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In this work, a continuum theory for cohesive particles developed recently (Kellogg et al., 2017) is applied
to lightly-cohesive particles in an unbounded, gas-solid riser. The novelty of this recent theory is its fun-
damental incorporation of the effects of the granular temperature (i.e., continuum measure of impact
velocity) and the material and cohesion properties on the rates of aggregation and breakage of agglom-
erates. Here, we extend this theory to multiphase systems and place particular emphasis on its ability to
predict entrainment rate, as past empirical correlations vary by orders of magnitude when applied to the
same system (Chew et al., 2015). Specifically, continuum predictions of entrainment rates and agglomer-
ate fraction are compared with Discrete Element Method (DEM) simulations of lightly-cohesive particles
in a gas-solid flow. The agreement obtained for these quantities provides preliminary validation for the
use of the continuum theory for cohesive particles in gas-solid flows.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Much work has been done to predict the entrainment rate of
particles from the risers of fluidized beds. Empirical correlations
for the entrainment and transport disengagement height of parti-
cles in a fluidized bed give rise to predictions that vary many
orders of magnitude when applied to the same system, even for
non-cohesive particles (Cahyadi et al,, 2015; Chew et al., 2015).
Cohesive particles, which experience attraction from van der Waals
forces, liquid bridging or other sources of cohesion, may stick
together upon collision and form groups of particles called agglom-
erates (Castellanos, 2005). These agglomerates can decrease the
entrainment of particles in a fluidized bed (Geldart et al., 1984)
and further complicate the prediction of entrainment rates
(Motlagh et al., 2014). A physically-based description of the
entrainment and agglomeration of cohesive particles is needed
for improved accuracy of predictions.
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One approach to predicting the flows of cohesive particles is the
Discrete Element Method (DEM). In DEM, each particle is tracked
using Newton’s second law, allowing for a direct incorporation of
cohesive forces between particles (Mikami et al., 1998). Although
DEM has been widely applied to flows of cohesive particles (e.g.
(Anand et al., 2009; Chaudhuri et al., 2006; Figueroa et al., 2009;
Galvin and Benyahia, 2014; Hou et al., 2012; Liu et al.,, 2016a,
2016Db)), when compared to the continuum theory, DEM has a large
computational overhead (van der Hoef et al., 2008). This computa-
tional overhead prevents DEM from being directly applied to pre-
dict the behavior of commercial-scale fluidized beds and risers,
unlike continuum theory.

In recent work, we developed a continuum theory for rapid
cohesive-particle flows based on first principles (Kellogg et al.,
2017) - i.e., all inputs are physically based and no adjustable
parameters are utilized. This continuum theory is composed of
two coupled parts. The first part is a population balance, in which
the number density of each agglomerate size is tracked, with
changes arising from sink and source terms that represent the birth
and death of an agglomerate size due to aggregation and breakage.



250

The novel aspect of this continuum theory is that it utilizes
fundamentally-based success factors of agglomeration and break-
age (fractions of collisions that results in agglomeration and break-
age) that depend on particle properties and the granular
temperature, Ts, which is proportional to the variance of particle
velocities from the local mean velocity (T, =m((v — u)?)/3). Sec-
ondly, the new continuum theory for cohesive particles utilizes
kinetic-theory-based closures for the transport coefficients in the
granular momentum and energy balances. Specifically, the theory
makes use of an effective coefficient of restitution (the ratio
between post and pre-collisional impact velocities) in these clo-
sures to account for the additional collisional dissipation that cohe-
sive particles experience relative to non-cohesive particles. This
new continuum theory for cohesive particles was shown to per-
form well in a steady state, gravity-free, granular (no gas), simple
shear flow and a granular homogeneous cooling system for lightly
cohesive particles - i.e., mostly singlets (primary particles) and
doublets (two-particle agglomerates).

In the current work, the continuum theory for cohesive particles
that was previously developed for granular systems (Kellogg et al.,
2017) is extended to gas-solids systems and then applied to an
unbounded riser with lightly-cohesive particles. In this riser, grav-
ity exerts a downward force on the particles and an upward gas
flow exerts an upward drag force on the particles. Particular
emphasis is placed on the ability of the new theory to predict
entrainment rates given the orders-of-magnitude variations
observed between previous correlations (Chew et al., 2015). This
ability of the extended theory is tested via direct comparison with
DEM simulations of the same unbounded riser.

