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Abstract	41	

Long	Terminal	Repeat	(LTR)	retrotransposons	are	the	majority	component	of	most	42	

flowering	plant	genomes,	in	particular	for	Aegilops	tauschii,	a	progenitor	of	bread	43	

wheat.	This	study	develops	novel	estimates	for	the	time-dynamic	insertion	rates	of	44	

the	LTR	retrotransposon	families	in	Ae.	tauschii.		For	each	LTR	retrotransposon	45	

family,	the	estimation	of	insertion	rate	(birth)	consists	of	an	improved	estimate	of	46	

the	age	distribution	that	takes	into	account	random	mutations,	and	an	adjustment	47	

by	the	deletion	rate	(death)	of	LTR	retrotransposons.	This	adjustment	is	crucial	48	

because	older	elements	are	more	likely	to	be	deleted	and	thus	less	observable.		Our	49	

analyses	reject	the	hypothesis	that	the	LTR	retrotransposons	were	inserted	into	the	50	

Ae.	tauschii	genome	at	a	uniform	rate,	and	find	that	peak	insertion	activities	range	51	

from	0.064	to	2.39	million	years	ago	across	different	families.	Through	simulations,	52	

we	demonstrate	the	proposed	hypothesis	test	is	specific	under	the	null	hypothesis	53	

of	uniform	insertion	activities,	when	a	histogram	of	divergence	would	otherwise	54	

suggest	a	decreasing	insertion	rate.	Finally,	we	confirm	sites	near	genes	tend	to	lose	55	

LTR	retrotransposons	more	rapidly.	The	proposed	estimation	methods	are	available	56	

in	R	package	TE	available	on	CRAN.	57	

	 	58	
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Introduction	59	

Long	Terminal	Repeat	(LTR)	retrotransposons	are	present	in	virtually	all	studied	60	

eukaryotes,	and	make	up	the	majority	of	the	nuclear	genomes	in	most	flowering	61	

plants	[1].		LTR	retrotransposons	are	classified	into	five	subfamilies:	Copia,	Gypsy,	62	

Bel-Pao,	Retrovirus	and	ERV,	and	among	them,	Copia	and	Gypsy	are	predominant	in	63	

plant	genomes,	which	each	contains	hundreds	of	different	LTR	retrotransposon	64	

families	that	are	operationally	distinguished	by	their	different	LTR	sequences	[2].		65	

Any	single	plant	will	routinely	contain	several	hundred	different	LTR	66	

retrotransposon	families,	of	which	a	few	will	be	highly	abundant	(contributing	67	

hundreds	to	thousands	of	copies),	but	with	most	families	having	intact	element	copy	68	

numbers	of	only	1-5	[3,	4].		Variation	in	the	copy	numbers	of	these	LTR	69	

retrotransposons	is	the	major	factor	responsible	for	the	huge	(>3000	fold)	genome	70	

size	variation	in	flowering	plants.		Because	LTR	retrotransposons	transpose	via	71	

integration	of	a	reverse	transcribed	transcript,	without	any	donor	element	excision,	72	

they	can	very	rapidly	increase	their	copy	number	in	a	genome.		The	most	dramatic	73	

case	of	this	amplification	has	been	observed	in	the	Zea	lineage,	where	the	massive	74	

transposition	of	several	different	LTR	retrotransposon	families	in	the	ancestors	of	75	

Zea	luxurians	led	to	more	than	a	doubling	of	that	genome	size	in	<2	million	years,	76	

requiring	the	addition	of	>2400	Mb	of	new	LTR	retrotransposon	DNA	in	that	short	77	

time	period	[5].			78	
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The	transposition	of	these	different	LTR	retrotransposon	families	exhibits	episodic	79	

and	apparently	stochastic	activation	over	evolutionary	time	[4,	6].	Because	the	two	80	

LTRs	of	a	single	LTR	retrotransposon	are	usually	identical	at	the	time	of	insertion,	81	

insertion	dates	can	be	estimated	by	investigating	the	degree	of	LTR	divergence	82	

within	a	single	LTR	retrotransposon	[7].		Such	analyses	indicate	that	individual	LTR	83	

retrotransposon	families	exhibit	different	histories	of	“amplification	bursts”	in	any	84	

given	lineage,	and	that	this	accounts	for	the	great	variation	in	the	structure	of	even	85	

closely	related	plant	genomes.	Even	in	small	plant	genomes,	like	that	of	rice	(Oryza	86	

sativa,	~400	Mb),	LTR	retrotransposons	can	add	hundreds	of	Mb	of	new	LTR	87	

retrotransposons	per	million	years.		However,	this	process	does	not	always	lead	to	88	

genome	size	expansion	over	evolutionary	time,	because	there	are	also	very	rapid	89	

processes	for	the	removal	of	DNA	from	flowering	plant	genomes	[8-11].		Unequal	90	

homologous	recombination	between	the	LTRs	of	a	single	LTR	retrotransposon	91	

routinely	leads	to	the	loss	of	all	internal	sequences	and	the	generation	of	a	solo	LTR.		92	

This	attenuates	transposition-driven	genome	growth,	but	does	not	reverse	it.		93	

However,	DNA	loss	by	accumulated	deletions	caused	by	illegitimate	recombination	94	

can	slow	or	even	reverse	genome	growth.		The	mechanism(s)	of	illegitimate	95	

recombination	responsible	for	the	process	of	genome	shrinkage	has	not	been	96	

proven,	but	deletion	outcomes	of	the	repair	of	double-strand	breaks	or	adjacent	97	

single-strand	nicks	appear	to	be	the	most	important	driver	[8,	12-14].	98	

The	relative	rates	of	amplification	and	removal	of	LTR	retrotransposons	and	other	99	

unnecessary	DNA	varies	across	plant	lineages	[15],	and	may	also	be	quite	variable	100	
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across	regions	in	the	plant	genome	[16]	and	over	evolutionary	time	within	a	lineage	101	

