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Abstract—A 300 V to 600 V 100 kW SiC MOSFET based 

one-cell switched tank converter (STC) is developed as a 

bidirectional dc-dc power transfer stage between the vehicle 

battery and the DC-link side of the vehicle dc-ac inverter. A 

continuous half-load 50 kW and short-period full-load 100 kW 

operation is targeted. Working principles of the proposed 

topology are analyzed. Design of the key components such as 

SiC MOSFET power modules, AC resonant capacitor and 

inductor is presented. A 100 kW prototype has been assembled 

and tested. An energy-efficient test platform is designed. The 

power density of the main power processing part is around 

41.7 kW/L. The tested peak and full-load efficiencies are about 

98.7% and 97.35%, respectively. The thermal performance has 

also been evaluated. Both the tested electrical and thermal 

results are consistent with the theoretical design. 

Keywords—switched tank converter, resonant switched 

capacitor converter, SiC MOSFET, ZCS (zero current switching) 

I. INTRODUCTION 

The powertrains in electric vehicles and hybrid electric 
vehicles are equipped with a bidirectional dc-dc converter to 
interface the battery and the DC-link side of 3-phase inverter 
in the generator/motor system [1]. In a recent report from 
U.S. Department of Energy [2], by 2025, the electric traction 
drive system cost is expected to be lower than $2.7/kW, and 
the power density is supposed to exceed 100 kW/L based on 
the 100 kW power level. To achieve this goal, a proper 
topology with optimized device and passive component 
design should be deliberated and experimentally verified. 

Boost converter [3] and its derivatives such as soft 
switching boost topology [1], multi-phase interleaved 
versions [4] and isolated composite boost topology [5] have 
been studied. A 40 kW boost converter is designed with 6 
kW/L power density [3]. However, it suffers from low 
efficiency and bulky reactive components. A 200 kW 
frequency-variable, soft-switching boost converter [1] is 
investigated with 98% peak efficiency and 6 kW/L power 
density. 3-phase boost topology is applied in a 90 kW 
bidirectional 320 V to 600 V dc-dc converter in hybrid 
electric vehicles [4]. However, the power density is only 2.7 
kW/L and no efficiency is provided. Isolated composite 
boost topology is applied in a 30 kW 200 V to 650 V 
converter with 98.7% peak efficiency [5]. But both the 
inductor and transformer sizes are not optimized. Another 
group is flying capacitor multilevel converter [6]. A 30 kW 
converter with 8.612 kW/L power density and 97% 
efficiency is shown in [6]. However, it is difficult to realize a 
compact design considering the separate locations of the DC-
side resonant inductor and AC-side resonant capacitor. 

Recently, due to their high efficiency, high power density 
and modularity, resonant switched capacitor converters have 
been widely investigated [7]–[9]. Besides, SiC MOSFET 
power modules achieve better performance compared with Si 
counterparts, especially in high-frequency, high-temperature 
and high-power operations [10]. A boost based 60 kW dc-dc 
converter applies Cree 1200 V 100 A SiC MOSFET power 
modules to realize 20 kW/L power density [10]. But the 
overall efficiency is sacrificed by hard-switching operation. 

By combining the advantages of SiC MOSFET power 
modules and STC, this paper develops a 100 kW 300 V to 
600 V ZCS STC for electric vehicle and hybrid electric 
vehicle applications. The operation principles, design of the 
key components, assembled prototype, tested electrical and 
thermal results will be presented in the following parts. 

