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� A novel continuum theory accurately predicts aggregation in a gas-solid flow.

� The continuum theory accurately predicts entrainment of cohesive particles.

� Aggregation leads to increased granular temperature and breakup of agglomerates.
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a b s t r a c t

In this work, a continuum theory for cohesive particles developed recently (Kellogg et al., 2017) is applied

to lightly-cohesive particles in an unbounded, gas-solid riser. The novelty of this recent theory is its fun-

damental incorporation of the effects of the granular temperature (i.e., continuum measure of impact

velocity) and the material and cohesion properties on the rates of aggregation and breakage of agglom-

erates. Here, we extend this theory to multiphase systems and place particular emphasis on its ability to

predict entrainment rate, as past empirical correlations vary by orders of magnitude when applied to the

same system (Chew et al., 2015). Specifically, continuum predictions of entrainment rates and agglomer-

ate fraction are compared with Discrete Element Method (DEM) simulations of lightly-cohesive particles

in a gas-solid flow. The agreement obtained for these quantities provides preliminary validation for the

use of the continuum theory for cohesive particles in gas-solid flows.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Much work has been done to predict the entrainment rate of

particles from the risers of fluidized beds. Empirical correlations

for the entrainment and transport disengagement height of parti-

cles in a fluidized bed give rise to predictions that vary many

orders of magnitude when applied to the same system, even for

non-cohesive particles (Cahyadi et al., 2015; Chew et al., 2015).

Cohesive particles, which experience attraction from van derWaals

forces, liquid bridging or other sources of cohesion, may stick

together upon collision and form groups of particles called agglom-

erates (Castellanos, 2005). These agglomerates can decrease the

entrainment of particles in a fluidized bed (Geldart et al., 1984)

and further complicate the prediction of entrainment rates

(Motlagh et al., 2014). A physically-based description of the

entrainment and agglomeration of cohesive particles is needed

for improved accuracy of predictions.

One approach to predicting the flows of cohesive particles is the

Discrete Element Method (DEM). In DEM, each particle is tracked

using Newton’s second law, allowing for a direct incorporation of

cohesive forces between particles (Mikami et al., 1998). Although

DEM has been widely applied to flows of cohesive particles (e.g.

(Anand et al., 2009; Chaudhuri et al., 2006; Figueroa et al., 2009;

Galvin and Benyahia, 2014; Hou et al., 2012; Liu et al., 2016a,

2016b)), when compared to the continuum theory, DEM has a large

computational overhead (van der Hoef et al., 2008). This computa-

tional overhead prevents DEM from being directly applied to pre-

dict the behavior of commercial-scale fluidized beds and risers,

unlike continuum theory.

In recent work, we developed a continuum theory for rapid

cohesive-particle flows based on first principles (Kellogg et al.,

2017) – i.e., all inputs are physically based and no adjustable

parameters are utilized. This continuum theory is composed of

two coupled parts. The first part is a population balance, in which

the number density of each agglomerate size is tracked, with

changes arising from sink and source terms that represent the birth

and death of an agglomerate size due to aggregation and breakage.
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The novel aspect of this continuum theory is that it utilizes

fundamentally-based success factors of agglomeration and break-

age (fractions of collisions that results in agglomeration and break-

age) that depend on particle properties and the granular

temperature, Ts, which is proportional to the variance of particle

velocities from the local mean velocity (Ts =mh(v � u)2i/3). Sec-
ondly, the new continuum theory for cohesive particles utilizes

kinetic-theory-based closures for the transport coefficients in the

granular momentum and energy balances. Specifically, the theory

makes use of an effective coefficient of restitution (the ratio

between post and pre-collisional impact velocities) in these clo-

sures to account for the additional collisional dissipation that cohe-

sive particles experience relative to non-cohesive particles. This

new continuum theory for cohesive particles was shown to per-

form well in a steady state, gravity-free, granular (no gas), simple

shear flow and a granular homogeneous cooling system for lightly

cohesive particles – i.e., mostly singlets (primary particles) and

doublets (two-particle agglomerates).

In the current work, the continuum theory for cohesive particles

that was previously developed for granular systems (Kellogg et al.,

2017) is extended to gas-solids systems and then applied to an

unbounded riser with lightly-cohesive particles. In this riser, grav-

ity exerts a downward force on the particles and an upward gas

flow exerts an upward drag force on the particles. Particular

emphasis is placed on the ability of the new theory to predict

entrainment rates given the orders-of-magnitude variations

observed between previous correlations (Chew et al., 2015). This

ability of the extended theory is tested via direct comparison with

DEM simulations of the same unbounded riser.

2. Methods

2.1. Continuum

While the continuum theory for cohesive particles is generally

applicable to various material properties, sources of cohesion,

and systems, the particles considered here are lightly-cohesive.

