume that E
is a pointwise rotation of E around the normal N by some smoothly-
varying angle a : dU — R, i.e, E= exp(al\Af )E. Equivalently, if E
is encoded in global orthonormal coordinates (e1, ez, e3) such that
Ees = N, we can write E=E exp(aés), ie., rotate first around es,
then apply the frame. Noting that dexp(a¢A) = (da)Aexp(aA) for
any fixed matrix A, we get

dE

dE exp(aés) + Edexp(aég)
wE exp(aeg) + (da)NE exp(aés)
wE + (d(x)NE

which means the Darboux derivatives of E and E are related by
@=w+ (da)N. (30)

To see that these fields have the same singularities, we simply
need to compute their curvature 2-forms Q, Q. From Eqn. 28 we get

Q = do-aAd
Q+da AdN - a)/\(da)
Q+da/\(dN+mN Na))

—(da)N A @ — (da)N A (da)N

Since E is adapted to the boundary, the normal satisfies dN = wN.
In turn, the skew-symmetric matrix N is solution of the equation
dN = Nw — ©N. Hence, the curvature 2-forms of E and E are equal.
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