II. DESIGN OF 100 KW ONE-CELL SIC STC 

Fig. 1 shows a one-cell STC topology. Two switches S1 
and S2 are connected in series to interface the input and 
output voltages. The other pair of switches S3 and S4 forms 
another half bridge linking the low-voltage input side to the 
ground. The resonant tank is composed of a resonant 
inductor LR and resonant capacitor CR. The DC bias of CR 
equals to Vin. While the DC bias of LR is 0 due to inductor 
voltage-second balance. Thus, the DC bias of the whole 
resonant tank is Vin. As a result, the output voltage can be 2 
times Vin. Clamping capacitors C1 and Cin are used to clamp 
the drain-source voltage of each switch. 
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Fig. 1: Proposed one-cell STC topology 

The two equivalent circuits are presented in Fig. 2(a) and 
(b), respectively. In Fig. 2(a), when S1 and S3 are ON, the 
resonant capacitor CR is charged and resonant inductor LR 
stores energy. The current IC1 flowing through the C1 
capacitor has the same amplitude with load current Io. C1 
keeps releasing its energy to the load. While the current ICin 
of the input capacitor Cin is negative to the reference 
direction. Cin releases the energy most of the time. In Fig. 
2(b), when S2 and S4 are ON, the resonant capacitor CR This work is sponsored by the Ford Motor Company and National 

Science Foundation (NSF Award Number 1810428). 



discharges together with the input voltage source. The 
resonant inductor LR releases energy. The resonant inductor 
current has the same waveform with the switch current 
flowing through S2 and S4. C1 stores its energy most of the 
time. Cin keeps storing energy. The voltage VCR of the 
resonant capacitor CR is a DC voltage with a DC bias equal 
to Vin. A voltage doubler is achieved by applying this simple 
control into the proposed topology. 
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(a): Equivalent circuit 1 
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(b): Equivalent circuit 2 

Fig. 2: Two equivalent circuits for the one-cell STC 

A. Design of Devices 

Among the investigated devices with different voltage 
ratings, 900 V Cree and 650 V Rohm SiC MOSFET achieve 
relatively lower power loss. However, the 900 V Cree SiC 
MOSFET power module is not available during the design 
period. The current capability of 650 V Rohm SiC 
MOSFETs are limited. Thus, multiple paralleled devices 
with TO-247 package are needed, which increases total 
device volume and induces current imbalance issues [11]. 
Therefore, Rohm and Cree 1200 V SiC MOSFET modules 
with comparatively higher current capabilities are studied. 

Fig. 3 shows the total SiC MOSFET power loss of five 
1200 V SiC MOSFET power modules at different output 
power ratings with 100 kHz switching frequency. With 
maximum 100 kW output power, 300 V input, 600 V output, 
the lowest MOSFET power loss at full power is achieved by 
Rohm 1200 V 600 A SiC modules. 

Higher switching frequency decreases the magnetic 
component size, but introduces more AC loss. Considering 
this trade-off and the maximum frequency capability of 
selected AgileSwitch® EDEM3-EconoDual gate drive 
boards, 100 kHz switching frequency has been designed. 

B. Design of Resonant Capacitor 

Both ceramic and film capacitors could be used in the 
high-frequency and high RMS current applications. The 
multi-layer ceramic capacitors (MLCC) have higher power  
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Fig. 3: Total MOSFET power loss comparison among different MOSFETs 

density compared to film capacitors. However, because 
ceramics tend to be weak in tension, a crack is relatively 
easily formed when excessive board flex is put on the 
soldered MLCC [12]. So, an electrical conduction between 
the two electrodes would occur, which further progresses 
towards a short circuit. Therefore, due to these reliability 
concerns, MLCCs are not preferred for the automotive power 
electronic applications. As a result, the film capacitors with 
good current capability are considered. 

Based on a summarization of high power resonant 
capacitors from different companies [13], the polypropylene 
film capacitors of Illinois Capacitor® provides specifically 
designed high-current, high-frequency resonant capacitors. 
So, all the high-density resonant capacitors from this 
company are studied, including LC1 ~ LC6, HC1 ~ HC6 and 
HC3A, HC3B series. In each category, one type with highest 
capacitance density, satisfying frequency range, full-load 
peak voltage and current requirements is selected. Fig. 4 
shows the capacitance density comparison, from which LC2 
and LC3 series achieve higher capacitance density. 
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Fig. 4: Capacitance density per unit volume comparison 