2. Methods
2.1. Continuum

While the continuum theory for cohesive particles is generally
applicable to various material properties, sources of cohesion,
and systems, the particles considered here are lightly-cohesive.
Generally, the particles only present themselves as singlets (pri-
mary particles) and doublets (two-particle agglomerates, so only
singlets and doublets are considered here). The resulting popula-
tion balance equations are (Kellogg et al., 2017)

8n1

Bt + V- (uing) = —2N11Sagg 1.1 + 2N12Spreak 12 (1)
on,
T V- (Wanz) = N11Sagg 1.1 — N1.2Sbreak.1.2 (2)

Table 1
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where n; and n, are the number density of singlets and doublets,
respectively, and u is the velocity of the respective agglomerate
size. N71 and Ny, are the collision frequencies of singlets with other
singlets and doublets, respectively. Syge1,1 is the success factor of
agglomeration for singlet-singlet collisions (the fraction of colli-
sions that result in agglomeration), and Spyeqk 1,2 is the success factor
of breakage of singlet-doublet collisions (the fraction of collisions
that result in breakage). The closures for the success factors and col-
lision frequencies are summarized in Table 1 (Kellogg et al., 2017).
The term —2Nj 1S4g¢1.1 in Eq. (1) is the death rate of singlets due to
agglomeration, and the term N 3Spreqk,12 in Eq. (1) is the birth rate
of singlets from the breakage of doublets due to collisions with sin-
glets. The term Nj 1Sag¢,1,1 in Eq. (2) represents the birth rate of dou-
blets from agglomeration of singlets and the term —Nj Spreqk,12 in
Eq. (2) represents the death rate of doublets due to collisions with
singlets. The rate of breakage of doublets from collisions with other
doublets is neglected due to the lightly-cohesive assumption - i.e.,
such collisions are infrequent relative to singlet-singlet and singlet-
doublet collisions.

To calculate the success factors of agglomeration and breakage
in Table 1, particle- and cohesion-specific inputs are required. First,
a critical velocity of agglomeration v, is needed, which corre-
sponds to the velocity below which all collisions result in agglom-
eration. The critical velocity of agglomeration was varied in this
work to explore particles subject to different amounts of cohesion.
Additionally, a critical velocity of breakage ), ., which represents
the velocity above which collisions with agglomerates will result in
breakage of the agglomerate is needed. Finally, a collision cylinder
diameter d,,, which gives the sweep area of a pair of colliding
agglomerates/primary particles and is used to calculate the colli-
sion frequency, is required. These physical inputs (ycrie Upcries
and d; ,) were determined in previous work from simple shear flow
simulations of 64 pm diameter glass beads undergoing van der
Waals cohesion and are listed in Table 2 (Kellogg et al., 2017).
The van der Waals cohesion model used in said DEM simulations
is described below in Eqgs. (34) and (35). Simple shear flow simula-
tions were used since the inputs (critical velocities and collision
diameter) are sensitive to collision orientation, and the distribution

Table 2
Continuum theory inputs determined from DEM (Kellogg et al., 2017).

Parameter Value

Non-dimensionalized critical velocity of breakage
Non-dimensionalized collision cylinder diameter

vb.crit,l,z/?/g,c,-im‘] =1.502
di2/di = 12155

Auxiliary equations for continuum theory (Kellogg et al., 2017).
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of impact orientations in simple shear flow is similar to that
observed in the unbounded riser flow (Kellogg et al., 2017; Liu
et al., 2017).

Note that although the population balances solved in the cur-
rent work are identical to those considered in previous work
(Kellogg et al., 2017), a momentum balance is solved for each
agglomerate size in the current work, whereas a single momentum
balance was considered in previous work. This new aspect traces to
the extension of the cohesive continuum theory to a gas-solid flow.
More specifically, the presence of the gas phase necessitates a gas-
solid drag term in the solids-phase momentum balance. Since dif-
ferent agglomerate sizes experience different amounts of drag and
consequently have different slip velocities (difference of velocity
between an agglomerate size and the gas), a separate momentum
balance needs to be solved for each agglomerate size. Additionally,
the difference in relative velocities between the agglomerate sizes
leads to terms associated with solids-solids drag, which also was
not present in previous systems explored (simple shear flow and
homogeneous cooling of granular materials). The closures for the
momentum balances used here were derived for non-cohesive
spheres of different sizes (polydispersity), but are being applied
now to cohesive, non-spherical agglomerates as a first approxima-
tion. The effect of cohesion causing additional dissipation during
collisions is captured in these momentum balance closures used
here by utilizing the effective coefficient of restitution (e in the
calculation of these closures. The effect of the non-spherical nature
of agglomerates is not accounted for in the momentum balance
closures originally derived for non-cohesive spheres. No kinetic-
theory-based closures account for non-spherical particles, how-
ever, so this approximation is necessary. The momentum balances
are (Iddir and Arastoopour, 2005)

