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Abstract-- The lithium iron phosphate (LFP) battery
has more nonlinear characteristic than other battery
type. For this reason, when we use electrical equivalent
circuit model and the extended Kalman filter (EKF) for
estimating the SOC, the estimation performance can be
decreased in the nonlinear region. This paper proposes
an advance estimation method of state of charge (SOC)
for lithium iron phosphate (LFP) batteries. To improve
the model accuracy, this paper utilizes the nonlinear
observer for identifying the internal parameters of bat-
teries. Furthermore, to reduce the nonlinear effect of
the LFP batteries, this paper recast the Kalman pro-
cess. Therefore, through the proposed method, the per-
formance of SOC estimation can be more accurate and
the computational burden is decreased when we apply
the embedded system.

Index Terms—Equivalent circuit model, Extended Kal-
man filter, LFP battery, State of charge.

I. INTRODUCTION

Li-ion battery is a promising energy storage candidate in
many fields, such as electric vehicles, portable applica-
tions, and satellites, because it has high power/energy den-
sity, long life, high voltage, and no memory effect [1]. The
lithium iron phosphate (LFP) batteries have been widely
used in electrical vehicle (EV) due to advantages such as
light of weight, long life, safety, high energy density, high
power and low self-discharge [2]. However, the LFP bat-
teries have more nonlinear characteristics than other type
of batteries because of the hysteresis characteristic [3].

In order to estimate the state of charge (SOC), many pa-
pers propose method using look-up table, Ah-counting,
and model-based control method. The look-up table
method establishes the function from experimental data
[4]. This method has advantages which are easy implemen-
tation and low computational burden. However, this
method need a lots of the experimental data for relation-
ship function. So, it requires expensive test equipment. In
case of the LFP battery, because of the nonlinear charac-
teristics, the relationship function cannot distinguish the
factor for estimating the SOC. Second, the Ah-counting
method is very useful method for estimating the SOC [5].
This method uses the integration, so real-time estimation
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Fig. 1. Comparison of the SOC-OCV curves between the LFP and
NMC batteries.

can be easily possible. This method is highly accurate, but
requires a specific initial value. If the initial value is not
unclear, the estimation performance is sharply decreased.
From the disadvantages of the look-up table and Ah-count-
ing method, many researches utilize the model-based con-
trol method for estimating the SOC [6] - [7]. This method
has abilities that estimate the SOC in real-time, calibrate
the uncertain initial value, has closed-loop control and
adaptability. This method requires high performance bat-
tery model for robustness and accuracy of controller. How-
ever, the LFP battery voltage has more different character-
istics according to the SOC region than general battery
type as shown Fig. 1. Due this phenomenon, the perfor-
mance of the electrical equivalent circuit model (EECM)
is decreased. Since these nonlinear characteristics of LFP,
the EECM cannot fully reflect the dynamic properties of
batteries, the performance of extended Kalman filter
(EKF) based on the EECM is not satisfied.

This paper proposes the strategy for enhancing the EKF
performance by online parameter observer, and EECM.
The online parameter observer is designed by Lyapunov
stability analysis. Since the online parameter observer im-
proves the EECM accuracy, we can eliminate unnecessary
elements and simplify the EECM to reduce the computa-
tional complexity of the algorithm. Finally, the proposed
method is verified by various profile.
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Fig. 2. Conventional equivalent electrical circuit model of Li-ion battery.

II. CONVENTIONAL BATTERY MODEL AND ALGORITHM

A. Electrical equivalent circuit model of Li-ion battery

The nonlinear characteristics of LFP batteries stand out
at SOC - OCV relationship. The SOC — OCV curve of
NCA batteries has linear region except for low SOC region
as shown Fig. 1. However, the LFP batteries has flat period
at middle SOC region (5 ~ 95%). The reason of this phe-
nomenon is that the internal resistance of the battery has
lower than high/low SOC region as shown Fig. 1. From the
nonlinear result of the SOC - OCV relationship, the con-
ventional method that calculates SOC by the SOC — OCV
function has poor performance [8]. In order to estimate the
SOC, the Ah-counting method is utilized as:

SOC,,, =SOC, +(At/C,)i, (1)
where SOC j indicates the initial SOC, At is the time sam-
pling of the algorithm, and i is the battery current.

The Ah-counting has simple mechanism and high accu-
racy without SOC — OCV relationship. However, this
method has fatal disadvantage that is open loop system and
accumulation form. From the disadvantage of Ah count-
ing, the performance of SOC estimation is decreased when
initial value is uncertain and current signal has noise sig-
nal.

The SOC, open circuit voltage (OCV), ohm resistance
(Ry), diffusion resistance (R;), and diffusion capacitance
(C1) is the parameter of the EECM, as shown in Fig. 2. The
SOC indicates the ratio of the remaining capacity to the
nominal capacity (C,) of the battery [9].