[5].			This	genome	dynamism	creates	the	raw	material	for	natural	selection	to	derive	102	

superior	individuals,	especially	when	one	considers	that	a	high	percentage	of	103	

transposable	element	(TE)	insertions	of	all	types	can	lead	to	altered	regulation,	both	104	

genetic	and	epigenetic,	of	nearby	genes	[17].		Understanding	the	significance	of	105	

genome	dynamism	created	by	TE	activities	and	rates	of	genome	change	will	require	106	

more	accurate	quantitation	and	modelling	than	any	of	the	isolated	observations	107	

published	to	date.		This	study	provides	an	important	step	in	that	direction.	108	

The	focus	of	this	study	is	modelling	the	dynamism	of	the	LTR	retrotransposon	109	

families	during	the	evolution	of	the	Aegilops	tauschii	genome.		Ae.	tauschii	is	one	of	110	

the	three	diploid	progenitors	of	bread	wheat.	It	has	a	large	genome,	about	4.3	Gbp,	111	

that	is	at	least	66%	LTR	retrotransposons	[18],	mostly	present	as	nested	arrays	of		112	

TEs	between	tiny	gene	islands	[19].	These	intergenic	arrays	are	entirely	replaced	in	113	

a	span	of	three	to	four	million	years,	because	of	the	deletions	of	old	elements	and	114	

insertions	of	new	elements	[20].		115	

This	dynamic	nature	of	the	Ae.	tauschii	LTR	retroelements	is	employed	here	in	116	

modelling	their	biodemography.	The	insertion	rates	of	LTR	retrotransposons	have	117	

been	analysed	previously	in	Oryza	sativa	[4,	10,	21],	Triticeae	[6],	and	Arabidopsis	118	

[6],	but	a	principled	statistical	modelling	approach	was	not	used.	Statistical	models	119	

have	been	proposed	for	analysing	the	dynamics	of	retrotransposons	in	some	120	

species,	including	Drosophila	[22],	Saccharomyces	cerevisiae	[23],	Arabidopsis	121	

thaliana	[24],	and	Homo	sapiens	[25].	122	
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Here,	we	frame	the	insertion/deletion	dynamics	of	LTR	retrotransposons	in	terms	123	

of	birth/death	processes	that	change	the	age	composition	over	time,	with	the	goal	to	124	

recover	the	insertion	rate	for	Ae.	tauschii	LTR	retrotransposon	families	with	≥ 50	125	

elements.	We	model	the	relationship	between	LTR	retrotransposon	insertion	rates,	126	

deletion	rates,	and	age	distributions,	building	on	a	model	from	biodemography	[26],	127	

and	demonstrate	the	utility	of	these	models	to	infer	insertion	rates.	A	key	difference	128	

between	the	age	distribution	and	the	insertion	rate	is	that	the	former	describes	the	129	

ages	of	only	the	intact	elements	that	survived	the	deletion	process	to	the	present	130	

day,	while	the	latter	is	the	rate	of	insertion	activities	for	all	LTR	retrotransposon.	131	

For	an	LTR	retrotransposon	family,	the	insertion	rate	is	estimated	by	the	ratio	of	the	132	

age	distribution	and	the	deletion	rate,	adjusting	for	the	fact	that	older	elements	are	133	

more	likely	to	be	deleted	and	thus	less	observable.	We	also	propose	a	new	estimate	134	

for	the	age	distribution	by	fitting	a	negative	binomial	distribution	to	the	distribution	135	

of	the	number	of	mismatches	in	each	pair	of	LTRs	of	the	same	LTR	family,	and	then	136	

transforming	to	a	gamma	age	distribution	by	a	probability	identity.		137	

Our	results	reject,	with	high	significance,	the	hypothesis	that	LTR	retrotransposons	138	

were	inserted	into	the	Ae.	tauschii	genome	at	a	uniform	rate.	The	death	rates	of	LTR	139	

retrotransposons	are	difficult	to	obtain	because	deletion	events	cannot	be	easily	140	

dated,	so	a	sensitivity	analysis	is	conducted	to	investigate	different	scenarios	of	141	

death	rates	and	the	resulting	insertion	rate	estimates.	We	also	investigate	the	142	

associations	between	the	age	of	LTRs	and	other	genomic	variables	including	143	

recombination	rates,	distance	to	the	nearest	gene,	membership	in	LTR	144	
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retrotransposon	superfamilies,	and	chromosome	location,	using	a	regression	145	

analysis.	Proposed	analysis	algorithms	are	included	in	a	user-friendly	R	package	146	

that	we	have	named	TE,	which	is	available	on	the	Comprehensive	R	Archive	147	

Network	(CRAN).	148	

Methods	and	Materials	149	

LTR	Retrotransposons	150	

Intact	LTR	retrotransposons	with	a	target	site	duplication	were	identified	by	using	151	

LTR_FINDER	[27]	and	LTRharvest	[28]	scanning	of	the	Ae.	tauschii	genome	152	

assembly	[18]	and	combining	non-redundant	predictions	of	the	two	program	tools.	153	

An	intact	LTR	element	was	identified	if	the	element	showed	all	of	the	following	154	

characteristics:	(1)	highly	similar	5’	and	3’	LTRs,	(2)	TG-CA	termini	of	the	LTRs	and	155	

(3)	exact	target	site	duplication	(TSD);	see	for	example	[9].	Artificial	predictions	156	

were	excluded	by	manual	inspection;	see	the	Supplementary	Materials	for	more	157	

details.	A	group	of	elements	were	classified	into	a	family	if	their	25	bp	TE	ends	158	

exhibited	at	least	80%	identity.	159	

	160	

A	total	of	18,024	copies	of	390	LTR	retrotransposon	families	were	identified,	and	we	161	

performed	the	demographics	analysis	on	15,781	copies,	which	were	in	the	35	162	

largest	LTR	retrotransposon	families,	all	with	≥ 50	copies	each,	consisting	of	9	163	
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Copia	families	and	26	Gypsy	families	(Table	S1).	The	divergence	of	an	LTR	164	

retrotransposon	is	defined	as	the	number	of	mismatches	in	the	two	LTRs	divided	by	165	

the	LTR	length.		Indels	were	not	included	in	this	analysis.	166	

Statistical	Modelling	for	LTR	Retrotransposon	Insertion	Dates	167	

For	each	LTR	retrotransposon	family,	we	model	its	population	demographics	as	168	

follows.	Throughout,	any	time	𝑡 ≥ 0	refers	to	time	in	years	in	the	past	relative	to	the	169	

current	calendar	time,	i.e.,	𝑡	years	before	the	current	calendar	time,	which	is	set	to	0.	170	

