
 

Abstract-- The lithium iron phosphate (LFP) battery 

has more nonlinear characteristic than other battery 

type. For this reason, when we use electrical equivalent 

circuit model and the extended Kalman filter (EKF) for 

estimating the SOC, the estimation performance can be 

decreased in the nonlinear region. This paper proposes 

an advance estimation method of state of charge (SOC) 

for lithium iron phosphate (LFP) batteries. To improve 

the model accuracy, this paper utilizes the nonlinear 

observer for identifying the internal parameters of bat-

teries. Furthermore, to reduce the nonlinear effect of 

the LFP batteries, this paper recast the Kalman pro-

cess. Therefore, through the proposed method, the per-

formance of SOC estimation can be more accurate and 

the computational burden is decreased when we apply 

the embedded system. 
 

Index Terms—Equivalent circuit model, Extended Kal-

man filter, LFP battery, State of charge. 

 

I.  INTRODUCTION 

Li-ion battery is a promising energy storage candidate in 

many fields, such as electric vehicles, portable applica-

tions, and satellites, because it has high power/energy den-

sity, long life, high voltage, and no memory effect [1]. The 

lithium iron phosphate (LFP) batteries have been widely 

used in electrical vehicle (EV) due to advantages such as 

light of weight, long life, safety, high energy density, high 

power and low self-discharge [2]. However, the LFP bat-

teries have more nonlinear characteristics than other type 

of batteries because of the hysteresis characteristic [3].  

In order to estimate the state of charge (SOC), many pa-

pers propose method using look-up table, Ah-counting, 

and model-based control method. The look-up table 

method establishes the function from experimental data 

[4]. This method has advantages which are easy implemen-

tation and low computational burden. However, this 

method need a lots of the experimental data for relation-

ship function. So, it requires expensive test equipment. In 

case of the LFP battery, because of the nonlinear charac-

teristics, the relationship function cannot distinguish the 

factor for estimating the SOC. Second, the Ah-counting 

method is very useful method for estimating the SOC [5]. 

This method uses the integration, so real-time estimation 

can be easily possible. This method is highly accurate, but 

requires a specific initial value. If the initial value is not 

unclear, the estimation performance is sharply decreased. 

From the disadvantages of the look-up table and Ah-count-

ing method, many researches utilize the model-based con-

trol method for estimating the SOC [6] - [7]. This method 

has abilities that estimate the SOC in real-time, calibrate 

the uncertain initial value, has closed-loop control and 

adaptability. This method requires high performance bat-

tery model for robustness and accuracy of controller. How-

ever, the LFP battery voltage has more different character-

istics according to the SOC region than general battery 

type as shown Fig. 1. Due this phenomenon, the perfor-

mance of the electrical equivalent circuit model (EECM) 

is decreased. Since these nonlinear characteristics of LFP, 

the EECM cannot fully reflect the dynamic properties of 

batteries, the performance of extended Kalman filter 

(EKF) based on the EECM is not satisfied. 

This paper proposes the strategy for enhancing the EKF 

performance by online parameter observer, and EECM. 

The online parameter observer is designed by Lyapunov 

stability analysis. Since the online parameter observer im-

proves the EECM accuracy, we can eliminate unnecessary 

elements and simplify the EECM to reduce the computa-

tional complexity of the algorithm. Finally, the proposed 

method is verified by various profile.  
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Fig. 1. Comparison of the SOC-OCV curves between the LFP and 

NMC batteries. 
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II.  CONVENTIONAL BATTERY MODEL AND ALGORITHM 

A.  Electrical equivalent circuit model of Li-ion battery 

The nonlinear characteristics of LFP batteries stand out 

at SOC - OCV relationship. The SOC – OCV curve of 

NCA batteries has linear region except for low SOC region 

as shown Fig. 1. However, the LFP batteries has flat period 

at middle SOC region (5 ~ 95%). The reason of this phe-

nomenon is that the internal resistance of the battery has 

lower than high/low SOC region as shown Fig. 1. From the 

nonlinear result of the SOC - OCV relationship, the con-

ventional method that calculates SOC by the SOC – OCV 

function has poor performance [8]. In order to estimate the 

SOC, the Ah-counting method is utilized as: 

k+1 0 n
SOC SOC ( / C )

k
t i= + Δ         (1) 

where SOC 0 indicates the initial SOC, t is the time sam-

pling of the algorithm, and ik is the battery current. 

   The Ah-counting has simple mechanism and high accu-

racy without SOC – OCV relationship. However, this 

method has fatal disadvantage that is open loop system and 

accumulation form. From the disadvantage of Ah count-

ing, the performance of SOC estimation is decreased when 

initial value is uncertain and current signal has noise sig-

nal.  

The SOC, open circuit voltage (OCV), ohm resistance 

(R0), diffusion resistance (R1), and diffusion capacitance 

(C1) is the parameter of the EECM, as shown in Fig. 2. The 

SOC indicates the ratio of the remaining capacity to the 

nominal capacity (Cn) of the battery [9].  