Generally, the particles only present themselves as singlets (pri-

mary particles) and doublets (two-particle agglomerates, so only

singlets and doublets are considered here). The resulting popula-

tion balance equations are (Kellogg et al., 2017)

@n1

@t
þr � ðu1n1Þ ¼ �2N1;1Sagg;1;1 þ 2N1;2Sbreak;1;2 ð1Þ

@n2

@t
þr � ðu2n2Þ ¼ N1;1Sagg;1;1 � N1;2Sbreak;1;2 ð2Þ

where n1 and n2 are the number density of singlets and doublets,

respectively, and u is the velocity of the respective agglomerate

size. N1,1 and N1,2 are the collision frequencies of singlets with other

singlets and doublets, respectively. Sagg,1,1 is the success factor of

agglomeration for singlet-singlet collisions (the fraction of colli-

sions that result in agglomeration), and Sbreak,1,2 is the success factor

of breakage of singlet-doublet collisions (the fraction of collisions

that result in breakage). The closures for the success factors and col-

lision frequencies are summarized in Table 1 (Kellogg et al., 2017).

The term �2N1,1Sagg,1,1 in Eq. (1) is the death rate of singlets due to

agglomeration, and the term N1,2Sbreak,1,2 in Eq. (1) is the birth rate

of singlets from the breakage of doublets due to collisions with sin-

glets. The term N1,1Sagg,1,1 in Eq. (2) represents the birth rate of dou-

blets from agglomeration of singlets and the term �N1,2Sbreak,1,2 in

Eq. (2) represents the death rate of doublets due to collisions with

singlets. The rate of breakage of doublets from collisions with other

doublets is neglected due to the lightly-cohesive assumption – i.e.,

such collisions are infrequent relative to singlet-singlet and singlet-

doublet collisions.

To calculate the success factors of agglomeration and breakage

in Table 1, particle- and cohesion-specific inputs are required. First,

a critical velocity of agglomeration va,crit is needed, which corre-

sponds to the velocity below which all collisions result in agglom-

eration. The critical velocity of agglomeration was varied in this

work to explore particles subject to different amounts of cohesion.

Additionally, a critical velocity of breakage vb,crit, which represents

the velocity above which collisions with agglomerates will result in

breakage of the agglomerate is needed. Finally, a collision cylinder

diameter d1,2, which gives the sweep area of a pair of colliding

agglomerates/primary particles and is used to calculate the colli-

sion frequency, is required. These physical inputs (va,crit, vb,crit,

and d1,2) were determined in previous work from simple shear flow

simulations of 64 lm diameter glass beads undergoing van der

Waals cohesion and are listed in Table 2 (Kellogg et al., 2017).

The van der Waals cohesion model used in said DEM simulations

is described below in Eqs. (34) and (35). Simple shear flow simula-

tions were used since the inputs (critical velocities and collision

diameter) are sensitive to collision orientation, and the distribution

Table 1

Auxiliary equations for continuum theory (Kellogg et al., 2017).

Sagg;1;1 ¼ 1� exp
�v2

a;crit;1;1

2Ts
6

m1dof1

h i

2

4

3

5

(3) m2 ¼ 2m1 (10)

Sbreak;1;1 ¼ exp
�v2

b;crit;1;2

2Ts
3

m1dof1
þ 3

m2dof2

h i

2

4

3

5

(4) m1 ¼ qd31
6

(11)

N1;1 ¼ n1n1pd
3
1g0

4
d1

Ts

p 6
m1dof1

� �1=2
" #

(5) dof 1 ¼ 3 (12)

N1;2 ¼ n1n2pd
3
1;2g0

4
d1;2

Ts

p 3
m1dof1

þ 3
m2dof2

h i

0

@

1

A

1=2
2

6

4

3

7

5

(6) dof 2 ¼ 5 (13)

eeff vnð Þ ¼ H vn � va;crit;1;1

� �

e2int þ
e2
int

�1ð ÞDwell

4m1v
2
n

� �1=2 (7) g0 ¼ 1�es=2
1�esð Þ3

(14)

f vnð Þ ¼ vn

Ts
6

m1dof1

h i exp �v2
n

2Ts
6

m1dof1

h i

2

4

3

5

(8)
Dwell ¼

4m1v
2
a;crit;1;1

e2
int

1�e2
int

(15)

eeff
� �

¼
R1
va;crit;1;1

eeff vnð Þf vnð Þdvn

R1
va;crit;1;1

f vnð Þdvn

(9)
H xð Þ ¼ 0 x 6 0

1 x > 0

�

(16)

Table 2

Continuum theory inputs determined from DEM (Kellogg et al., 2017).

Parameter Value

Non-dimensionalized critical velocity of breakage vb;crit;1;2=va;crit;1;1 ¼ 1:502

Non-dimensionalized collision cylinder diameter d1;2=d1 ¼ 1:2155
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of impact orientations in simple shear flow is similar to that

observed in the unbounded riser flow (Kellogg et al., 2017; Liu

et al., 2017).