The volume of the whole resonant tank then needs to be 
further examined. So, smaller inductance is preferred. Fig. 
5(a) shows the relationship between the required inductance 
and total resonant capacitance. With the practical size as well 
as the design of core and winding considered, 500 nH 
maximum inductance is designed. Correspondingly, the 
minimum resonant capacitance is 5.066 µF. Considering the 
power module and heatsink layout, the total capacitor 
volume is designed below 0.3 L. Fig. 5(b) shows the trade-
off between the total capacitance and the capacitor volume. 
The remaining candidates in the shaded area are compared in 



Table I, from which three 2.4 µF LC2 and three 2.6 µF LC3 
are preferable due to smaller required inductance. 
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(a): Required resonant inductance versus total capacitance 
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(b): Total capacitor volume versus total capacitance 

Fig. 5: Capacitor evaluation based on required inductance and total volume 

TABLE I: COMPARISON AMONG PROSPECTIVE CAPACITORS 

Series 

Total 

capacitance 

(µF) 

Total 

volume 

(L) 

RMS 

voltage 

(V) 

RMS 

voltage 

capability 

at 100kHz 

(V) 

Required 

inductance 

at 100kHz 

(nH) 

HC2 5.32 0.24 319.79 500 476.13 

HC4 5.2 0.22 320.69 500 487.12 

HC6 5.2 0.22 320.69 600 487.12 

LC3 7.2 0.27 310.96 410 351.81 

LC2 5.2 0.17 320.69 350 487.12 

LC2 7.8 0.26 309.36 350 324.75 
 

Nevertheless, the polypropylene film capacitor voltage 
rating drops at higher switching frequency, because of the 
heat generated by high frequency AC loss [14]. Thus, a safe 
margin is required between the full-load peak voltage and 
maximum voltage capability after 100 kHz derating. Fig. 6 
shows voltage derating with the resonant frequency of 
selected film capacitors. The margins between the full-load 
voltage peak and the maximum voltage capability for the 
LC2 and LC3 series are about 41 V and 100 V, respectively. 
Therefore, three 2.4 µF LC3 capacitors are finalized. 
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Fig. 6: Voltage derating curves for HC and LC series capacitors 

C. Design of Resonant Inductor 

With above 7.2 µF resonant capacitance and 100 kHz 
resonant frequency design, the resonant inductance is 351.81 
nH. The winding, core designs are described below. 

1) Winding Design 

One-turn winding is designed to keep the AC inductor in 
the similar height with AC capacitors, power module, 
heatsink, and DC side so that the space is fully used. Multi-
layer copper foil AC busbar is utilized for this high-current 
high-frequency winding. By distributing current through 
multiple layers, this arrangement reduces AC loss caused by 
skin effect. Skin depth δ is calculated in Eq. (1) [15][16]. 

     f    (1) 

Where, f is the AC frequency. The copper resistivity ρ 
and permeability µ are 1.76×10-8 Ω∙m, 1.257×10-6 H/m, 
respectively. At 100 kHz, the skin depth for copper is 
calculated as 0.211 mm. So, the copper foil not thicker than 
0.211 mm is selected. To further design the copper cross-
section area and number of layers, the current density is 
evaluated. For the one-turn winding design, current density is 
recommended as 5.167 A/mm2 to avoid excessive 
temperature rise [17]. Because AC RMS current value is 
370.24 A and the cross-section area of selected one-layer 
copper foil is 7.112 mm2, total number of layers is 
(370.24/5.167)/(7.112)≈10. Thus, 10-layer copper foil is 
applied. The total cross-section area of AC busbar AAC_Busbar 
is 71.12 mm2. Its assembly is shown in Fig. 7. 
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Fig. 7: AC busbar assembly 

2) Core Design 

To select an appropriate core, a small core loss density is 
preferred. Powder and ferrite cores from major magnetic 
manufacturers are investigated. The core loss density 
equation of CSC cores and Hitachi soft ferrite cores is in Eq. 
(2) [18][19]. For Hitachi HLM50 amorphous powder core, 
Magnetics powder, ferrite cores, it is in Eq. (3) [20]–[22]. 