Ammu) 47 (mimugay) = =V - (PL+7) + mymg — & AP /Hj
+2U3N1 2Spreak 12 — 2W1N11Sagg 1.1 + Faragg1 + Farag2.1
(17)

d(mynyuy)

T"P V- (mznzuzuz) =-V. (PI + T) +Mmyn,g — EQAPg/Hj
*zuzNLZSbreak,l.Z + 2“1 N1.1Sagg‘l,1 + Fdrag,g,z - Fdrag,z,l
(18)

where P is the granular pressure, I is the identity matrix, and t is the
solids-phase stress. The single granular temperature Ts; was used as
the granular temperature of the singlets T; and the granular tem-
perature of the doublets T, in the closures for the solids stress
and pressure from Iddir and Arastoopour (2005). In Eqs. (17) and
(18), the first term on the left side is the transient term, and the sec-
ond term on the left side is the convective term. On the right side of
these equations, the first term is the divergence of stresses (diffu-
sion), the second term represents gravitational forces, the third
term incorporates the gas-phase pressure drop induced on the sys-
tem, the fourth term is the gas-solid drag force, the fifth term is the
(solids-solids) drag force due to collisions between singlets and
doublets, the sixth term is the exchange of momentum due to
breakage, and the last term is the exchange of momentum due to
aggregation. Since few doublets were observed in the system, con-
stitutive relations for these terms were approximated using clo-
sures derived from monodisperse kinetic theory (Garzé and Dufty,
1999) using the total (local) solids volume fraction, singlet diameter
and the effective coefficient of restitution (as detailed below). g is
the gravitational vector, which takes a value of —9.81 m/s? in the
y-direction (upward). The term APg/H was used to set the
gas-phase pressure drop across the system, which was equal to
the weight of the system divided by the density (i.e. APg/H=
MMy + Namy + pgeg Where & is the gas volume fraction). The terms
2u1N1,1Sagg1,1 and 2UaN1 2Sprear,1,2 Tepresent the transfer of momen-

tum from one agglomerate size to another during aggregation and
breakage, respectively. The term Fgraggi represents gas-solid drag,
and is given by:

Fdrag,g,i = Kg.i (ug - ui) (19)

where Kg; is the drag coefficient given by an extension (Benyahia
et al., 2006) of that originally proposed by Koch, Hill, and Ladd
(Hill et al., 2001) with the total solid volume fraction used for the
solid volume fraction. The volume equivalent diameter (the diame-
ter of a sphere with an equivalent volume as the agglomerate) of
each agglomerate size is used for the diameter. These closures are
summarized in Appendix A. The solids drag represents momentum
transfer between agglomerate sizes due to collisions of agglomer-
ates of different sizes. These closures were derived for spheres of
different sizes, but are used here for non-spherical agglomerates
(assumed to be spherical) of different sizes. The closures are given
by (Iddir and Arastoopour, 2005):

Farag21 = Ko.1 (U2 — uy) (20)
where
d1,2 mym; my }
Ky = 4 mam, 8o(1+ {eq))nin T, Ryvm (21)
Ry— ' (22)
2A12D5,
my +myp
App =——=,and 23
0= (23)
mym
Dy = L2 (24)

2(m1 + mz)Ts

where go is the radial distribution function given in Eq. (14)
(Mansoori, 1971) and Ts is the granular temperature. Eqgs. (20)-
(24) were derived for non-cohesive spheres, but are being applied
here to agglomerates.