The	age	distribution	at	any	time	𝑡	in	the	past	is	defined	as	the	distribution	of	the	171	

ages	(i.e.,	time	since	insertion)	of	all	intact	LTR	retrotransposons	within	the	family	172	

at	that	time.	We	use	the	probability	density	function	𝑔(𝑎, 𝑡)	to	represent	the	age	(a)	173	

distribution	at	time	𝑡.	Then	𝑔(𝑎, 0)	is	the	age	distribution	or	the	distribution	of	the	174	

true	insertion	dates	at	present.	We	let	𝛾(𝑡)	denote	the	birth	rate	or	insertion	rate	175	

(insertions	per	myr)	at	time	𝑡	in	the	past,	and	assume	that	𝛾(𝑡)	corresponds	to	the	176	

intensity	of	an	inhomogeneous	Poisson	point	process;	then	𝛾(𝑡)	is	proportional	to	177	

the	expected	number	of	elements	inserted	into	the	genome	within	period	[𝑡, 𝑡 + 𝛥],	178	

for	an	infinitesimal	time	interval	𝛥.	179	

The	insertion	rate	𝛾(𝑡)	is	assumed	to	be	changing	over	time	to	reflect	periods	with	180	

changing	insertion	activities,	in	contrast	to	the	assumption	of	constant	insertion	rate	181	

of	[23,	25].	A	key	difference	between	the	age	distribution	𝑔(𝑎, 0)	at	present-time	182	

𝑡 = 0, as	a	function	of	age	𝑎,	and	the	insertion	rate	𝛾 𝑡 ,	as	a	function	of	time	𝑡,	is	183	

that	the	former	describes	the	ages	of	only	the	intact	elements	that	survived	the	184	
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deletion	process	to	the	present	day,	while	the	latter	is	the	rate	of	birth	for	all	185	

elements	at	some	time	𝑡	in	the	past,	regardless	of	whether	they	are	deleted	or	not	at	186	

present.	The	insertion	rate	𝛾(𝑡)	corresponds	to	the	underlying	genome	dynamics,	187	

while	the	age	distribution	𝑔(𝑎, 0)	does	not	directly	reflect	the	𝛾 𝑡 	because	even	if	188	

𝛾(𝑡)	has	been	constant	throughout,	𝑔 𝑎, 0 	will	be	decreasing,	since	older	elements	189	

are	more	likely	to	be	deleted	and	thus	less	observable.	190	

Since	LTR	retrotransposons	are	subject	to	rapid	deletion	[8,	9],	one	must	take	into	191	

account	the	deletion	process	when	estimating	the	insertion	rate,	instead	of	simply	192	

regarding	the	age	distribution	as	solely	indicative	of	the	insertion	rate	and	193	

effectively	making	a	zero-deletion	assumption.	Assume	each	newly	inserted	LTR	194	

retrotransposon	has	probability	𝐹(𝑎) = 𝑃(𝑋 > 𝑎)	to	survive	the	deletion	process	to	195	

age	𝑎,	where	𝑋	is	the	life	span	of	an	LTR	retrotransposon,	and	that	the	survival	196	

function	𝐹(𝑎)	does	not	depend	on	the	calendar	time	𝑡.	This	assumption	means	the	197	

intensity	of	deletion	activities	depends	only	on	the	age	of	the	elements	but	not	on	198	

calendar	time,	which	is	likely	to	hold	if	the	overall	genetic	and	epigenetic	199	

environment	that	affects	retrotransposon	deletion	remained	relatively	constant	in	200	

the	past.	At	time	𝑡,	the	density	of	intact	elements	of	age	𝑎	(those	born	at	(𝑡 + 𝑎)	201	

years	in	the	past)	is	proportional	to	the	product	of	𝛾(𝑡 + 𝑎)𝐹(𝑎),	where	𝛾(𝑡 + 𝑎)	is	202	

the	birth	intensity	at	time	𝑡 + 𝑎	years	before	present,	and	𝐹(𝑎)	is	the	fraction	of	203	

elements	surviving	past	age	𝑎.	By	normalizing	the	product	into	a	density	function,	204	

we	obtain	the	age	distribution	205	
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𝑔(𝑎, 𝑡) =

𝛾(𝑡 + 𝑎)𝐹(𝑎)
𝛾!

! (𝑡 + 𝑠)𝐹(𝑠)𝑑𝑠
.	 (	1	)	

The	integral	in	the	previous	display	is	finite	as	long	as	𝛾(𝑡)	is	bounded	and	E(𝑋)	is	206	

finite.	By	fixing	time	𝑡	at	𝑡 = 0,	the	current	calendar	time,	and	by	reordering	(	1	),	we	207	

obtain	the	insertion	rate	𝑎	years	ago	as	208	

	
𝛾 𝑎 =

𝑔 𝑎, 0
𝐹 𝑎

𝛾
!

