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Large teams develop and small teams disrupt

science and technology

Lingfei Wu"?, Dashun Wang®*> & James A. Evansh%%+

One of the most universal trends in science and technology today
is the growth of large teams in all areas, as solitary researchers
and small teams diminish in prevalence! . Increases in team size
have been attributed to the specialization of scientific activities?,
improvements in communication technology**, or the complexity
of modern problems that require interdisciplinary solutions®3.
This shift in team size raises the question of whether and how
the character of the science and technology produced by large
teams differs from that of small teams. Here we analyse more
than 65 million papers, patents and software products that span
the period 1954-2014, and demonstrate that across this period
smaller teams have tended to disrupt science and technology with
new ideas and opportunities, whereas larger teams have tended to
develop existing ones. Work from larger teams builds on more-
recent and popular developments, and attention to their work comes
immediately. By contrast, contributions by smaller teams search
more deeply into the past, are viewed as disruptive to science and
technology and succeed further into the future—if at all. Observed
differences between small and large teams are magnified for higher-
impact work, with small teams known for disruptive work and large
teams for developing work. Differences in topic and research design
account for a small part of the relationship between team size and
disruption; most of the effect occurs at the level of the individual,
as people move between smaller and larger teams. These results
demonstrate that both small and large teams are essential to a
flourishing ecology of science and technology, and suggest that, to
achieve this, science policies should aim to support a diversity of
team sizes.

Advocates of team science have claimed that a shift to larger teams
in science and technology fulfils the essential function of solving
problems in modern society that are complex and which require
interdisciplinary solutions®®. Although much has been demonstrated
about the professional and career benefits of team size for team mem-
bers’, there is little evidence that supports the notion that larger teams
are optimized for knowledge discovery and technological invention®.
Experimental and observational research on groups reveals that indi-
viduals in large groups think and act differently—they generate fewer
ideas!®!!, recall less learned information!?, reject external perspectives
more often'? and tend to neutralize each other’s viewpoints!'%. Small
and large teams may also differ in their response to the risks associated
with innovation. Large teams, such as large business organizations,
may focus on sure bets with large potential markets, whereas small
teams that have more to gain and less to lose may undertake new,
untested opportunities with the potential for high growth and failure'®,
leading to markedly different outcomes. These possibilities led us to
explore the consequences of smaller and larger teams for scientific
and technological advance, and how such teams search and assemble
knowledge differently.

Previous research demonstrates that large article and patent teams
receive slightly more citations>!®. However, citation counts alone
cannot capture distinct types of contribution. This can be seen in the

difference between two well-known articles: one about self-organized
criticality'” (the BTW model, after the authors’ initials) and another
about Bose-Einstein condensation'® (for which Wolfgang Ketterle
was awarded the 2001 Nobel Prize in Physics) (Fig. 1, Extended Data
Fig. 1b). The two articles have received a similar number of citations,
but most research subsequent to the BTW-model article has cited only
the model itself without mentioning references from the article. By con-
trast, the Bose-Einstein condensation article is almost always co-cited
with Bose!?, Einstein?® and other antecedents. The difference between
the two papers is reflected not in citation counts but in whether they
suggested or solved scientific problems—whether they disrupted or
developed existing scientific ideas, respectively?!. The BTW model
launched new streams of research, whereas the experimental realiza-
tion of Bose-Einstein condensation elaborated upon possibilities that
had previously been posed.

To systematically evaluate the role that small and large teams have
in unfolding scientific and technological advances, we collected large-
scale datasets from three related but distinct domains (see Methods):
(1) the Web of Science (WOS) database that contains more than 42
million articles published between 1954 and 2014, and 611 million cita-
tions among them; (2) 5 million patents granted by the US Patent and
Trademark Office from 1976 to 2014, and 65 million citations added by
patent applicants; (3) 16 million software projects and 9 million forks to
them on GitHub (2011-2014), a popular web platform that allows users
to collaborate on the same code repository and ‘cite’ other repositories
by copying and building on their code.