Note that although the population balances solved in the cur-

rent work are identical to those considered in previous work

(Kellogg et al., 2017), a momentum balance is solved for each

agglomerate size in the current work, whereas a single momentum

balance was considered in previous work. This new aspect traces to

the extension of the cohesive continuum theory to a gas-solid flow.

More specifically, the presence of the gas phase necessitates a gas-

solid drag term in the solids-phase momentum balance. Since dif-

ferent agglomerate sizes experience different amounts of drag and

consequently have different slip velocities (difference of velocity

between an agglomerate size and the gas), a separate momentum

balance needs to be solved for each agglomerate size. Additionally,

the difference in relative velocities between the agglomerate sizes

leads to terms associated with solids-solids drag, which also was

not present in previous systems explored (simple shear flow and

homogeneous cooling of granular materials). The closures for the

momentum balances used here were derived for non-cohesive

spheres of different sizes (polydispersity), but are being applied

now to cohesive, non-spherical agglomerates as a first approxima-

tion. The effect of cohesion causing additional dissipation during

collisions is captured in these momentum balance closures used

here by utilizing the effective coefficient of restitution heeffi in the

calculation of these closures. The effect of the non-spherical nature

of agglomerates is not accounted for in the momentum balance

closures originally derived for non-cohesive spheres. No kinetic-

theory-based closures account for non-spherical particles, how-

ever, so this approximation is necessary. The momentum balances

are (Iddir and Arastoopour, 2005)

@ m1n1u1ð Þ
@t

þr � m1n1u1u1ð Þ ¼ �r � PIþ sð Þ þm1n1g� e1DPg=H^j

þ2u2N1;2Sbreak;1;2 � 2u1N1;1Sagg;1;1 þ Fdrag;g;1 þ Fdrag;2;1

ð17Þ

@ m2n2u2ð Þ
@t

þr � m2n2u2u2ð Þ ¼ �r � PIþ sð Þ þm2n2g� e2DPg=H^j

�2u2N1;2Sbreak;1;2 þ 2u1N1;1Sagg;1;1 þ Fdrag;g;2 � Fdrag;2;1

ð18Þ

where P is the granular pressure, I is the identity matrix, and s is the

solids-phase stress. The single granular temperature Ts was used as

the granular temperature of the singlets T1 and the granular tem-

perature of the doublets T2 in the closures for the solids stress

and pressure from Iddir and Arastoopour (2005). In Eqs. (17) and

(18), the first term on the left side is the transient term, and the sec-

ond term on the left side is the convective term. On the right side of

these equations, the first term is the divergence of stresses (diffu-

sion), the second term represents gravitational forces, the third

term incorporates the gas-phase pressure drop induced on the sys-

tem, the fourth term is the gas-solid drag force, the fifth term is the

(solids-solids) drag force due to collisions between singlets and

doublets, the sixth term is the exchange of momentum due to

breakage, and the last term is the exchange of momentum due to

aggregation. Since few doublets were observed in the system, con-

stitutive relations for these terms were approximated using clo-

sures derived from monodisperse kinetic theory (Garzó and Dufty,

1999) using the total (local) solids volume fraction, singlet diameter

and the effective coefficient of restitution (as detailed below). g is

the gravitational vector, which takes a value of �9.81 m/s2 in the

y-direction (upward). The term DPg/H was used to set the

gas-phase pressure drop across the system, which was equal to

the weight of the system divided by the density (i.e. DPg/H =

n1m1 + n2m2 + qgeg where eg is the gas volume fraction). The terms

2u1N1,1Sagg,1,1 and 2u2N1,2Sbreak,1,2 represent the transfer of momen-

tum from one agglomerate size to another during aggregation and

breakage, respectively. The term Fdrag,g,i represents gas-solid drag,

and is given by:

Fdrag;g;i ¼ Kg;i ug � ui

� �

ð19Þ

where Kg,i is the drag coefficient given by an extension (Benyahia

et al., 2006) of that originally proposed by Koch, Hill, and Ladd

(Hill et al., 2001) with the total solid volume fraction used for the

solid volume fraction. The volume equivalent diameter (the diame-

ter of a sphere with an equivalent volume as the agglomerate) of

each agglomerate size is used for the diameter. These closures are

summarized in Appendix A. The solids drag represents momentum

transfer between agglomerate sizes due to collisions of agglomer-

ates of different sizes. These closures were derived for spheres of

different sizes, but are used here for non-spherical agglomerates

(assumed to be spherical) of different sizes. The closures are given

by (Iddir and Arastoopour, 2005):

Fdrag;2;1 ¼ K2;1 u2 � u1ð Þ ð20Þ

where

K2;1 ¼ d1;2

4

m1m2

m1 þm2

g0 1þ eeff
� �� �

n1n2
m1

Ts

� �3

R2

ffiffiffiffi

p
p

ð21Þ

R2 ¼ 1

2A12D
2
12

ð22Þ

A12 ¼ m1 þm2

2Ts

; and ð23Þ

D12 ¼ m1m2

2 m1 þm2ð ÞTs

ð24Þ

where g0 is the radial distribution function given in Eq. (14)

(Mansoori, 1971) and Ts is the granular temperature. Eqs. (20)–

(24) were derived for non-cohesive spheres, but are being applied

here to agglomerates.