In order to solve for the granular temperature Ty appearing in
the closures for the population and momentum balances, a granu-
lar energy balance is solved. Granular energy refers to the random,
fluctuating kinetic energy associated with particle motion varying
from the mean motion. Here, since most of the particles are in
singlets, a single granular energy balance is solved for granular
temperature T (Iddir and Arastoopour, 2005; Kellogg et al., 2017)

d(3nTy) 3
it +V- <§HT5U]>
=—PI+7):Vu; - V-q—(Ts + (11 —up) - Fdrag.Z.l (25)

where n is the total number density and closures for q and { come
from a monodisperse kinetic theory using the effective coefficient of
restitution (e, (Eq. (9)), total solid volume fraction, and singlet
diameter (Garz6 and Dufty, 1999; Kellogg et al., 2017). The first
term on the left side of Eq. (25) is represents the change of granular
energy with time, and the second term represents the convection of
granular energy. The first term on the right side of the equation is
the generation of granular energy due to shear, the second term is
the diffusion of granular energy, the third term is the dissipation
of granular energy due to inelastic collisions. The final term in Eq.
(25) is the generation of granular energy due to differences in rela-
tive velocity between the different agglomerate sizes. This final
term was not included in previous work (Kellogg et al., 2017) since
the singlets and doublets all travelled with the same velocity. The
gas phase included in the current work leads to different agglomer-
ate sizes having different drag and thus a nonzero relative velocity
between them, necessitating the final term in Eq. (25). Realistically,
the granular temperature of the singlets T, and the doublets T, will
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be unequal. Again, since the majority of the particles are in singlets,
a single granular temperature T; which will be closer to the singlet
granular temperature is considered. The main potential ramification
of this assumption is that the singlet-doublet success factor of
breakage, as well as the singlet-doublet collision frequency, which
are dependent on the granular temperature of the doublet, may
be slightly inaccurate. These two terms appear in the population
balance in the rate of breakage of doublets terms.

Finally, for the gas phase, the governing mass and momentum
balances are (Gidaspow, 1994)

fy(p{)_gfa V- (pyet) =0 (26)

8<pg8gug>
—Qr T V. (pgsgugug)
==V (Pgl + .uvug) + SgAPg/Hj - Sgpgg - Fdrag,g,l - Fdrag,g,z
(27)

In Egs. (26) and (27), the left side represents acceleration. In Eq.
(27), on the right side, the first term is the divergence of the stress
tensor and gives diffusion of momentum, the second term institutes
the pressure drop, the third term represents gravity, and the last
two terms represent the drag force exerted on the singlets and dou-
blets respectively.

2.2. DEM

For DEM, the position x and velocity v of each particle are
updated according to Newton’s second law of motion, using Euler
integration. The forces acting on the particles are given by

dv
F= ma = Feont + Feon + Farag + Fg (28)
where F is the total force, Feon is the cohesive force, Feone iS the con-
tact force, Farag is the drag force and Fy is the gravitational force act-
ing on a given particle. The Hertzian contact expression was used to
give the magnitude of the contact force:

4B /Re 32 | a5
Fcont—{Té +]7d_z 620 (29)
0 60<0
where
Eyp = EE (30)
E(1+92) +E(1+})
_ RR
eff 7Ri+Rj (3])
1
7= -2,/ 15meﬂEeﬁjofln(e,m) 51/4 (32)
3y/72 + In? (i)
__miny
Moy = o (33)

and ¢ is the overlap of contacting particles, E is the Young’s modu-
lus, v is the Poisson ratio, R is the particle radius, e;;; is the intrinsic
coefficient of restitution, and m is the particle mass. The drag force
was calculated using an extension (Benyahia et al., 2006) of the
Koch-Hill-Ladd (Hill et al., 2001) drag law using the primary particle
diameter and the local solid volume fraction, as given in Eq. (19)
above. Finally, the cohesion was calculated using the Rabinovich
expression for cohesive force (Rabinovich et al., 2000) extended

for interactions between two particle surfaces that each have two
scales of roughness (Liu et al., 2016b)

RiRj Rier
7t )
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(34)

Fcnh(D>Dmin ) ==
6 (Ri+R)) (D+Yu + Y +Yis+Yjs

Ritjs TR
+ 5+ 3
(Ri+15)D+Yu +Yie)™  (ru+R)(D+Yis + Y +¥ss)

Tl TitTjs
3t 2
(ri+1)(D+yis +¥s)”  (ri +155)(D+Yis)