The current to the RC parallel circuit is defined as:

iRM,kH =exp(—At/T)-iRM’k +(1—exp(-At/7))-i,  (2)
where 7 is time constant.
The state of batteries is represented as:

X = [SOCk V;l[[f]T ~ N()Ack 7Pk) (3)
where Py is the error covariance about the x;. The error
covariance is the indicator that shows how different
from the true value.

The nonlinear state equation of battery is constructed as
[10]:

i 0 SOC,
f(‘xk’uk) - 0 exp(—At/Tk) 8 Vd[j'ﬂk

N —At/C,
R (1—exp(-At/7,)

4)
}dﬁw*‘,w* ~ N(0,0)
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Nonlinear System
X = f oty 6 + W
Ve =z(x 4, 6,) + W;i.
w* ~ N(0,0),v" ~ N(0O,R") ©)

where w',and v* are independent, zero mean, Gaussian noise of
covariance matrices R*,and Q* respectively.

®)

Definition
ox .
B =Tk (10)
Hk — aZ(xk,“k:Q/;)
ox e
Initialization
%y = E(x)), P, = E[(x—%,)(x—%,)"] (11)

For k =1,2,... compute
Step 1: State estimation time update

)’Cjﬂ = f()%/:r’uk 79/;1)

_ o (12)
PL=4P A4 +0
Step 2: Measurement update for the state
{K}: = Ijk;lHkT(HkEcllHkT +RY) (13)
X =X, +K (2, —2). B, =(I-K.H)F,

z(x,,u, )= OCV, (SOC )+ I, R, +V, +V*
,v' ~N(O,R")
where (3) is indicate process function and (4) measurement
function. 0" is state noise of battery, and R* is the noise of
voltage sensor.
The EKF need Jacobian matrix for reflecting system var-
iable to the algorithm. In case of the battery, the system

variable is very nonlinear and arbitrary. Therefore, for lin-
earizing the system variable, the Jacobian matrix is defined

(6))

as:
0 1 0
A, = —f = (6)
ox|, _ |0 exp(-At/7,)
H, = % _ 200CV ] )
ox %, =57 as0C 50C, =50C™,

The EKF flow chart is shown in TABLE [J. The EKF is
the recursively calculate the Kalman gain and error covar-
iance in every step time, and the Kalman gain adjust the
state. First, we set to the nonlinear system function as (8)
and noise parameter as (9). The system variables for cal-
culating the Kalman gain and reflecting the system char-
acteristic is defined as (10). Eq. (11) is that the initial state
and error covariance is establish. In time update, the state
and error covariance is updated as (13). In (13), the Kal-
man gain is calculated and state is calibrated from the Kal-
man gain and model error. Since the state is updated, the
new error covariance is updated.
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Fig. 3. Simplified equivalent electrical circuit model.

III. PROPOSED METHOD

A. Online OCV identification observer

Since the LFP batteries has nonlinear characteristics, the
error of EECM can be increased using the conventional
method such as linear interpolation. In order to improve
the accuracy of EECM, in this paper, OCV is identified by
the adaptive parameter observer reported in [11].

The OCV observer is defined as:

o | _ [—oaVo(Vo - Vo)l
5, L e, -7
where a is the gain based on the system characteristics.
o, is set to 0.01 and a, to 3.6 representing the nominal
voltage of the battery.
The OCV value can be estimated as:
oCV =9,/0, (15)

From the nonlinear observer, the EECM accuracy and the

EKF robustness can be increased in all SOC region.

(14)

B. Simplified equivalent circuit method

In the conventional EKF simultaneously calibrates SOC
and V1. In this case, the selection of O, can be difficult for
adjusting the two variables (SOC and V). Furthermore,
the Jacobian matrix of process function need a time con-
stant value according to the SOC. Since the LFP batteries
have nonlinear characteristics, the EKF has additional
method for reflecting the time constant. However, in this
paper, the EKF algorithm is simplified by eliminate the
time constant information as:

f(SOC,,u,,6,)=S0OC, +(-At/C )xI, 16
+w',w' ~ N(0,0%) (10
z(x,,u,)=O0CV, (SOC,)+1,R,+v*,v' ~ N(0,R")
7)

This paper calibrates only SOC value as (12), because the
OCYV observer can improve the EECM accuracy. If only
partial SOC information is given, it is calculated as (11),
and the equation for obtaining the error covariance can be
calculated as (13). The partial differentials of only SOC
information are calculated as (13), and the equation for ob-
taining the error covariance can be modified as (14). From
this equation, the Kalman filter calculations can reduce the
amount of computation by reducing the portion of the ma-
trix that contains the matrix. In addition, since it is not af-
fected by the time constant, it becomes more robust when
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Fig. 4. Block diagram of the proposed method

estimates the SOC. Finally, to verify the proposed algo-
rithm, the voltage and current profile are used as shown in
Fig. 5.