In order to solve for the granular temperature Ts appearing in

the closures for the population and momentum balances, a granu-

lar energy balance is solved. Granular energy refers to the random,

fluctuating kinetic energy associated with particle motion varying

from the mean motion. Here, since most of the particles are in

singlets, a single granular energy balance is solved for granular

temperature Ts (Iddir and Arastoopour, 2005; Kellogg et al., 2017)

@ 3
2
nTs

� �

@t
þr � 3

2
nTsu1

� �

¼ � PIþ sð Þ : ru1 �r � q� fTs þ u1 � u2ð Þ � Fdrag;2;1 ð25Þ

where n is the total number density and closures for q and f come

from a monodisperse kinetic theory using the effective coefficient of

restitution heeffi (Eq. (9)), total solid volume fraction, and singlet

diameter (Garzó and Dufty, 1999; Kellogg et al., 2017). The first

term on the left side of Eq. (25) is represents the change of granular

energy with time, and the second term represents the convection of

granular energy. The first term on the right side of the equation is

the generation of granular energy due to shear, the second term is

the diffusion of granular energy, the third term is the dissipation

of granular energy due to inelastic collisions. The final term in Eq.

(25) is the generation of granular energy due to differences in rela-

tive velocity between the different agglomerate sizes. This final

term was not included in previous work (Kellogg et al., 2017) since

the singlets and doublets all travelled with the same velocity. The

gas phase included in the current work leads to different agglomer-

ate sizes having different drag and thus a nonzero relative velocity

between them, necessitating the final term in Eq. (25). Realistically,

the granular temperature of the singlets T1 and the doublets T2 will

K.M. Kellogg et al. / Chemical Engineering Science 199 (2019) 249–257 251



be unequal. Again, since the majority of the particles are in singlets,

a single granular temperature Ts which will be closer to the singlet

granular temperature is considered. The main potential ramification

of this assumption is that the singlet-doublet success factor of

breakage, as well as the singlet-doublet collision frequency, which

are dependent on the granular temperature of the doublet, may

be slightly inaccurate. These two terms appear in the population

balance in the rate of breakage of doublets terms.

Finally, for the gas phase, the governing mass and momentum

balances are (Gidaspow, 1994)

@ qgeg

 �

@t
þr � qgegug


 �

¼ 0 ð26Þ

@ qgegug


 �

@t
þr � qgegugug


 �

¼ �r � PgIþ lrug

� �

þ egDPg=H^j� egqgg� Fdrag;g;1 � Fdrag;g;2

ð27Þ

In Eqs. (26) and (27), the left side represents acceleration. In Eq.

(27), on the right side, the first term is the divergence of the stress

tensor and gives diffusion of momentum, the second term institutes

the pressure drop, the third term represents gravity, and the last

two terms represent the drag force exerted on the singlets and dou-

blets respectively.

2.2. DEM

For DEM, the position x and velocity v of each particle are

updated according to Newton’s second law of motion, using Euler

integration. The forces acting on the particles are given by

F ¼ m
dv

dt
¼ Fcont þ Fcoh þ Fdrag þ Fg ð28Þ

where F is the total force, Fcoh is the cohesive force, Fcont is the con-

tact force, Fdrag is the drag force and Fg is the gravitational force act-

ing on a given particle. The Hertzian contact expression was used to

give the magnitude of the contact force:

Fcont ¼
4Eeff

ffiffiffiffiffiffi

Reff
p
3

d3=2 þ g dd
dt

dP 0

0 d < 0

(

ð29Þ

where

Eeff ¼
EiEj

Ei 1þ m2j


 �

þ Ej 1þ m2i
� �

ð30Þ

Reff ¼
RiRj

Ri þ Rj

ð31Þ

g ¼
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15meffEeff

p

R
1
4

eff ln eintð Þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ln
2
eintð Þ

q d1=4 ð32Þ

meff ¼
mimj

mi þmj

ð33Þ

and d is the overlap of contacting particles, E is the Young’s modu-

lus, m is the Poisson ratio, R is the particle radius, eint is the intrinsic

coefficient of restitution, and m is the particle mass. The drag force

was calculated using an extension (Benyahia et al., 2006) of the

Koch-Hill-Ladd (Hill et al., 2001) drag law using the primary particle

diameter and the local solid volume fraction, as given in Eq. (19)

above. Finally, the cohesion was calculated using the Rabinovich

expression for cohesive force (Rabinovich et al., 2000) extended

for interactions between two particle surfaces that each have two

scales of roughness (Liu et al., 2016b)