+

N TisR; L TisTiL TisTis
(ris + R)) (D +yu Jryjs)z (ru+1)(D +Yjs)2 (ris +135)D*

where
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and /4 is the wavelength of the roughness, k; = 1.817 is a geometric
constant, rmsy, is the root mean square height of asperities, ry; is the
radius of asperities, and yy, is the asperity height, with subscript k
taking values of i or j for different particles, and subscript [ taking
values of S or L for small or large scale asperities. A is the Hamaker
constant, R is the particle radius, D is the separation distance
between the highest asperity of the two particles, and D,,;, is the
cut-off distance, frequently taken to be the intermolecular separa-
tion distance. The cut-off distance represents the separation
between surfaces at which the cohesive force is capped in order
to prevent an infinite cohesive force for D = 0. In other words, when
particles are separated by less than the minimum cut off distance,

Fcoh(D < Dmin) = Fcoh(Dmin) (35)

The particle properties used in this study are summarized in
Table 3. The Poisson ratio, primary particle diameter, particle den-
sity, coefficient of restitution, and small and large scale roughness
and wavelengths are characteristic of silica glass particles. The
Young’s modulus chosen here is significantly smaller than the lit-
erature value for glass and was chosen to enhance computational
efficiency (Liu et al.,, 2016c). The gas properties are characteristic
of air. The system size was chosen so that the DEM simulations
would have on the order of 10,000 particles so the system was
small enough to minimize hydrodynamic instabilities (clustering)
but large enough to ensure good statistics.

In the DEM simulation, the gas phase continuity equation was
identical to Eq. (26) used in the continuum simulations. The

Table 3

Particle, gas, and system properties used in simulations.
Property Symbol Value Units
Young’s modulus E 10 MPa
Poisson ratio v 0.3 -
Diameter d 64 pm
Particle density Ds 2500 kg/m>
Intrinsic coefficient of restitution Cint 0.97 -
Large scale wavelength AL 2671 nm
Small scale wavelength is 369 nm
Large scale roughness rms; 2217 nm
Small scale roughness rmss 2411 nm
Gas viscosity u 1.8335-107° Pas
Gas density Pg 0.97 kg/m>
Target gas velocity Ugy 0.515 m/s
System width and depth =L 0.3234375 cm
System height H 1.4375 cm
Grid size Ax[d 2 -
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momentum balance used was similar to the Eq. (27) used in the
continuum simulations, except without the term AP,/H.

2.3. Unbounded riser system

A schematic of the unbounded riser geometry is shown in Fig. 1,
with dimensions summarized in Table 3. All side walls were peri-
odic for both the gas and solid phases in both the DEM and contin-
uum simulations. The DEM simulations were performed using the
MFiX 2016-1 multiphase computational fluid dynamics package
(Syamlal et al., 1993). In the DEM simulations, the top and bottom
boundaries were periodic for the solids phase. The pressure at the
bottom boundary for the gas phase was adjusted dynamically to
achieve the desired gas flow rate summarized in Table 3. The top
boundary of the DEM simulations for the gas phase was a pressure
outlet. The continuum simulations were carried out independently
from the DEM simulations using ANSYS Fluent 17.0. In the contin-
uum simulations, periodic boundary conditions were used for both
the gas and solids phases on the top and bottom boundaries with a
pressure gradient applied throughout the system in the upwards y-
direction. This pressure gradient was equal to the weight of the

v(cm/s)
40
35
30
25
20
15
10

Fig. 1. Schematic of riser flow used in DEM simulations.

system divided by the cross-sectional area, such that the system
did not accelerate. Since fully periodic boundary conditions were
used in the continuum theory, the system can be viewed as a mov-
ing reference frame. In order to compare the results from a moving
reference (continuum theory) directly with that of the fixed refer-
ence frame (DEM), the continuum velocities for the gas, singlets,
and doublets were all adjusted by the same amount such that
the DEM and continuum gas velocities were equal.

Both the DEM and continuum simulations were initialized with
no particles in agglomerates, and with zero mean velocity for the
gas and solids. The initial positions of the DEM particles were ran-
dom, while the continuum solid volume fraction was uniform. The
solid volume fraction used in the continuum predictions was arbi-
trary, and the corresponding number of particles were modeled in
the DEM simulations. The initial granular temperature of the con-
tinuum predictions was set to Tsm; =10"%m?/s2. Simulations
were run for 2 s, as the gas and solid velocities and agglomerate
fractions were found to reach steady state after 1 s. Unless noted
otherwise, the error bars on DEM results show the standard devi-
ation over the last second of simulation time when the system
was at steady state. The continuum results lack error bars as they
show the final steady-state solution, which does not vary.