!
𝑠 𝐹 𝑠 𝑑𝑠 ∝

𝑔 𝑎, 0
𝐹 𝑎

,	 (	2	)	

where ∝	denotes	a	proportional	relationship,	since	the	integral	does	not	depend	on	209	

𝑎.	The	ratio	𝑔(𝑎, 0)/𝐹(𝑎)	can	be	interpreted	as	the	shape	of	the	insertion	rate	210	

function	𝛾(𝑎),	which	contains	information	for	peak	insertion	periods	and	the	time-211	

dynamic	change	in	the	rate	of	insertion	activities	over	the	millennia,	and	thus	is	the	212	

target	of	investigation.	213	

We	next	estimate	the	survival	function	𝐹(𝑎).	In	the	literature	it	is	generally	assumed	214	

that	the	distribution	of	the	life	span	of	TEs	is	exponential,	which	means	the	hazard	215	

rate	for	removal	of	a	TA	is	constant	and	the	distribution	is	characterized	by	half-life.	216	

The	half-life	for	rice	LTR	retrotransposons	was	estimated	to	be	less	than	3	myr	[9,	217	

10],	and	that	for	rice	Copia	elements	around	796,000	yr	[6].	Throughout	our	218	

analysis,	we	adopt	this	commonly	made	assumption	that	life	span	𝑋	follows	an	219	

exponential	distribution,	and	estimate	its	half-life	through	Maximum	Likelihood	220	

Estimation	(MLE).		221	
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Estimating	Age	Distribution	222	

In	the	current	literature,	the	age	distribution	𝑔(𝑎, 0)	is	generally	estimated	by	223	

substituting		the	histogram	of	the	insertion	date	estimates	[6,	9,	10,	21,	29],	which	224	

are		in	turn	estimated	using	LTR	divergence	𝑑	=	𝑁/𝑙,	where	𝑁	is	the	number	of	225	

mismatches	in	the	aligned	LTRs	of	a	retroelement,	and	𝑙	is	the	length	of	the	226	

alignment.	However,	we	note	that	this	estimate	is	only	a	proxy	for	the	true	age	due	227	

to	randomness	of	mutations,	and	the	accuracy	is	lower	for	elements	with	shorter	228	

LTRs.	Due	to	the	variability	in	the	individual	estimates,	pooling	estimates	within	a	229	

family	is	subject	to	increased	statistical	error,	which	provides	the	motivation	for	the	230	

improved	methodology	introduced	here.		231	

Assume	the	number	of	mutations	in	a	single	LTR	with	length	𝑙	inserted	𝑥	years	ago	232	

follows	a	Poisson	distribution	with	rate	𝑟𝑙𝑥	(the	same	assumption	as	in	Marchani	233	

[25]),	where	𝑟 = 1.3×10!! substitutions/(year ⋅ site),	as	proposed	by	Ma	and	234	

Bennetzen	[30].	Then,	the	number	of	mismatches	𝑁	on	a	pair	of	LTRs	follows	a	235	

Poisson	distribution	with	rate	2𝑟𝑙𝑥.	Then	the	conventional	age	estimate	𝑑/(2𝑟) =236	

𝑁/(2𝑙𝑟)	will	vary	around	age	𝑥,	the	center	of	its	distribution.	237	

To	demonstrate	the	variability	of	the	estimates,	assume	that	each	of	the	elements	238	

within	a	single	family	has	LTR	length	𝑙 = 500	bp,	is	inserted	𝑥 = 1	Mya	(million	239	

years)	ago,		and	the	number	of	mismatches	𝑁	between	the	two	LTRs	follows	the	240	

Poisson	distribution	specified	above.	The	distribution	of	𝑁	is	shown	in	the	left	panel	241	

of	Figure	1.	There	is	considerable	variability	in	the	number	of	mismatches	even	in	242	
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this	case	where	all	elements	are	inserted	into	the	genome	at	the	same	time,	with	a	243	

large	coefficient	of	variation,	defined	as	the	ratio	of	standard	deviation	over	mean	244	

(0.277).	The	histogram	estimate	of	the	age	distribution	by	pooling	the	individual	age	245	

estimates	will	have	the	same	coefficient	of	variation	rather	than	concentrate	at	1	246	

Mya,	regardless	of	how	many	elements	are	in	the	family.	Therefore	this	direct	247	

approach	based	on	the	raw	divergence	needs	to	be	improved.	248	

We	approach	this	problem	by	modelling	the	number	of	mismatches	directly	to	249	

estimate	the	age	distribution,	or	the	insertion	date	distribution.	We	observe	that	the	250	

distributions	of	the	number	of	mismatches	within	most	of	the	LTR	retrotransposon	251	

families	are	well	approximated	by	negative	binomial	distributions	(see	for	example	252	

the	solid	and	dashed	lines	in	the	left	panel	of	Figure	3),	so	we	use	this	distribution	to	253	

approximate	the	marginal	distribution	of	𝑁.	For	each	family,	we	assume	the	length	𝑙	254	

of	each	LTR	is	the	same	and	is	well	approximated	by	the	alignment	length.	This	is	a	255	

reasonable	assumption,	since	97%	of	the	elements	had	alignment	length	within	256	

±10%	around	their	corresponding	family	mean.	Let	random	variable	𝐴	be	the	age	or	257	

insertion	date	of	an	element,	which	is	assumed	to	be	an	independent	and	identical	258	

realization	from	the	age	distribution	of	its	family.	Then,	the	conditional	distribution	259	

of	the	number	of	mismatches	for	a	given	insertion	date	is	𝑁|𝐴 = 𝑎 ∼Poisson(2𝑟𝑙𝑎).	260	

By	a	known	probabilistic	relation	[31],	the	distribution	of	𝐴	follows	a	gamma	261	

distribution,	which	is	flexible	enough	to	model	exponentially	decreasing	and	many	262	

unimodal	age	distributions.	Denote	the	negative	binomial	distribution	for	𝑁	as	263	

 NB(𝑛,𝑝)	with	size	𝑛	and	success	probability	𝑝,	and	the	gamma	distribution	for	𝐴	as	264	
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𝛤(𝛼,𝛽)	with	shape	𝛼 = 𝑛	and	rate	𝛽 = 2𝑝𝑟𝑙/(1− 𝑝).	We	obtain	estimates	(𝑛,𝑝)	for	265	

(𝑛,𝑝)	by	maximum	likelihood	estimation	(MLE),	and	then	use	266	

	 𝛼 = 𝑛, 𝛽 = 2𝑝𝑟𝑙/(1− 𝑝)	 (	3	)	

as	the	parameter	estimates	for	the	gamma	distribution	of	𝐴.	The	estimated	age	267	

distribution	𝑔(𝑎, 0)	is	set	to	be	the	density	of	𝛤(𝛼,𝛽).	The	probability	distributions	268	

and	the	MLE	algorithms	used	are	described	in	the	online	Supplementary	Materials.	269	