Fcoh D>Dminð Þ¼A

6

RiRj

RiþRj

� �

DþyiL þyjL þyiS þyjS
� �2

þ RirjL

Riþ rjL
� �

DþyiL þyiSþyjS
� �2

"

ð34Þ

þ RirjS

Ri þ rjs
� �

Dþ yiL þ yiSð Þ2
þ riLRi

riL þ Rj

� �

Dþ yiS þ yjL þ yjS
� �2

þ riLrjL

riL þ rjL
� �

Dþ yiS þ yjS
� �2

þ riLrjS

riL þ rjS
� �

Dþ yiSð Þ2

þ riSRj

riS þ Rj

� �

Dþ yiL þ yjS
� �2

þ riSrjL

riL þ rjL
� �

Dþ yjS
� �2

þ riSrjS

riS þ rjS
� �

D2

#

where

rkl ¼
k2kl

32k1rmskl
; ykl ¼ k1rmskl

and k is the wavelength of the roughness, k1 = 1.817 is a geometric

constant, rmskl is the root mean square height of asperities, rkl is the

radius of asperities, and ykl is the asperity height, with subscript k

taking values of i or j for different particles, and subscript l taking

values of S or L for small or large scale asperities. A is the Hamaker

constant, R is the particle radius, D is the separation distance

between the highest asperity of the two particles, and Dmin is the

cut-off distance, frequently taken to be the intermolecular separa-

tion distance. The cut-off distance represents the separation

between surfaces at which the cohesive force is capped in order

to prevent an infinite cohesive force for D = 0. In other words, when

particles are separated by less than the minimum cut off distance,

FcohðD 6 DminÞ ¼ Fcoh Dminð Þ ð35Þ

The particle properties used in this study are summarized in

Table 3. The Poisson ratio, primary particle diameter, particle den-

sity, coefficient of restitution, and small and large scale roughness

and wavelengths are characteristic of silica glass particles. The

Young’s modulus chosen here is significantly smaller than the lit-

erature value for glass and was chosen to enhance computational

efficiency (Liu et al., 2016c). The gas properties are characteristic

of air. The system size was chosen so that the DEM simulations

would have on the order of 10,000 particles so the system was

small enough to minimize hydrodynamic instabilities (clustering)

but large enough to ensure good statistics.

In the DEM simulation, the gas phase continuity equation was

identical to Eq. (26) used in the continuum simulations. The

Table 3

Particle, gas, and system properties used in simulations.

Property Symbol Value Units

Young’s modulus E 10 MPa

Poisson ratio m 0.3 –

Diameter d 64 lm
Particle density qs 2500 kg/m3

Intrinsic coefficient of restitution eint 0.97 –

Large scale wavelength kL 2671 nm

Small scale wavelength kS 369 nm

Large scale roughness rmsL 22.17 nm

Small scale roughness rmsS 2.411 nm

Gas viscosity l 1.8335 ∙ 10�5 Pa∙s

Gas density qg 0.97 kg/m3

Target gas velocity ug,y 0.515 m/s

System width and depth W = L 0.3234375 cm

System height H 1.4375 cm

Grid size Dx/d 2 –

252 K.M. Kellogg et al. / Chemical Engineering Science 199 (2019) 249–257



momentum balance used was similar to the Eq. (27) used in the

continuum simulations, except without the term DPg/H.

2.3. Unbounded riser system

A schematic of the unbounded riser geometry is shown in Fig. 1,

with dimensions summarized in Table 3. All side walls were peri-

odic for both the gas and solid phases in both the DEM and contin-

uum simulations. The DEM simulations were performed using the

MFiX 2016-1 multiphase computational fluid dynamics package

(Syamlal et al., 1993). In the DEM simulations, the top and bottom

boundaries were periodic for the solids phase. The pressure at the

bottom boundary for the gas phase was adjusted dynamically to

achieve the desired gas flow rate summarized in Table 3. The top

boundary of the DEM simulations for the gas phase was a pressure

outlet. The continuum simulations were carried out independently

from the DEM simulations using ANSYS Fluent 17.0. In the contin-

uum simulations, periodic boundary conditions were used for both

the gas and solids phases on the top and bottom boundaries with a

pressure gradient applied throughout the system in the upwards y-

direction. This pressure gradient was equal to the weight of the

system divided by the cross-sectional area, such that the system

did not accelerate. Since fully periodic boundary conditions were

used in the continuum theory, the system can be viewed as a mov-

ing reference frame. In order to compare the results from a moving

reference (continuum theory) directly with that of the fixed refer-

ence frame (DEM), the continuum velocities for the gas, singlets,

and doublets were all adjusted by the same amount such that

the DEM and continuum gas velocities were equal.