SOC;H :SOC;+1 +K;(Zk _21() (18)

4 =Y o (19)
ox xe=%1

Ba=H+0" (20)

C. Initial error covariance calculation

Initial covariance affects to initial Kalman gain in (12)
and (13). If initial covariance is incorrect, the overall esti-
mation performance is decreased. In conventional method,
the initial error covariance set to constant. However, since
the initial SOC of the battery is uncertain, the initial error
covariance has various value according to the initial SOC.
To overcome this problem, this paper calculates the initial
error covariance by OCV-SOC relationship as shown Fig.
5 from the experimental data. From the measure voltage
(V1), the initial SOC is calculated from Fig. 5. Through the
(21), the initial covariance is estimated.

B, =(S0C,(V,)~SOC,)’ 1)
where SOCy(V;) is the OCV and SOC relationship extr-
acted from the experimental data and SOC, is the initial
SOC of the setting value in EKF.
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Fig. 7. EKF Matlab/Simulink model for simulation.

IV. SIMULATION RESULT

In this section, proposed method is verified by using ex-
perimental data as shown Fig. 6. The simulation is per-
formed using Matlab/Simulink as shown Fig. 7. In order to
verify the estimation performance of the proposed method
according to the SOC region, it was verified through the
OCYV test profile. The EV profile are utilized under the var-
ious current profile to verify the robustness and estimated
performance of the EKF. In addition, the influence of the
error covariance and the estimated voltage error which
have a great effect on the estimation performance of the
EKF is analyzed.

A. Error covariance

Eq. (20) calculates the initial error covariance from the
experimental data (OCV-SOC function). In order to com-
pare the error covariance value, the Fig. 8 are shown. The
estimation value is that is calculated by the Kalman filter.
Eq. (20) cannot fully reflect the LFP battery’s characteris-
tics, but the tendency of the error covariance is similar be-
tween the estimation and (20) value. Therefore, since the
initial error covariance is valid, the initial Kalman gain can
adjust the uncertain initial SOC to true value at any initial
SOC value.

B. Voltage estimation

Fig. 9 shows the graph comparing Measured and esti-
mated voltage. The overall voltage error rate did not ex-
ceed 2%, but the error rate is different according to the test
profile as shown Fig. 10. In the OCV profile, since the
OCV region is long because the only discharge and rest
step are repeated, it is confirmed that the voltage error is
smaller than EV profile. In the EV profile, the error rate is
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Fig. 10. Analysis the estimated voltage error rate according to the profile

region.

increased due to frequent charging/discharge profile. Be-

cause the OCV region is short, the OCV observer cannot

estimate the terminal voltage as much OCV profile. How-

ever, the terminal voltage is estimated within 1%. There-

fore, the EECM based on the online OCV observer can be

guaranteed in various profile.

C. SOC estimation

The SOC estimation result of the proposed method are
shown in Fig. 11. Fig. 11. (a) shows overall estimation re-
sult and partial result for analyzing the SOC. For verifying
the initial value correction, the initial value of the SOC is
set to 0. In the Fig. 11. (b) is shown that the estimated SOC

'
n



100 I == Reference
— Estimation
801 (b) N
5 60 [~
O
8 40 -
20
-
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time(h)
120 15
(b) 521(©) 100/ (d) ()
100 S0
80 Y _ 10
9 S £ 60 <
S 48 < <
% 60 8 o Q
S 40 @ 46 g w0 2
20 44 20
0 ) 0
0 10 20 30 40 50 60 70 80 90100 3.6 3.8 4 4.2 7.5 8 8.5 1.32 1.34 136 1.38
Time(s) Time(s) x10* Time(s) <10* Time(s) x10°
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Fig. 12. Analysis the Kalman gain value in overall profile.

is converged to true value within 40s. In the middle SOC
region (SOC 90~10%), the voltage drop is very small.
However, since EKF calibrate the SOC value using Ah-
counting and voltage error, the SOC estimation result is
uniform result according to the SOC region as shown Fig.
11. (¢). Fig. 11. (d) represents the charging period. The er-
ror is increased comparing the other region, but it is not
exceeded about 5%. This reason is that LFP battery has
hysteresis characteristics when we apply charging and dis-
charging current. In EV profile, the SOC is estimated
within 3%. The SOC value is converged to true value while
perform the EKF as shown Fig. 11. (d).

The voltage error is increased at EV profile as shown
Fig. 10. The value of the Kalman gain is increased accord-
ing to the EECM error, and the SOC value is appropriately
corrected as shown Fig. 12. In the OCV profile, since the
EECM error is low and current profile is static, the Kalman
gain is not much change. In contrary to OCV profile, the
Kalman gain is very dynamic according to the charg-
ing/discharging. From the Kalman gain, the SOC is esti-
mated within 5%.
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Fig. 13. Analysis the SOC error rate in overall profile.

V. CONCLUSIONS

This approach improves the SOC estimation performance
of the EKF by increasing the model accuracy and simpli-
fying the state matrix. To improve the EECM accuracy, the
nonlinear observer is used for estimating the OCV. The
nonlinear component is neglected in Kalman process by
recasting the state function. Through this approach, the
matrix form can be decreased and algorithm can be simple
than conventional method. Therefore, since the matrix
component can be reduced, the computational burden in
embedded system can be efficiently operated.
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