For each dataset, we assess the degree to which each work disrupts
the field of science or technology to which it belongs by introducing
something new that eclipses attention to previous work upon which it
has built. We use a measure that was previously designed® to identify
destabilization and consolidation in patented inventions; this measure
varies between —1 and 1, which corresponds to science and technology
that develops or disrupts, respectively (Fig. 1a). We validate the dis-
ruption measure in several ways. First, we investigate the distribution
of disruption across scientific papers (Fig. 1b); the disruptive BTW-
model article is located in the top 1%, whereas the developmental
Bose-Einstein condensation paper is in the bottom 3% of the disrup-
tion distribution. We also find that, on average, Nobel-prize-winning
papers register among the 2% most disruptive articles. Review articles
are developmental with a negative mean of disruption (bottom 46%),
whereas the original research works that they review have a positive
mean (top 23%). Articles that headline prominent prior work—such
as the Bose-Einstein condensation article—lie in the bottom 25%
(Supplementary Table 1). We further confirmed these results with a
survey in which we asked scholars from diverse fields to propose dis-
ruptive and developmental articles; this symmetrically confirmed the
disruption measure (Supplementary Table 2). Finally, we find that in the
titles of articles different words associate with disruptive (‘introduce,
‘measure, ‘change’ and ‘advance’) versus developing (‘endorse, ‘confirm,
‘demonstrate, ‘theory” and ‘model’) papers (Fig. 1c, Supplementary
Table 3).
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Fig. 1 | Quantifying disruption. a, Simplified illustration of disruption.
Three citation networks comprising focal papers (blue diamonds),
references (grey circles) and subsequent work (rectangles). Subsequent
work may cite the focal work (i, green), both the focal work and its
references (j, red) or just its references (k, black). Disruption, D, of the
focal paper is defined by the difference between the proportion of type
iand j papers p; — pj, which equals the difference between the observed
number of these papers #n; — n; divided by the number of all subsequent
works n; + 1; + ni. A paper may be disrupting (D = 1), neutral (D = 0) or
developing (D = —1). b, The distribution of disruption across 25,988,101
WOS journal articles published between 1900 and 2014. On this
distribution, we mark the BTW-model (D = 0.86, top 1%) and
Bose-Einstein condensation articles (D = —0.58, bottom 3%) along with
several samples used to validate D (Methods, Supplementary Tables 1-3).
This includes (1) 104 ‘disruptive’ articles (disruption mean E(D) = 0.215,

We predict that work by small teams will be substantially more dis-
ruptive than work by large teams. Our databases of papers, patents and
software strongly confirm this prediction. Our sources differ in scope
and domain, but we consistently observe that over the past 60 years,
larger teams produce articles, patents and software with a disruption
score that markedly and monotonically declines with each additional
team member (Fig. 2a—c, Extended Data Fig. 3). Specifically, as teams
grow from 1 to 50 team members, their papers, patents and products
drop in percentiles of measured disruption by 70, 30 and 50, respec-
tively (Extended Data Fig. 3a). In every case, this highlights a transition
from disruption to development. These results support the hypothesis
that large teams may be better designed or incentivized to develop cur-
rent science and technology, and that small teams disrupt science and
technology with new problems and opportunities.

This phenomenon is amplified when we focus on the most disruptive
and impactful work (Fig. 2d-f). We measure the impact of each article,
patent and software using the number of citations each work received.
As shown in Fig. 2d, solo authors are just as likely to produce high-im-
pact papers (in the top 5% of citations) as teams with five members,
but solo-authored papers are 72% more likely to be highly disruptive
(in the top 5% of disruptive papers). By contrast, ten-person teams are
50% more likely to score a high-impact paper, yet these contributions
are much more likely to develop existing ideas already prominent in
the system, which is reflected in the very low likelihood they are among
the most disruptive. By repeating the same analyses for patents (Fig. 2e)
and software development (Fig. 2f), we find that disruption and impact
consistently diverge as teams grow in size.