Both the DEM and continuum simulations were initialized with

no particles in agglomerates, and with zero mean velocity for the

gas and solids. The initial positions of the DEM particles were ran-

dom, while the continuum solid volume fraction was uniform. The

solid volume fraction used in the continuum predictions was arbi-

trary, and the corresponding number of particles were modeled in

the DEM simulations. The initial granular temperature of the con-

tinuum predictions was set to Ts/m1 = 10�6 m2/s2. Simulations

were run for 2 s, as the gas and solid velocities and agglomerate

fractions were found to reach steady state after 1 s. Unless noted

otherwise, the error bars on DEM results show the standard devi-

ation over the last second of simulation time when the system

was at steady state. The continuum results lack error bars as they

show the final steady-state solution, which does not vary.

In Case I, the solid volume fraction was fixed at es = 0.01 and the

Hamaker constant A was changed to change the cohesive force (Eq.

(34)) between particles. Changing the Hamaker constant changed

the critical velocity of agglomeration va,crit,1,1 (which took values

of 0.22–0.59 cm/s). The critical velocity of agglomeration was

determined by performing DEM simulations of two particle colli-

sions. In Case II, the critical velocity of agglomeration was fixed

at 0.34 and 0.59 cm/s, and the solid volume fraction was varied

from es = 0.0025 to 0.04. These same conditions were used in both

the DEM simulations and continuum theory predictions.

3. Results and discussion

For Case I where the level of cohesion (i.e., critical velocity of

agglomeration) is varied, the DEM results and continuum predic-

tions for the fraction of particles in agglomerates, and the entrain-

ment rate are shown in Fig. 2a and b respectively. The fractions of

particles in each agglomerate size observed in DEM are shown in

Fig. 2c. First, we consider the fraction of particle in agglomerates

(Fig. 2a). Qualitatively, both the DEM simulations and continuum

predictions indicate that as the critical velocity of agglomeration

(cohesion level) increases, the fraction of particles in agglomerates

increases. Namely, as the particles are made more cohesive, colli-

sions are more likely to result in aggregation and less likely to

result in breakage, therefore a higher fraction of particles

agglomerate.

From a quantitative standpoint, the continuum theory under-

predicts the agglomerate fraction by up to 45% over the critical

velocities studied. One source of error is that the DEM simulations

allow agglomerates larger than doublets to form, whereas the con-

tinuum theory as applied here incorporates only singlets and dou-

blets. Specifically, larger agglomerates than doublets are forming in

the DEM simulations at higher critical velocities, but not at lower

critical velocities, as seen in Fig. 2c. This increase in larger agglom-

erates corresponds to the increasing deviation in fraction of parti-

cles in agglomerates observed between DEM and the continuum

theory in Fig. 2a, suggesting that the presence of agglomerates lar-

ger than doublets contribute to the deviation.

Next, we consider the entrainment rate. Qualitatively, as the

critical velocity of aggregation (cohesion level) increases, the

entrainment rate remains relatively constant for DEM and

decreases slightly for the continuum theory. In the continuum the-

ory, an agglomerate is treated as a single spherical particle with an

effective diameter larger than the primary particle diameter. ThisFig. 1. Schematic of riser flow used in DEM simulations.
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effective diameter leads to a larger drag (equation for Kg in Appen-

dix A) than would be exerted on a primary particle, but less than

the drag on two primary particles. Therefore, when particles

agglomerate, they experience a net decrease in drag, an increase

in terminal velocity and hence a decrease in entrainment rate. In

DEM simulations, however, the diameter of particles in agglomer-

ates is not changed in the drag law, but the presence of agglomer-

ates is instead accounted for by the increase in the local solid

volume fraction. The effective particle diameter has a greater effect

on the drag reduction of agglomerates than the local solid volume

fraction (equation for Kg in Appendix A), which explains why the

DEM entrainment rate remains relatively constant while the con-

tinuum theory exhibits a decrease in entrainment rate. A brief

exploration was performed to determine the entrainment rate pre-

dicted by the continuum theory when the effective diameter of

agglomerates was set equal to that of singlets. The results of this

exploration (not shown) indicated that the continuum theory

under-predicted the DEM entrainment rate by 3–7%, a marginal

improvement to the over-prediction shown in Fig. 2b.

From a quantitative standpoint, the continuum theory over-

predicts the DEM entrainment rate by less than 15% over the range

of critical velocities studied here. Note that previous predictions of

entrainment rates from empirical correlations vary by orders of

magnitude (Chew et al., 2015). The relatively good quantitative

agreement of agglomerate fraction and entrainment rate between

the continuum theory and DEM simulations observed here pro-

vides preliminary support for the validity of using an extension

of the recent continuum theory for cohesive particles (Kellogg

et al., 2017) applied to gas-solid flow.