In	the	special	case	where	the	size	parameter	of	the	negative	binomial	is	𝑛 = 1,	the	270	

negative	binomial	distribution	for	𝑁	reduces	to	a	geometric	distribution	with	271	

probability	𝑝,	and	the	age	distribution	will	follow	an	exponential	distribution	with	272	

rate	2𝑝𝑟𝑙/(1− 𝑝).	Under	the	assumption	that	the	age	distribution	is	exponential,	as	273	

a	special	case	of	the	Gamma	distribution,	the	rate	of	the	exponential	distribution	can	274	

be	estimated	by		275	

	 λ = 2𝑝𝑟𝑙/(1− 𝑝), (	4	)	

where	𝑝	is	the	MLE	for	the	geometric	distribution	𝑝.	276	

Alternatively,	one	may	handle	the	inaccuracy	in	the	individual	age	estimates	and	277	

recover	the	age	distribution	by	nonparametrically	deconvoluting	the	histogram	of	278	

age	estimates.	However,	upon	implementing	this	approach,	we	found	that	279	

nonparametric	deconvolution	proved	to	be	unstable,	as	it	requires	extensive	tuning,	280	

which	diminishes	its	practical	value.	281	
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Inference	282	

It	is	of	biological	interest	to	test	for	a	given	LTR	retrotransposon	family	whether	the	283	

insertion	rate	𝛾(𝑡),	and	thus	transposition	activity,	is	constant/homogeneous	over	284	

time.	Formally,	the	null	hypothesis	is	𝐻!:  𝛾(𝑡) = 𝑐	for	some	constant	𝑐	versus	the	285	

alternative	𝐻!:  𝛾(𝑡) ≠ 𝑐	for	all	𝑐.	By	(	1	)	we	find	that	under	𝐻!	for	any	time	𝑧	286	

𝑔(𝑎, 𝑧) = 𝑐𝐹(𝑎)/ 𝑐
!

!
𝐹(𝑠)𝑑𝑠 = 𝐹(𝑎)/𝐸(𝑋) = 𝑓(𝑎),	

where	the	second	equality	is	due	to	a	probabilistic	equivalence,	the	third	equality	is	287	

due	to	a	property	of	exponential	distributions,	and	𝑓(𝑎)	is	the	density	function	of	288	

the	survival	time	𝑋	which	is	exponential.	This	implies	𝑔(𝑎, 0)	is	exponential	and	the	289	

distribution	of	𝑁	is	geometric,	a	special	case	of	the	negative	binomial	distribution	290	

[31].	Then,	rejecting	the	null	hypothesis	𝐻!	of	a	constant	insertion	rate	is	implied	by	291	

rejecting	that	𝑁	follows	a	geometric	distribution.	We	carried	out	this	test	by	292	

embedding	the	geometric	distribution	into	the	negative	binomial	family,	and	tested	293	

for	294	

𝐻!:𝑁 follows a geometric distribution vs 𝐻!:𝑁 follows a negative binomial distribution.	

Note	that	we	are	free	to	choose	the	alternative	hypothesis,	which	does	not	affect	the	295	

size	(type	I	error	rate)	of	the	test,	but	could	limit	the	power	(type	II	error	rate)	of	296	

the	test	if	the	true	alternative	is	inadvertently	omitted.		297	
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We	show	as	example	a	simulated	dataset	under	𝐻!	in	Figure	2,	where	each	element	298	

is	inserted	uniformly	over	the	past	10	myr,	and	has	a	half-life	of	1	myr	and	LTR	299	

length	equal	to	500	bp.	In	this	scenario,	although	the	true	insertion	rate	is	uniform,	300	

the	distribution	of	mismatches	would	show	an	exponential	decay,	as	demonstrated	301	

in	the	left	panel	of	Figure	2,	so	that	the	age	distribution	and	the	insertion	rates	are	302	

vastly	different,	and	a	histogram	of	divergence	leads	to	an	incorrect	assessment	of	303	

the	insertion	rate.		Our	proposed	method,	however,	is	able	to	recover	the	uniform	304	

insertion	rate	in	this	case,	as	displayed	in	the	right	panel	of	Figure	2.	Testing	the	null	305	

hypothesis	at	0.05	significance	level	in	2,000	simulations	under	the	same	setting	as	306	

Figure	2,	the	proportion	of	times	𝐻!	was	rejected	was	0.051,	showing	our	test	has	307	

the	correct	size.		308	

Sensitivity	Analysis	309	

We	can	estimate	the	birth	rate	by	equation	(	2	)	after	estimating	the	age	distribution	310	

if	we	know	the	survival	function	𝐹 𝑎 ,	which	corresponds	to	the	death	rate.	311	

However,	even	with	the	exponential	life	span	assumption,	the	death	rate	is	hard	to	312	

estimate	from	the	data	because	the	deletion	events	are	not	observed,	so	we	compare	313	

a	range	of	death	rates	and	conduct	a	sensitivity	analysis.	314	

The	exponential	rate	parameter	𝜆	for	the	distribution	of	survival	times	𝑋	is	315	

estimated	by	fitting	a	geometric	distribution	to	the	mismatch	data	and	then	316	

recovering	the	exponential	rate,	as	in	equation	(	4	).	As	a	single	estimate	may	not	be	317	

accurate	because	there	is	no	guarantee	of	a	good	fit	for	the	geometric	distribution,	318	
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we	investigated	three	scenarios:	Baseline	death	rates	λ = λ,	low	death	rates	λ = λ/2,	319	

and	high	death	rates	λ = 2λ.	Note	that,	as	in	(	2	),	we	can	only	estimate	the	birth	rate	320	

up	to	a	constant	multiplier,	so	we	normalized	all	birth	rates	into	density	functions	321	

that	have	area	under	the	curve	equal	to	one.		322	

Goodness-of-fit	of	Negative	Binomial	Fit	323	

For	some	of	the	families,	negative	binomial	distributions	showed	a	lack	of	fit	for	the	324	

mismatch	data.	Lack	of	fit	may	result	in	unreliable	age	distribution	estimates.	We	325	

used	the	Kullback–Leibler	[32]	(KL)	divergence	as	a	criterion	to	evaluate	the	326	

goodness-of-fit	of	our	negative	binomial	models.	For	discrete	probability	327	

distributions	𝑃	and	𝑄,	the	KL	divergence	of	𝑄	from	𝑃	is	defined	to	be	328	

𝐷!"(𝑃 ∥ 𝑄) = 𝑃
!