In Case I, the solid volume fraction was fixed at & = 0.01 and the
Hamaker constant A was changed to change the cohesive force (Eq.
(34)) between particles. Changing the Hamaker constant changed
the critical velocity of agglomeration cir11 (Which took values
of 0.22-0.59 cm/s). The critical velocity of agglomeration was
determined by performing DEM simulations of two particle colli-
sions. In Case II, the critical velocity of agglomeration was fixed
at 0.34 and 0.59 cm/s, and the solid volume fraction was varied
from & = 0.0025 to 0.04. These same conditions were used in both
the DEM simulations and continuum theory predictions.

3. Results and discussion

For Case I where the level of cohesion (i.e., critical velocity of
agglomeration) is varied, the DEM results and continuum predic-
tions for the fraction of particles in agglomerates, and the entrain-
ment rate are shown in Fig. 2a and b respectively. The fractions of
particles in each agglomerate size observed in DEM are shown in
Fig. 2c. First, we consider the fraction of particle in agglomerates
(Fig. 2a). Qualitatively, both the DEM simulations and continuum
predictions indicate that as the critical velocity of agglomeration
(cohesion level) increases, the fraction of particles in agglomerates
increases. Namely, as the particles are made more cohesive, colli-
sions are more likely to result in aggregation and less likely to
result in breakage, therefore a higher fraction of particles
agglomerate.

From a quantitative standpoint, the continuum theory under-
predicts the agglomerate fraction by up to 45% over the critical
velocities studied. One source of error is that the DEM simulations
allow agglomerates larger than doublets to form, whereas the con-
tinuum theory as applied here incorporates only singlets and dou-
blets. Specifically, larger agglomerates than doublets are forming in
the DEM simulations at higher critical velocities, but not at lower
critical velocities, as seen in Fig. 2c. This increase in larger agglom-
erates corresponds to the increasing deviation in fraction of parti-
cles in agglomerates observed between DEM and the continuum
theory in Fig. 2a, suggesting that the presence of agglomerates lar-
ger than doublets contribute to the deviation.

Next, we consider the entrainment rate. Qualitatively, as the
critical velocity of aggregation (cohesion level) increases, the
entrainment rate remains relatively constant for DEM and
decreases slightly for the continuum theory. In the continuum the-
ory, an agglomerate is treated as a single spherical particle with an
effective diameter larger than the primary particle diameter. This
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Fig. 2. Case I: constant volume fraction 0.01 and varying critical velocities. (a) Agglomerate fraction observed in DEM and continuum predictions, (b) entrainment rate
observed in DEM and continuum predictions, and (c) fraction of particles in various agglomerate sizes observed in DEM. Error bars show 95% confidence interval of five DEM

repeats.

effective diameter leads to a larger drag (equation for K in Appen-
dix A) than would be exerted on a primary particle, but less than
the drag on two primary particles. Therefore, when particles
agglomerate, they experience a net decrease in drag, an increase
in terminal velocity and hence a decrease in entrainment rate. In
DEM simulations, however, the diameter of particles in agglomer-
ates is not changed in the drag law, but the presence of agglomer-
ates is instead accounted for by the increase in the local solid
volume fraction. The effective particle diameter has a greater effect
on the drag reduction of agglomerates than the local solid volume
fraction (equation for K, in Appendix A), which explains why the
DEM entrainment rate remains relatively constant while the con-
tinuum theory exhibits a decrease in entrainment rate. A brief
exploration was performed to determine the entrainment rate pre-
dicted by the continuum theory when the effective diameter of
agglomerates was set equal to that of singlets. The results of this
exploration (not shown) indicated that the continuum theory
under-predicted the DEM entrainment rate by 3-7%, a marginal
improvement to the over-prediction shown in Fig. 2b.

From a quantitative standpoint, the continuum theory over-
predicts the DEM entrainment rate by less than 15% over the range
of critical velocities studied here. Note that previous predictions of
entrainment rates from empirical correlations vary by orders of
magnitude (Chew et al.,, 2015). The relatively good quantitative
agreement of agglomerate fraction and entrainment rate between
the continuum theory and DEM simulations observed here pro-
vides preliminary support for the validity of using an extension
of the recent continuum theory for cohesive particles (Kellogg
et al.,, 2017) applied to gas-solid flow.