Next, we consider the impact of changing the solids concentra-

tion while maintaining a constant level of cohesion, as shown in

Fig. 3. The fraction of particles in agglomerates is given in Fig. 3a

and c for different levels of cohesion. A non-monotonic trend of

agglomerate fraction with increasing solid volume fraction occurs.

Two competing mechanisms lead to this behavior, as detailed

below.

First, the increasing solid volume fraction directly affects

agglomeration and breakage by increasing the collision frequencies

N1,1 and N1,2 (Eqs. (5) and (6)) in Eqs. (1) and (2). This increase of

collision frequency leads to an increase in aggregation and an

increase in breakage (terms on right side of Eqs. (1) and (2)). The

increase in agglomeration is greater than the increase in breakage

since it becomes increasingly difficult to break up agglomerates as

they grow in size since larger agglomerates can undergo internal

dissipation and rearranging without breakage (Ringl et al., 2012).

This increase in agglomeration relative to breakage leads to an

increase the fraction of particles in agglomerates.

Second, the increasing solid volume fraction indirectly affects

agglomeration and breakage by affecting the granular temperature.

As solids volume fraction increases, the collision frequency

increases and an increase in generation of granular energy from

collisional generation between primary particles and doublets

(the (u1 � u2)∙Fdrag,2,1 term in Eq. (25)) results. Namely, because

agglomerates have a higher slip velocity (relative velocity between

solid and gas phases) compared to primary particles, the primary

particles move upwards faster than agglomerates. The resulting

collisions increase with solid volume fraction, thereby leading to

a monotonically increasing granular temperature for DEM simula-

tions and an increasing temperature for solid volume fractions of

es > 0.005 for the continuum theory (see Fig. 4). Although the

increased granular temperature further increases the collision fre-

quencies N1,1 and N1,2 (Eqs. (5) and (6)), it also decreases the suc-

cess factor of aggregation Sagg,1,1 and increases the success factor

of breakage Sbreak,1,2 (Eqs. (3) and (4)) in Eqs. (1) and (2) (i.e. higher

impact velocities, or granular temperature, decrease the likelihood

of aggregation and increase the likelihood of breakage, leading to a

smaller fraction of particles of particles in agglomerates). This

behavior is dominant on the left of the minimum (es = 0.01) in plots

3a and 3c in DEM. Exceptions only occur in the continuum predic-

tion at the two lowest solid volume fractions in Fig. 3a and c, where

instabilities cause a different behavior, as discussed below. For the

remaining systems explored, which are all stable, the continuum

theory under-predicts the agglomerate fraction by less than 75%.

Evidence for the instabilities predicted by the continuum theory

at low solid concentrations and a critical velocity of 0.34 cm/s is

shown in Fig. 4b and c. Namely, instabilities are not observed at

higher solid volume fractions (Fig. 4b), but are seen at lower solid

volume fractions (Fig. 4c). Similar unstable behavior is observed for

a critical velocity of 0.59 cm/s (figure not shown for the sake of

brevity), though the instabilities and corresponding increase in

granular temperature are less pronounced. These instabilities are

not present in any of the DEM simulations. The instabilities

observed in the continuum simulations generate local gradients

of solid velocity and thus increase shear, thereby leading to an

increased generation of granular energy. This high granular energy

corresponds to higher impact velocities upon collision, and hence

the low agglomerate fractions at the two lowest solid volume frac-

tions in Fig. 3c. At higher solid volume fractions (es > 0.005), no

instabilities exist, so the granular temperature is not inflated by

this mechanism.

Fig. 2. Case I: constant volume fraction 0.01 and varying critical velocities. (a) Agglomerate fraction observed in DEM and continuum predictions, (b) entrainment rate

observed in DEM and continuum predictions, and (c) fraction of particles in various agglomerate sizes observed in DEM. Error bars show 95% confidence interval of five DEM

repeats.
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Fig. 3. Case II: constant critical velocities and varying solid volume fractions. (a) Agglomerate fraction when va,crit = 0.59 cm/s, (b) entrainment rate when va,crit = 0.59 cm/s, (c)

agglomerate fraction when va,crit = 0.34 cm/s, and (d) entrainment rate when va,crit = 0.34 cm/s.

Fig. 4. (a) Granular temperature observed in DEM and continuum when vcrit = 0.34 cm/s, (b) snapshot of gas volume fraction viewed from above (y = 1.4375 cm) for (stable)

case where es = 0.02 and va,crit = 0.34 cm/s, (c) snapshot of gas volume fraction profile for (unstable) case where es = 0.00225 and va,crit = 0.34 cm/s.
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Next, we consider the entrainment rate. Fig. 3b and d show the

entrainment rate increasing with solid volume fraction. This

behavior is expected since entrainment rate is directly propor-

tional to the solid volume fraction (i.e. entrainment rate Js = qsesus).