 ( )    
Y

V h e PKP K f K f B   (2) 

     
b c

V PKP a B f   (3) 

Where, PV is core loss density (kW/m3). f is the frequency 
(kHz). Kh is the hysteresis loss efficient. Ke is the eddy 
current loss efficient. Y is an exponent close to 2. 

Fig. 8 shows the core loss density comparison at 100 
kHz. Hitachi soft ferrite core ML29D is finalized because of 
smaller core loss density in the 0.1 ~ 1 T flux density range. 

E-shaped cores are targeted owing to simpler assembly 
and more cost-effective solutions compared with pot cores 
[23]. Fig. 9 shows a typical E-core dimension. Due to the 
length constraints of the heatsink and SiC module, α2 is fixed 
as 152.4 mm. Constrained by the prototype height, β2 is 15 
mm. From a planar E core reference design [15][24], the core 
height β2 is the sum of β1 and α1. 

To achieve desired inductance, core cross-section area Ae 
and air gap length lg are restricted by Eq. (4) [25]. 

     2

0    
 e g e cL N A l l

  (4) 
Where, N is number of turns. µ0, µc are permeability of 

the free space and core, respectively. lg is air gap length. le is  
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Fig. 8: Core loss density comparison at 100 kHz frequency 
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Fig. 9: E core dimensions for the resonant inductor core shape design 

the equivalent magnetic path length as shown in Eq. (5) [26]. 

 2 1 1 12 2 2 2         e gl l  (5) 

Due to winding insulation requirement, the window 
utilization factor Ku should be less than 0.65 for low voltage 
foil inductor design [27], as shown in Eq. (6). 

2

_ 71.12 65%  u AC Bus window windowK A A mm A  (6) 

Based on the core geometry in Fig. 9, the window area 
Awindow equals to 2β1∙(α2/2-2α1). Thus, a constraint for α1 is 
derived: α1 ≤ 13.87 mm. In this project, 13 mm is applied. 
The magnetics path length le can be further calculated once 
α1 is fixed. The calculated le is 149.24 mm from Eq. (5). 

To further determine the core width γ and corresponding 
core cross-section area Ae, a trade-off between core 
temperature rise and core volume is made. From Faraday’s 
law, the flux density swing ΔB is derived in Eq. (7). 
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/4
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For the AC flux swing in our case, peak flux density BPK 
is half the flux density swing ΔB [21], as shown in Eq. (8). 

   2 2      PK o e inB B L P N A V  (8) 

By combining Eq. (2) and (8) and considering Ae = 2α1∙γ, 
the core loss density PV is derived in Eq. (9). Core volume V 
is in Eq. (10). Core power loss Pcore = PV∙V. The core 
temperature rise ΔTcore is estimated by Eq. (11) [28]. 

   1( ) 4              
X
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0.833

 core core surfaceT P A   (11) 

Based on above analysis, core temperature rise versus 
core width is plotted in Fig. 10, together with the core 
volume. Two constraints are considered in the core width 
design. The core temperature rise is limited below 100 °C to 
avoid external core cooling. The core volume is designed to 
be smaller than 0.1 L, considering the dimensions of resonant  
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Fig. 10: Core temperature rise and core volume trade-off 

capacitors, heatsink and SiC power modules. Hence, a design 
range can be obtained based on this trade-off. The core width 
γ range from 32.5 to 48 mm is derived. So, core cross-section 
area Ae ranges from 845 to 1248 mm2. 

Fig. 11(a) shows the 0.1476 ~ 0.218 T peak flux density 
range according to Eq. (8). Considering 0.54 T saturation 
magnetic flux density Bsat for ML29D core [29], designed 
flux density range is below half the saturated flux density. 