The current to the RC parallel circuit is defined as: 

, 1 ,
exp( / ) (1 exp( / ))

diff diffR k R k k
i t i t iτ τ

+
= −Δ ⋅ + − −Δ ⋅   (2)                                                 

where τ is time constant. 

The state of batteries is represented as: 

ˆ[ ] ~ ( , )T

k k diff k kx SOC V N x P=       (3)                                                              

where Pk is the error covariance about the xk. The error 

covariance is the indicator that shows how different 

from the true value.  

The nonlinear state equation of battery is constructed as 

[10]: 

,

1

1 0
( , )

0 exp( / )

/
, ~ (0, )

(1 exp( / )

k

k k

diff kk

n x x x

k

k

SOC
f x u

Vt

t C
I w w N Q

R t

τ

τ

= ×
−Δ

−Δ
+ × +

− −Δ

 (4)     

0 1( , ) ( )

, ~ (0, )

x

k k k k k

x x

z x u OCV SOC I R V v

v N R

= + + +
     (5) 

where (3) is indicate process function and (4) measurement 

function. Qx is state noise of battery, and Rx is the noise of 

voltage sensor.  

The EKF need Jacobian matrix for reflecting system var-

iable to the algorithm. In case of the battery, the system 

variable is very nonlinear and arbitrary. Therefore, for lin-

earizing the system variable, the Jacobian matrix is defined 

as:  

ˆ
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The EKF flow chart is shown in TABLE �. The EKF is 

the recursively calculate the Kalman gain and error covar-

iance in every step time, and the Kalman gain adjust the 

state. First, we set to the nonlinear system function as (8) 

and noise parameter as (9). The system variables for cal-

culating the Kalman gain and reflecting the system char-

acteristic is defined as (10). Eq. (11) is that the initial state 

and error covariance is establish. In time update, the state 

and error covariance is updated as (13). In (13), the Kal-

man gain is calculated and state is calibrated from the Kal-

man gain and model error. Since the state is updated, the 

new error covariance is updated.   

 
Fig. 2. Conventional equivalent electrical circuit model of Li-ion battery.
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TABLE  

EXTENDED KALMAN FILTER ALGORITHM 
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where wx vx are independent, zero mean, Gaussian noise of 

covariance matrices  respectively. 
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Initialization
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For  = 1,2,… compute 

Step 1: State estimation time update 
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Step 2: Measurement update for the state 
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III.  PROPOSED METHOD 

A.  Online OCV identification observer 

Since the LFP batteries has nonlinear characteristics, the 

error of EECM can be increased using the conventional 

method such as linear interpolation. In order to improve 

the accuracy of EECM, in this paper, OCV is identified by 

the adaptive parameter observer reported in [11].  

The OCV observer is defined as: 

1 0 0 01

2 0 02

ˆ ˆ( )

ˆˆ ( )

V V V

V V

α

α

− −∂
=

−∂

          (14) 

where  is the gain based on the system characteristics. 

 is set to 0.01 and  to 3.6 representing the nominal 

voltage of the battery. 

The OCV value can be estimated as: 

2 1
ˆ ˆ ˆ/OCV = ∂ ∂              (15) 

From the nonlinear observer, the EECM accuracy and the 

EKF robustness can be increased in all SOC region.  

B.  Simplified equivalent circuit method    

In the conventional EKF simultaneously calibrates SOC 

and V1. In this case, the selection of Qx can be difficult for 

adjusting the two variables (SOC and Vdiff). Furthermore, 

the Jacobian matrix of process function need a time con-

stant value according to the SOC. Since the LFP batteries 

have nonlinear characteristics, the EKF has additional 

method for reflecting the time constant. However, in this 

paper, the EKF algorithm is simplified by eliminate the 

time constant information as: 

( , , ) ( / )

, ~ (0, )

k k k k n k

x x x

f SOC u SOC t C I

w w N Q

θ = + −Δ ×

+
   (16) 

 0
( , ) ( ) , ~ (0, )x x x

k k k k k
z x u OCV SOC I R v v N R= + +

(17) 

This paper calibrates only SOC value as (12), because the 

OCV observer can improve the EECM accuracy. If only 

partial SOC information is given, it is calculated as (11), 

and the equation for obtaining the error covariance can be 

calculated as (13). The partial differentials of only SOC 

information are calculated as (13), and the equation for ob-

taining the error covariance can be modified as (14). From 

this equation, the Kalman filter calculations can reduce the 

amount of computation by reducing the portion of the ma-

trix that contains the matrix. In addition, since it is not af-

fected by the time constant, it becomes more robust when 

estimates the SOC. Finally, to verify the proposed algo-

rithm, the voltage and current profile are used as shown in 

Fig. 5. 
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C.  Initial error covariance calculation 

Initial covariance affects to initial Kalman gain in (12) 

and (13). If initial covariance is incorrect, the overall esti-

mation performance is decreased. In conventional method, 

the initial error covariance set to constant. However, since 

the initial SOC of the battery is uncertain, the initial error 

covariance has various value according to the initial SOC. 

To overcome this problem, this paper calculates the initial 

error covariance by OCV-SOC relationship as shown Fig. 