!!!

(𝑖) log
𝑃(𝑖)
𝑄(𝑖),	

where	we	use	the	kernel	density	estimate	(KDE)	as	𝑃,	representing	the	underlying	329	

“true”	distribution,	and	the	negative	binomial	distributions	as	𝑄.	For	families	with	330	

𝐷!" > 0.025	(Gypsy	families	24,	35,	36,	40,	44	and	Copia	families	27,	38,	45;	they	331	

have	relatively	small	copy	numbers),	we	use	a	mixture	of	two	negative	binomial	332	

distributions	to	fit	the	mismatch	data,	which	provided	good	fits	in	all	such	cases,	333	

where	the	threshold	0.025	was	set	by	visually	inspecting	the	goodness-of-fit.	When	334	

𝐷!" > 0.025,	the	recovered	age	distribution	using	the	mixture	approach	is	a	mixture	335	
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of	two	Gamma	distributions.	The	estimates	were	obtained	by	MLE,	with	1000	336	

random	starting	points	to	search	for	the	global	maximizer.	337	

Regression	Analysis	of	TE	Ages	338	

We	fitted	a	linear	mixed	effects	model	to	investigate	the	relationship	between	339	

response	LTR	divergence	𝑑	of	a	TE,	as	a	proxy	for	its	insertion	date,	and	its	other	340	

attributes,	including	the	chromosome	number,	local	recombination	rate,	log	341	

distance	(in	bp)	to	the	nearest	gene,	superfamily	membership	(either	Gypsy	or	342	

Copia),	and	a	LTR	family	random	effect.	The	local	recombination	rates	were	343	

estimated	by	the	first	derivative	of	a	local	kernel	quadratic	smoother	applied	on	344	

genetic	linkage	data	in	centimorgans	[33],	with	Gaussian	kernel	and	bandwidth	345	

equal	to	5Mb.	To	calculate	the	distances	to	the	nearest	gene	we	used	only	high	346	

confidence	genes	[34].		347	

Results	348	

An	example	of	recovered	age	distribution	for	the	largest	Gypsy	family	Fatima	(in	the	349	

mismatch	scale	rather	than	time	scale)	is	shown	in	the	left	panel	of	Figure	3.	The	350	

histogram	of	𝑁	is	shown	with	the	fitted	distributions	overlaid.	The	fitted	negative	351	

binomial	distribution	is	very	close	to	the	kernel	density	estimate,	showing	a	good	fit.	352	

The	recovered	age	distribution	has	a	more	salient	peak	at	1.28	mya	in	the	time	scale	353	

(transformed	from	a	peak	of	15.6	in	the	mismatch	scale)	than	that	produced	by	the	354	

histogram	method,	where	the	latter	significantly	underestimates	the	age	355	
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distribution	near	its	peak	period,	suffering	from	the	convolution	with	the	Poisson	356	

error.	Gypsy	family	24	(Nusif)	in	the	right	panel	of	Figure	3	shows	a	lack-of-fit	to	a	357	

negative	binomial	distribution,	which	is	remedied	by	a	mixture	of	two	negative	358	

binomial	distributions.		359	

The	constant	insertion	rate	hypotheses	were	rejected	for	all	LTR	transposon	360	

families	with	very	small	p-values	(Table	S2	and	S3),	indicating	that	the	insertion	361	

rates	are	not	constant	over	time.	We	show	the	estimated	age	distributions	and	362	

insertion	rates	of	all	families	in	the	left	and	the	right	panels	of	Figure	4,	respectively,	363	

where	the	insertion	rates	were	estimated	with	the	baseline	death	rate	𝜆,	and	then	364	

normalized	into	probability	densities.	Since	older	elements	are	less	likely	to	survive	365	

the	deletion	process,	the	insertion	rates	as	compared	to	age	distributions	366	

compensated	for	this	effect	by	attenuating	earlier	peaks	and	amplifying	later	peaks.	367	

Each	family	was	active	during	a	different	time	range,	while	the	peak	insertion	368	

activities	for	most	families	tended	to	occur	around	1	mya,	ranging	from	0.064	mya	369	

to	2.39	mya.	The	most	recent	sharp	insertion	rate	spikes	at	0.064	mya	are	due	to	370	

two	Copia	elements	in	family	27	(Maximus)	that	have	only	1	and	4	mismatches,	371	

vastly	different	from	other	elements	in	the	same	family	that	have	an	average	of	40	372	

mismatches.	This	shows	that	Copia	family	27	had	an	ancient	burst	of	activity,	373	

followed	by	a	recent	amplification	that	may	be	on-going.		374	

To	demonstrate	the	sensitivity	of	our	results	to	the	assumption	on	death	rates,	we	375	

studied	and	show	three	death	rate	scenarios	for	the	top	five	Copia	families	and	the	376	

top	five	Gypsy	families	in	Figure	5,	which	are	based	on	family-specific	baseline	377	
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scenarios.	An	important	consequence	of	exploring	the	three	death	rate	scenarios	is	378	

that,	while	the	precise	location	of	the	peaks	of	insertion	times	may	move	in	time,	the	379	

sequence	of	peaks	is	not	much	affected	by	varying	assumptions	on	elimination	rates,	380	

therefore	validating	the	location	of	the	peaks.	Salient	peaks	are	evident	in	each	381	

family,	meaning	that	these	families	all	underwent	periods	of	rapid	amplification.	In	a	382	

scenario	assuming	a	higher	death	rate,	peaks	are	shifted	back	in	time;	this	is	a	383	

consequence	of	equation	(	2	).		384	

The	results	of	a	regression	analysis	for	the	association	between	LTR	divergence	and	385	

TE	attributes	are	reported	in	Table	1.	LTR	retrotransposons	on	chromosomes	2D,	386	