Fig. 11(b) illustrates the relationship between Ae and lg 
based on Eq. (12) and the inductance calculated in Eq. (4). A 
design range for the air gap length lg is further derived, 
ranging from 2.967 to 4.407 mm. 
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Fig. 11: The plots of (a) peak flux density BPK vs. core cross-section area Ae. 

(b) core cross-section area Ae vs. air gap length lg 

Considering the above core temperature rise and volume 
trade-off, a core width of 40 mm is finalized. Therefore, the 
core cross-section area is calculated as 1040 mm2. The peak 
flux density and air gap length are finalized as 0.1771 T and 
3.664 mm, respectively. With this designed core shape, the 
core temperature rise is about 70 °C at 100 kW. 

III. ASSEMBLED PROTOTYPE AND TESTED RESULTS 

Fig. 12 shows the assembled 100 kW prototype. It is 
mainly composed of four parts. The first part is the control 
board, gate drive board and interface board. The control is 
realized through the TI® TMS320F28335 Delfino 
microcontroller and Xilinx® FPGA Spartan-6 XC6SLX9 IC. 
The second part is the water-cooling heatsink and SiC power 
modules. The third part is the AC resonant side including 
two sets of 10-layer AC copper foil busbars, the resonant 
capacitors, and resonant inductor core. The fourth part is the 
two-layer DC busbar including Vin, Vo and GND busbars. 



The DC busbars are soldered together with the DC capacitors 
by using a 500 W high-power soldering iron considering that 
the leaded film capacitors are not suitable for the reflow 
soldering [30]. 
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Fig. 12: The designed and assembled 100 kW one-cell STC 

The length, width and height of the dc-dc converter itself 
are 37.8 cm, 15.1 cm and 4.2 cm, respectively. So, the main 
power processing part volume is about 2.4 L, and the power 
density is 41.714 kW/L. 

The schematic of the test platform is shown in Fig. 13. 
The power is circulated in a 3-phase motor-generator system. 
The DC power supply is aimed to compensate the power 
loss, most of which is consumed by the motors and 
generators. Therefore, the efficiency is much higher and 
overall thermal performance is better for this test platform 
compared to the platform with a high-current resistive load. 
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Fig. 13: The test platform schematic 

In the test, the switching frequency is fine-tuned around 
84.9 kHz which includes the 300 ns deadtime. Actual design 
resonant frequency is higher than switching frequency and 
the ZCS for all switches is achieved. Fig. 14(a) shows the 
test results at 100 kW with 300 V input and 600 V output. 
The top two waveforms are the gate-source voltage of S1 and 
S2. The green waveform is the resonant current with the 
tested RMS current around 383.2 A. The theoretical RMS 
current value is 370.24 A, which matches the tested result 
well. The bottom trace is the drain-source voltage of S2. 

The tested waveforms at 80 kW, 50 kW are presented in 
Fig. 14(b) and (c), respectively. From the tested current 
waveforms, the resonant current RMS values at 80 kW, 50  
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(c): Tested waveforms at 50 kW 

Fig. 14: Test results at (a) 100 kW, (b) 80 kW, and (c) 50 kW 

kW are 292 A and 187.4 A, respectively, which also match 
the theoretical calculated values. 

The tested gate-source voltage Vgs waveforms of the four 
SiC MOSFET switches are presented in Fig. 15. The gate 
drive output high and low voltages are +18 V and −3 V, 
respectively. The drain-source voltage Vds waveforms are 
measured at about 300 V input and around 600 V output, as 
shown in Fig. 16. From the figure, each switch voltage stress 
is equal to the input voltage. 
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Fig. 15: Gate-source voltage waveforms measured at gate and source pins 
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Fig. 16: Drain-source voltage waveforms measured at drain and source pins 