Next, we consider the impact of changing the solids concentra-
tion while maintaining a constant level of cohesion, as shown in
Fig. 3. The fraction of particles in agglomerates is given in Fig. 3a
and c for different levels of cohesion. A non-monotonic trend of
agglomerate fraction with increasing solid volume fraction occurs.
Two competing mechanisms lead to this behavior, as detailed
below.

First, the increasing solid volume fraction directly affects
agglomeration and breakage by increasing the collision frequencies
N;1 and Ny (Egs. (5) and (6)) in Egs. (1) and (2). This increase of
collision frequency leads to an increase in aggregation and an
increase in breakage (terms on right side of Egs. (1) and (2)). The
increase in agglomeration is greater than the increase in breakage
since it becomes increasingly difficult to break up agglomerates as
they grow in size since larger agglomerates can undergo internal
dissipation and rearranging without breakage (Ringl et al., 2012).

This increase in agglomeration relative to breakage leads to an
increase the fraction of particles in agglomerates.

Second, the increasing solid volume fraction indirectly affects
agglomeration and breakage by affecting the granular temperature.
As solids volume fraction increases, the collision frequency
increases and an increase in generation of granular energy from
collisional generation between primary particles and doublets
(the (u; — uy)-Farag2,1 term in Eq. (25)) results. Namely, because
agglomerates have a higher slip velocity (relative velocity between
solid and gas phases) compared to primary particles, the primary
particles move upwards faster than agglomerates. The resulting
collisions increase with solid volume fraction, thereby leading to
a monotonically increasing granular temperature for DEM simula-
tions and an increasing temperature for solid volume fractions of
&>0.005 for the continuum theory (see Fig. 4). Although the
increased granular temperature further increases the collision fre-
quencies Ny and N; > (Egs. (5) and (6)), it also decreases the suc-
cess factor of aggregation Sgge 11 and increases the success factor
of breakage Spreqr.1.2 (Eqs. (3) and (4)) in Egs. (1) and (2) (i.e. higher
impact velocities, or granular temperature, decrease the likelihood
of aggregation and increase the likelihood of breakage, leading to a
smaller fraction of particles of particles in agglomerates). This
behavior is dominant on the left of the minimum (& = 0.01) in plots
3a and 3c in DEM. Exceptions only occur in the continuum predic-
tion at the two lowest solid volume fractions in Fig. 3a and c, where
instabilities cause a different behavior, as discussed below. For the
remaining systems explored, which are all stable, the continuum
theory under-predicts the agglomerate fraction by less than 75%.

Evidence for the instabilities predicted by the continuum theory
at low solid concentrations and a critical velocity of 0.34 cm/s is
shown in Fig. 4b and c. Namely, instabilities are not observed at
higher solid volume fractions (Fig. 4b), but are seen at lower solid
volume fractions (Fig. 4c). Similar unstable behavior is observed for
a critical velocity of 0.59 cm/s (figure not shown for the sake of
brevity), though the instabilities and corresponding increase in
granular temperature are less pronounced. These instabilities are
not present in any of the DEM simulations. The instabilities
observed in the continuum simulations generate local gradients
of solid velocity and thus increase shear, thereby leading to an
increased generation of granular energy. This high granular energy
corresponds to higher impact velocities upon collision, and hence
the low agglomerate fractions at the two lowest solid volume frac-
tions in Fig. 3c. At higher solid volume fractions (& > 0.005), no
instabilities exist, so the granular temperature is not inflated by
this mechanism.
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Next, we consider the entrainment rate. Fig. 3b and d show the
entrainment rate increasing with solid volume fraction. This
behavior is expected since entrainment rate is directly propor-
tional to the solid volume fraction (i.e. entrainment rate Js = psé&sus).
Moreover, as solid volume fraction is increased, ug increases
slightly as well due to increasing drag and decreased terminal
(slip) velocity at higher solid volume fractions. These two effects
both lead to an increase in entrainment rate, though the latter
dependence of ug on & is weak compared to the direct proportion-
ality between J; and &;. Quantitatively, the entrainment rate pre-
dicted by the continuum theory is in good agreement with that
observed in the DEM simulations. For stable systems, the contin-
uum theory over-predicts the DEM data by less than 35%. This
agreement is a substantial improvement to the orders of magni-
tude spanned by the predictions of past entrainment rate correla-
tions (Chew et al., 2015).