4D,	and	7D	have	significantly	larger	divergence	(and	thus	are	older)	as	compared	to	387	

those	on	chromosome	1D.	The	recombination	rate	has	a	significant	negative	effect,	388	

while	the	log	distance	to	the	nearest	gene	has	a	significant	positive	effect	on	389	

insertion	dates.	The	distance	to	the	nearest	gene	may	be	a	proxy	for	higher	390	

recombination	rates	near	genes,	which	leads	to	more	unequal	homologous	391	

recombination	events,	and	thus	more	frequent	removal	of	complete	elements	[16]	392	

and	younger	TEs.	The	predictor	recombination	rate	is	a	smooth	average	of	local	393	

recombination	rates	in	finer	scales.	On	average,	Gypsy	families	tended	to	be	older	394	

than	Copia	families.	395	

Discussion	396	

TEs	drive	the	evolution	of	genome	structure,	both	by	their	insertion	activities	and	by	397	

their	subsequent	contributions	as	sites	of	chromosome	breakage	and	ectopic	398	
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homologous	recombination	[1].		In	flowering	plants,	it	is	commonly	observed	that	399	

even	closely	related	lineages	can	have	dramatically	different	histories	of	TE	activity	400	

[5].			Beyond	restructuring	genomes,	TEs	also	provide	the	raw	material	for	401	

epigenetic	changes	and	most	other	changes	in	gene	regulation	[17],	as	well	as	402	

possibly	contributing	to	the	function	of	structural	components	like	centromeres	403	

[35].		Hence,	a	detailed	and	quantitatively	robust	analysis	of	TE	activity	is	warranted	404	

to	permit	the	understanding	of	TE	contributions	to	the	evolution	of	both	structure	405	

and	function	in	any	genome.			406	

LTR	retrotransposons	are	uniquely	well	suited	for	the	study	of	genome	dynamics	for	407	

several	reasons.		First,	the	identity	of	the	two	LTRs	at	the	time	of	any	insertion	event	408	

allows	the	subsequent	determination	of	the	insertion	date	by	quantifying	LTR	409	

divergences	within	a	single	element	[7].		Second,	the	transposition	mechanism	for	410	

LTR	retrotransposons	does	not	involve	element	deletion	from	the	donor	site,	so	that	411	

each	insertion	can	be	viewed	as	a	simple,	one	element,	amplification.		Third,	most	412	

LTR	retrotransposons	avoid	inserting	near	or	into	genes	[3,	36],	so	the	effects	of	413	

natural	selection	on	LTR	retrotransposon	retention	are	minimized,	although	not	414	

fully	neutralized.		Fourth,	the	processes	for	LTR	retrotransposon	sequence	removal	415	

(unequal	homologous	recombination	to	generate	solo	LTRs	and	illegitimate	416	

recombination)	have	been	identified	[8,	9],	so	they	can	be	factored	into	any	analysis	417	

of	LTR	retrotransposon	dynamics.			418	

The	advantages	of	our	proposed	models	over	an	estimate	based	on	the	previously	419	

utilized	histogram	of	divergence	are	twofold.	First,	our	insertion	rate	takes	into	420	
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account	the	deletion	process,	producing	more	realistic	estimates	that	puts	more	421	

weight	on	the	older	and	thus	harder	to	observe	elements	(Figure	2).	Modeling	the	422	

death	rate	has	a	significant	impact	in	the	insertion	rate	if	it	is	constant	or	near	423	

constant,	in	which	case	a	histogram	of	divergence	would	show	an	exponential	decay,	424	

as	demonstrated	in	a	simulated	scenario	(Figure	4)	and	as	empirically	shown	in	425	

other	species,	e.g.	rice	[10,	21].	Using	our	model,	one	can	formally	test	the	426	

hypothesis	that	the	insertion	rates	are	constant	over	time,	which	is	in	doubt	427	

especially	if	the	distribution	of	divergence	is	exponentially	decaying.	Second,	the	428	

randomness	of	mutations	are	taken	into	account,	which	results	in	more	pronounced	429	

peaks	in	the	age	distribution	estimates	(Figure	3),	indicating	the	insertion	rates	are	430	

more	concentrated	around	bursts	of	activities	than	what	appears	in	a	histogram	of	431	

divergence.			432	

User-friendly	and	fast	algorithms	for	the	proposed	analysis	are	conveniently	433	

available	in	the	R	package	TE	on	CRAN,	enabling	easy	comparisons	with	classical	434	

approaches.	The	package	TE	includes	EstDynamics	and	EstDynamics2	for	435	

estimating	insertion	rates	and	age	distributions,	where	the	former	also	tests	the	436	

hypothesis	of	a	constant	insertion	rate,	and	PlotFamilies	and	437	

SensitivityPlot	for	generating	additional	plots.		438	

For	a	pragmatic	estimation	of	the	death	rate	of	TEs,	we	employed	an	exponential	life	439	

span	assumption	[6,	10,	30]	that	amounts	to	a	constant	hazard	rate.	With	this	we	440	

produce	more	realistic	insertion	rate	estimates	than	those	obtained	from	previous	441	

methods.	Time-	or	age-varying	hazard	rate	estimates,	however,	require	the	442	
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observation	of	historical	TE	removal	events,	for	example	by	comparing	multiple	443	

species.	This	is	left	for	future	work	because	high	quality	data	informing	deletion	444	

events	is	unavailable	at	this	stage.	Our	current	framework	modelled	the	insertion	445	

rate	and	age	distributions	as	parametric,	allowing	for	fast	computation	without	446	

tuning	parameters,	while	a	possible	alternative	Bayesian	framework	modelling	the	447	

insertion	activities	as	a	latent	process	was	not	considered	here.	448	

Our	proposed	models	allow	for	time-varying	insertion	rates	that	are	appropriate	for	449	

dynamic	transposition	activity,	which	is	a	realistic	scenario	as	demonstrated	in	450	

simulations	[37]	and	by	the	LTR	retrotransposons	of	Ae.	tauschii,	where	recent	451	

insertions	are	near	absent	for	reasons	currently	unknown.	Our	time-dynamic	452	

modelling	approach	is	in	contrast	to	Promislow	et	al.	[23],	who	modelled	the	453	

insertion	activity	as	constant	over	time	or	two-stage,	and	Marchani	et	al.	[25],	who	454	

targeted	the	age	of	the	master	gene	for	a	retrotransposon	subfamily.	Previous	work	455	