Moreover, as solid volume fraction is increased, us increases

slightly as well due to increasing drag and decreased terminal

(slip) velocity at higher solid volume fractions. These two effects

both lead to an increase in entrainment rate, though the latter

dependence of us on es is weak compared to the direct proportion-

ality between Js and es. Quantitatively, the entrainment rate pre-

dicted by the continuum theory is in good agreement with that

observed in the DEM simulations. For stable systems, the contin-

uum theory over-predicts the DEM data by less than 35%. This

agreement is a substantial improvement to the orders of magni-

tude spanned by the predictions of past entrainment rate correla-

tions (Chew et al., 2015).

Finally, the presence of agglomerates larger than doublets are a

source of discrepancy between the continuum theory and DEM for

both agglomerate fraction and entrainment rate. Agglomerates lar-

ger than doublets are not accounted for in the continuum theory,

but are observed in the DEM simulations, as shown in Fig. 5. A

non-monotonic trend is observed in mean agglomerate size. Simi-

lar to the behavior for fraction of particles in agglomerates (Fig. 3a

and c), two mechanisms compete to cause the non-monotonic

trend of mean agglomerate size. First, increased solid volume frac-

tion leads to increased collision frequency and increased agglomer-

ation and breakage. The increase in agglomeration will be greater

than the increase in breakage, since large agglomerates form more

readily than they break. Second, increased solid volume fraction

leads to increased generation of granular energy due to collisions

between primary particles and agglomerates. Accordingly, the suc-

cess factor of breakage increases and the success factor of aggrega-

tion decreases, leading to more breakage and less aggregation and

smaller agglomerates.

4. Conclusions

The recent continuum theory for cohesive particles (Kellogg

et al., 2017), which was previously explored in granular systems,

was extended to a gas-solid flow in the current work. The agree-

ment between the continuum theory and DEM simulations of the

unbounded riser explored here provides support for the validity

of the continuum theory for cohesive particles in gas-solid flows.

Agglomerate fraction was observed to increase with increasing

critical velocity (cohesion), as expected. The continuum theory

over-predicts the agglomerate fraction observed in DEM by less

than 15% for these cases. As solid volume fraction was increased,

a non-monotonic trend of agglomerate fraction was observed.

The non-monotonic trend was traced to two competing mecha-

nisms. First, increasing solid volume fraction increases the granular

temperature (impact velocity between colliding particles), which

causes a decrease of the fraction of particles in agglomerates. Next,

at higher solid volume fractions, larger agglomerates form that are

harder to break than smaller agglomerates, thereby increasing the

fraction of particles in agglomerates. For these cases, the contin-

uum theory generally under-predicts the agglomerate fraction by

less than 75% for the cases that were stable in the both the contin-

uum and DEM simulations.

For the cases where the critical velocity was varied, the contin-

uum theory shows a decrease of entrainment rate with increasing

critical velocity, while the DEM simulations show a relatively con-

stant entrainment rate. The entrainment rate remains constant

since the drag reduction (and corresponding decrease in entrain-

ment rate) due to agglomeration in DEM was less than that in

the continuum theory predictions, since agglomerates were trea-

ted differently in the drag laws of each method (i.e., discrete vs.

continuum). The continuum theory over-predicts the DEM entrain-

ment rate within 15%.

For the cases where the solid volume fraction was varied, the

entrainment rate increases nearly linearly as solid volume fraction

increases in both the continuum theory predictions and DEM sim-

ulations. This nearly linear relationship happens since at the solid

volume fractions explored here (es = 0.0025–0.04), the solids veloc-

ity depends weakly on solid volume fraction. The predictions for

the entrainment rate are much closer (<35% difference) than differ-

ences found among existing correlations (orders-of-magnitude dif-

ferences). At the lowest solid volume fractions explored

(es = 0.0025–0.005), instabilities are observed in the continuum

theory. These instabilities lead to an increase in granular tempera-

ture that is not observed in the (stable) DEM simulations, and

hence a poor prediction of the entrainment rate and agglomerate

fraction from the continuum theory.

One final source of error that should be noted is that the contin-

uum theory only considers singlets and doublets, whereas larger

agglomerates are observed to form in the DEM simulations. This

affects the accuracy of the predictions of both the entrainment rate

and agglomerate fraction.

Future work should include moderately-cohesive particles that

form larger agglomerates, and for those larger agglomerates to be

included in the continuum theory. Additionally, systems with walls

and consequently gradients in the mean flow variables should be

considered. The continuum theory has not yet been applied to sys-

tems with such gradients, and consequently various terms in the

theory (e.g. diffusion of granular energy) have not been tested.

Finally, the validity of continuum theory should be validated via

comparison with experimental flows.
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Appendix A. . Drag closures from extension (Hill et al., 2001) of

Koch-Hill-Ladd (Benyahia et al., 2006).
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