All the voltages Vgs1 ~ Vgs4, Vds1 ~ Vds4 are measured 
directly from the SiC power module pins in Fig. 17(a). It also 
shows that the resonant current ILR is measured through the 
middle point of the half bridge. Fig. 17(b) presents the 
applied Rohm 1200 V 600 A SiC module circuit diagram, 
which defines each pin and clarifies the measurement. 
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Fig. 17: (a) Voltage, current measurement. (b) SiC module circuit diagram 

Fig. 18 illustrates the detailed tested thermal performance 
at 50 kW continuous operation. It is based on the 
measurement from thermal couples. According to Fig. 18, 
AC busbar and the Vin DC busbar experience the highest 
temperature, which are 56.5 °C and 59 °C, respectively. At 
50 kW steady state, the heatsink temperature is constant and 
close to the room temperature 25 °C, which justifies the 
design of the water cooling heatsink. The inductor core 
temperature comes to stable at around 42.5 °C. Thus, the 
resonant inductor core temperature rise is 17.5 °C. The two 
DC capacitors C1 and Cin show temperature of 37 °C and 24 
°C, respectively. Thus, the maximum temperature rise for the 
DC capacitor is about 12 °C. Finally, the stabilized Vo and 
GND DC busbars stay at the 46 °C and 54 °C, respectively.  
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Fig. 18: Tested thermal performance at 50 kW continuous operation 

From the above thermal analysis, high DC busbar and 
AC busbar power losses are indicated, which could be 
optimized by future finite element analysis. More theoretical 
thermal calculation and the consistency with these tested 
thermal results will be presented in future publications. 

Fig. 19(a) presents the tested efficiency based on the 
measured voltage, current and power data from Yokogawa® 
WT1800 power analyzer. The tested peak efficiency reaches 
to about 98.7% at around 30 kW. The tested 100 kW and 50 
kW efficiency is about 97.35% and 98.47%, respectively. 

Fig. 19(b) illustrates the power loss breakdown 
conducted with different output power. From the figure, the 
MOSFET conduction loss is a major contribution at full load. 



Because the on-resistance increases with the junction 
temperature and the device current RMS increases with the 
deadtime, the estimated conduction loss is higher than ideal 
case. Besides, the Vin DC busbar loss and AC copper loss are 
significant in the total power loss. The Vin and Vo DC busbar 
power losses are calculated based on the measured voltage 
drops between two ends on the Vin DC busbar and Vo DC 
busbar, respectively. 
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(a): Tested efficiency versus the output power 
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(b): Tested power loss breakdown versus output power 

Fig. 19: (a) Tested efficiency. (b) Tested power loss breakdown 

IV. CONCLUSION AND FUTURE WORK 

This paper has presented the design and development of a 
300 V to 600 V, 100 kW SiC MOSFET based dc-dc one-cell 
switched tank converter for the automotive applications. The 
operation principles have been analyzed. The SiC MOSFET 
power module with optimized power loss and high current 
capability has been selected. A compact resonant tank with 
one single-turn soft-ferrite-core inductor and three low-
volume high-current high-frequency polypropylene film 
capacitors has been designed. A complete prototype has been 
assembled and tested in an optimally designed test platform. 
From the experimental results, the gate-source and drain-
source voltages, resonant currents are consistent with the 
theoretical analysis. Besides, the thermal performance at 50 
kW continuous operation has been verified. The assembled 
prototype main power circuit power density is about 41.7 
kW/L. The tested peak efficiency is around 98.7% at 30 kW. 
The tested 50 kW and 100 kW efficiency is about 98.47% 
and 97.35%, respectively. Further power density and 
efficiency improvement could be done in the following 
areas. A more energy-efficient power module with 900 V 
voltage rating is helpful to further decrease the device power 
loss. What should be noted is that the future design could 
utilize the high-current Litz wire to replace the AC copper 

busbars, which would make the optimized multi-turn 
winding scheme more practicable to decrease the AC copper 
loss and increase the power density. The DC and AC busbar 
design would be optimized by using the finite element 
analysis and simulation. 
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