[22,	24]	studied	the	TE	dynamics	of	species	with	small	genomes	and	multiple	456	

available	linages,	where	the	latter	associated	Helitron	element	ages	with	occupation	457	

frequency,	while	we	study	a	single	accession	of	Ae.	tauschii	with	a	large	genome	size	458	

(4.3	Gbp)	and	abundant	repeated	elements	(65.9%),	and	found	that	the	age	of	an	459	

LTR	retrotransposon	was	associated	with	variables	such	as	distance	to	the	nearest	460	

genes	and	recombination	rates.		461	

The	results	of	these	studies	indicate	that	a	robust	statistical	analysis	of	LTR	462	

retrotransposon	dynamics	is	feasible	with	the	appropriate	computational	strategy	463	

and	statistical	models.		As	predicted,	but	never	confirmed	rigorously,	our	analyses	464	
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indicate	bursts	of	LTR	retrotransposon	activity	that	are	family	specific,	and	we	show	465	

multiple	peaks	of	activity	even	within	a	single	family	history.		Survival	is	also	466	

modelled,	and	confirms	predictions	that	sites	near	genes	(where	negative	selection	467	

is	more	likely	to	act)	lose	LTR	retrotransposons	more	rapidly.		Similarly,	LTR	468	

retrotransposons	within	regions,	such	as	genic	areas,	that	exhibit	high	levels	of	469	

meiotic	recombination	(where	solo	LTR	generation	should	be	more	frequent)	also	470	

were	substantiated	as	sites	of	relatively	rapid	LTR	retrotransposon	loss.		Taken	in	471	

their	entirety,	these	studies	support	a	rigorous	approach	to	analysing	LTR	472	

retrotransposon	histories	across	plant	lineages,	thus	creating	the	opportunity	to	473	

investigate	these	dynamics	from	a	phylogenetically	powerful	perspective.			474	
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Tables	608	
	609	

Table	1.	Regression	coefficient	estimates.	610	

	 Value	 Std.	error	 t-value	 p-value	
Intercept	 0.0066	 0.0011	 5.91	 0.0000	
Chr2	 0.0006	 0.0003	 2.21	 0.0270	
Chr3	 0.0002	 0.0003	 0.81	 0.4160	
Chr4	 0.0007	 0.0003	 2.38	 0.0173	
Chr5	 0.0004	 0.0003	 1.21	 0.2267	
Chr6	 0.0007	 0.0003	 2.16	 0.0304	
Chr7	 0.0012	 0.0003	 4.02	 0.0001	
Recombination	rate	 -0.0007	 0.0002	 -3.84	 0.0001	
Log	distance	 0.0017	 0.0001	 24.22	 0.0000	
Gypsy	superfamily	 0.0031	 0.0012	 2.64	 0.0086	

	 	611	
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Figure	captions	612	
	613	

Figure	1.	The	distribution	of	the	number	of	mismatches,	when	all	elements	are	of	614	

length	500	bp	and	inserted	1	mya.		615	

	616	

Figure	2.	Simulated	distributions	of	the	number	of	mismatches,	where	each	element	617	

is	inserted	into	the	genome	uniformly	over	the	past	10	myr	and	has	a	half-life	of	1	618	

myr	and	LTR	length	equal	to	500	bp.	Left:	A	random	selection	of	100	such	elements	619	

that	survive	to	the	current	time.	Right:	The	estimated	insertion	rate	using	our	620	

proposed	method.	621	

	622	

	623	

Figure	3.	Distributional	fits	and	recovered	age	distribution	of	Gypsy	family	1,	Fatima	624	

(left),	produced	by	function	EstDynamics,	and	Gypsy	family	24,	Nusif	(right),	625	

produced	by	EstDynamics2.	The	black	lines	show	the	kernel	density	estimate	626	

(KDE,	solid),	the	negative	binomial	fit	by	MLE	(dashed),	and	the	recovered	age	627	

distribution	expressed	in	mismatch	time	scale	(dash-dot).	For	Gypsy	family	Nusif,	a	628	

negative	binomial	fit	shows	lack	of	fit	as	measured	by	Kullback–-Leibler	(KL)	629	

divergence	(see	Subsection	Lack-of-fit	of	Negative	Binomial	Fit).	Thus,	we	used	a	630	

mixture	of	two	negative	binomial	distributions	(red	dashed)	to	improve	the	fit,	for	631	

which	the	recovered	age	distribution	is	a	mixture	of	gamma	distributions	(red	dash-632	

dot).	633	
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	634	

	635	

Figure	4.	Age	distributions	(left	panels)	and	normalized	insertion	rates	(right	636	

panels)	in	the	35	largest	families.	Each	curve	represents	the	estimated	age	637	

distribution	(left)	or	insertion	rate	as	normalized	into	a	probability	density	function	638	

(right)	of	a	single	family.	Copia	families	are	shown	in	red	and	Gypsy	families	in	blue.	639	

Grey	triangles	on	the	x-axis	indicate	the	peak	locations.	The	peak	insertion	activities	640	

for	most	families	occur	around	1	mya,	ranging	from	0.064	mya	to	2.39	mya,	marked	641	

by	black	squares.	642	

	643	

	644	

Figure	5.	Sensitivity	analysis	for	the	1st,	3rd,	and	5th	largest	Copia	(left)	and	Gypsy	645	

(right)	families,	respectively.	For	each	family,	three	death	rate	scenarios	are	shown:	646	

Baseline	death	rates	𝜆 = 𝜆	(solid),	low	death	rates	𝜆 = 𝜆/2	(dashed),	and	high	death	647	

rates	𝜆 = 2𝜆	(dotted).	Short	horizontal	lines	on	each	curve	mark	the	times	when	the	648	

insertion	activities	are	half	as	strong	as	the	peak	intensity	in	each	scenario.	649	

	650	

	651	