5 from the experimental data. From the measure voltage 

(Vt), the initial SOC is calculated from Fig. 5. Through the 

(21), the initial covariance is estimated. 
2

0 0 0
ˆ( ( ) )

t
P SOC V SOC= −         (21)  

where SOC0(Vt) is the OCV and SOC relationship extr-

acted from the experimental data and SOC0 is the initial 

SOC of the setting value in EKF.  

 

Fig. 3. Simplified equivalent electrical circuit model. 
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Fig. 4. Block diagram of the proposed method 
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IV.  SIMULATION RESULT 

In this section, proposed method is verified by using ex-

perimental data as shown Fig. 6. The simulation is per-

formed using Matlab/Simulink as shown Fig. 7. In order to 

verify the estimation performance of the proposed method 

according to the SOC region, it was verified through the 

OCV test profile. The EV profile are utilized under the var-

ious current profile to verify the robustness and estimated 

performance of the EKF. In addition, the influence of the 

error covariance and the estimated voltage error which 

have a great effect on the estimation performance of the 

EKF is analyzed.  

A.  Error covariance 

Eq. (20) calculates the initial error covariance from the 

experimental data (OCV-SOC function). In order to com-

pare the error covariance value, the Fig. 8 are shown. The 

estimation value is that is calculated by the Kalman filter. 

Eq. (20) cannot fully reflect the LFP battery’s characteris-

tics, but the tendency of the error covariance is similar be-

tween the estimation and (20) value. Therefore, since the 

initial error covariance is valid, the initial Kalman gain can 

adjust the uncertain initial SOC to true value at any initial 

SOC value. 

B.  Voltage estimation 

Fig. 9 shows the graph comparing Measured and esti-

mated voltage. The overall voltage error rate did not ex-

ceed 2%, but the error rate is different according to the test 

profile as shown Fig. 10. In the OCV profile, since the 

OCV region is long because the only discharge and rest 

step are repeated, it is confirmed that the voltage error is 

smaller than EV profile. In the EV profile, the error rate is 

increased due to frequent charging/discharge profile. Be-

cause the OCV region is short, the OCV observer cannot 

estimate the terminal voltage as much OCV profile. How-

ever, the terminal voltage is estimated within 1%. There-

fore, the EECM based on the online OCV observer can be 

guaranteed in various profile.   

C.  SOC estimation 

The SOC estimation result of the proposed method are 

shown in Fig. 11. Fig. 11. (a) shows overall estimation re-

sult and partial result for analyzing the SOC. For verifying 

the initial value correction, the initial value of the SOC is 

set to 0. In the Fig. 11. (b) is shown that the estimated SOC 

Fig. 6. Profiles of cell current and voltage under OCV and EV profile. 

Fig. 8. Comparison of the error covariance estimation result from Kal-

man filter and OCV-SOC table. 

Fig. 9. Comparing the measured and estimated voltage for verifying

EECM performance. 

Fig. 10. Analysis the estimated voltage error rate according to the profile

region. 

Fig. 7. EKF Matlab/Simulink model for simulation. 



 

is converged to true value within 40s. In the middle SOC 

region (SOC 90~10%), the voltage drop is very small. 

However, since EKF calibrate the SOC value using Ah-

counting and voltage error, the SOC estimation result is 

uniform result according to the SOC region as shown Fig. 

11. (c). Fig. 11. (d) represents the charging period. The er-

ror is increased comparing the other region, but it is not 

exceeded about 5%. This reason is that LFP battery has 

hysteresis characteristics when we apply charging and dis-

charging current. In EV profile, the SOC is estimated 

within 3%. The SOC value is converged to true value while 

perform the EKF as shown Fig. 11. (d).      

 The voltage error is increased at EV profile as shown 

Fig. 10. The value of the Kalman gain is increased accord-

ing to the EECM error, and the SOC value is appropriately 

corrected as shown Fig. 12. In the OCV profile, since the 

EECM error is low and current profile is static, the Kalman 

gain is not much change. In contrary to OCV profile, the 

Kalman gain is very dynamic according to the charg-

ing/discharging. From the Kalman gain, the SOC is esti-

mated within 5%.  

V.  CONCLUSIONS 

This approach improves the SOC estimation performance 

of the EKF by increasing the model accuracy and simpli-

fying the state matrix. To improve the EECM accuracy, the 

nonlinear observer is used for estimating the OCV. The 

nonlinear component is neglected in Kalman process by 

recasting the state function. Through this approach, the 

matrix form can be decreased and algorithm can be simple 

than conventional method. Therefore, since the matrix 

component can be reduced, the computational burden in 

embedded system can be efficiently operated. 

 

 

 

 

 

 

Fig. 11. SOC estimation performance comparison of proposed method and the Ah-counting. (a) the overall profile SOC estimation result, (b) initial 

SOC estimation region, (c) middle SOC region of the OCV profile, (d) full charging region, (e) EV profile at low SOC region. 

Fig. 13. Analysis the SOC error rate in overall profile. 
Fig. 12. Analysis the Kalman gain value in overall profile. 
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