Finally, the presence of agglomerates larger than doublets are a
source of discrepancy between the continuum theory and DEM for
both agglomerate fraction and entrainment rate. Agglomerates lar-
ger than doublets are not accounted for in the continuum theory,
but are observed in the DEM simulations, as shown in Fig. 5. A
non-monotonic trend is observed in mean agglomerate size. Simi-
lar to the behavior for fraction of particles in agglomerates (Fig. 3a
and c), two mechanisms compete to cause the non-monotonic
trend of mean agglomerate size. First, increased solid volume frac-
tion leads to increased collision frequency and increased agglomer-
ation and breakage. The increase in agglomeration will be greater
than the increase in breakage, since large agglomerates form more
readily than they break. Second, increased solid volume fraction
leads to increased generation of granular energy due to collisions
between primary particles and agglomerates. Accordingly, the suc-
cess factor of breakage increases and the success factor of aggrega-
tion decreases, leading to more breakage and less aggregation and
smaller agglomerates.

4. Conclusions

The recent continuum theory for cohesive particles (Kellogg
et al., 2017), which was previously explored in granular systems,
was extended to a gas-solid flow in the current work. The agree-
ment between the continuum theory and DEM simulations of the
unbounded riser explored here provides support for the validity
of the continuum theory for cohesive particles in gas-solid flows.
Agglomerate fraction was observed to increase with increasing
critical velocity (cohesion), as expected. The continuum theory

over-predicts the agglomerate fraction observed in DEM by less
than 15% for these cases. As solid volume fraction was increased,
a non-monotonic trend of agglomerate fraction was observed.
The non-monotonic trend was traced to two competing mecha-
nisms. First, increasing solid volume fraction increases the granular
temperature (impact velocity between colliding particles), which
causes a decrease of the fraction of particles in agglomerates. Next,
at higher solid volume fractions, larger agglomerates form that are
harder to break than smaller agglomerates, thereby increasing the
fraction of particles in agglomerates. For these cases, the contin-
uum theory generally under-predicts the agglomerate fraction by
less than 75% for the cases that were stable in the both the contin-
uum and DEM simulations.

For the cases where the critical velocity was varied, the contin-
uum theory shows a decrease of entrainment rate with increasing
critical velocity, while the DEM simulations show a relatively con-
stant entrainment rate. The entrainment rate remains constant
since the drag reduction (and corresponding decrease in entrain-
ment rate) due to agglomeration in DEM was less than that in
the continuum theory predictions, since agglomerates were trea-
ted differently in the drag laws of each method (i.e., discrete vs.
continuum). The continuum theory over-predicts the DEM entrain-
ment rate within 15%.

For the cases where the solid volume fraction was varied, the
entrainment rate increases nearly linearly as solid volume fraction
increases in both the continuum theory predictions and DEM sim-
ulations. This nearly linear relationship happens since at the solid
volume fractions explored here (€ = 0.0025-0.04), the solids veloc-
ity depends weakly on solid volume fraction. The predictions for
the entrainment rate are much closer (<35% difference) than differ-
ences found among existing correlations (orders-of-magnitude dif-
ferences). At the lowest solid volume fractions explored
(&s=0.0025-0.005), instabilities are observed in the continuum
theory. These instabilities lead to an increase in granular tempera-
ture that is not observed in the (stable) DEM simulations, and
hence a poor prediction of the entrainment rate and agglomerate
fraction from the continuum theory.

One final source of error that should be noted is that the contin-
uum theory only considers singlets and doublets, whereas larger
agglomerates are observed to form in the DEM simulations. This
affects the accuracy of the predictions of both the entrainment rate
and agglomerate fraction.

Future work should include moderately-cohesive particles that
form larger agglomerates, and for those larger agglomerates to be
included in the continuum theory. Additionally, systems with walls
and consequently gradients in the mean flow variables should be
considered. The continuum theory has not yet been applied to sys-
tems with such gradients, and consequently various terms in the
theory (e.g. diffusion of granular energy) have not been tested.
Finally, the validity of continuum theory should be validated via
comparison with experimental flows.
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Appendix A. . Drag closures from extension (Hill et al., 2001) of
Koch-Hill-Ladd (Benyahia et al., 2006).
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