Differences in disruption between works produced by small and
large teams are magnified as the impact of the work increases (Fig. 3a);
high-impact papers produced by small teams are the most disruptive,

top 2%) and 86 ‘developing’ articles (E(D) = —0.011, bottom 13%)
nominated by a surveyed panel of 20 scholars across fields; (2) 877 Nobel-
prize-winning papers published between 1902 and 2009 (E(D) = 0.10,
top 2%); (3) 22,672 review articles (E(D) = —0.0009, bottom 46%) and
1,338,808 original research articles that they review (E(D) = 0.0008,

top 23%); and (4) 148,303 articles that headline prominent prior work

by mentioning one or more cited authors in the title (E(D) = —0.0049,
bottom 24%). ¢, We select titles from 24,174,022 articles published
between 1954 and 2014 and assign them to one of two groups, disrupting
(D > 0) or developing (D < 0) articles. For the 1,033,879 words observed
in both groups, we calculate the ratio of frequency in disrupting versus
developing articles, r. We visualize differences in the content and writing
style between these two groups in terms of verbs, nouns, and adverbs and
prepositions (from left to right). To facilitate comparison, we visualize r in
green if r > 1, and 1/r in red otherwise.

and high-impact papers produced by large teams are the most devel-
opmental. As article impact increases, the negative slope of disruption
as a function of team size steepens sharply. Even within the pool of
high-impact articles and patents (Fig. 3a, top 5% of citations), which
are statistically more likely produced by large teams (Fig. 2d), small
teams have disrupted the current system with substantially more new
ideas. We further split papers by time period (Extended Data Fig. 3¢)
and scientific field (Fig. 3b, Extended Data Fig. 4), and found that these
patterns linking disruption and team size are stable for all eras and for
90% of disciplines. The only consistent exceptions were observed for
engineering and computer science, in which conference proceedings
rather than journal articles are the publishing norm (the WOS database
indexes only journal articles).

We considered whether observed differences between the work
of small and large teams could simply be attributed to differences
in disruptive potential for the different types of articles that they
produce; for example, small teams may generate more theoreti-
cal innovations and large teams more empirical analyses. Drawing
on a previous approach??, we matched papers from www.arXiv.
org with the WOS database and repeated our analyses controlling
for the number of figures in each article (Extended Data Fig. 5a), as
empirical papers tend to have more figures than theoretical ones.
Our results suggest that most of the difference in disruption between
work from smaller and larger teams is not driven by differences in
whether they contributed theoretical versus empirical papers (that is,
had more or less figures). The association remains the same when we
consider other distinctions, including review versus original research
articles. Review articles with fewer authors are more disruptive than
those with more, just as with original research articles (Extended Data

Fig. 5b).
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Fig. 2 | Small teams disrupt whereas large teams develop. a—c, For
research articles (24,174,022 WOS articles published between 1954 and
2014), patents (2,548,038 US patents assigned between 2002 and 2014) and
software (26,900 GitHub repositories uploaded between 2011 and 2014),
median citations (red curves, indexed by right y axis) increase with team
size whereas the average disruption percentile (green curves, indexed by
left y axis) decreases with team size. For all datasets, we present work with
one or more citations. Teams of between 1 and 10 authors account for 98%
of articles, 99% of patents and 99% of code repositories. Bootstrapped 95%
confidence intervals are shown as grey zones. Extended Data Figure 3a
shows that observed relationships hold for two orders of magnitude of
team size. d-f, As in a—c but for extreme cases rather than for average
behaviour. Relative ratios compare the observed proportion of teamwork
being extremely (top 5%) disruptive or impactful (measured with

Another possible explanation for our results is that the team effect
that we observe occurs because the scientists, inventors and software
designers involved in larger teams are qualitatively different from those
comprising smaller teams. But when we predict disruptiveness as a
function of team size, controlling for publication year, topic and author
(Fig. 3¢, Extended Data Fig. 3b, Supplementary Table 4), we find that
the decrease of disruption with the growth of team size continues to
hold, and controlling for authors greatly improves the percentage of
variance explained (Supplementary Table 4).

We further test the robustness of our results against several differ-
ent definitions of the disruption measure, including the removal of

citations) against a constant baseline (grey line y = 1), which indicates a
situation in which the most disruptive and impactful work is distributed
equally across team sizes. We find that the probability of observing
papers, patents and products of highest impact increases with team size
(Kolmogorov-Smirnov statistics and probabilities for all team sizes plotted
in Extended Data Fig. 2f), whereas the probability of observing the most
disruptive work decreases with team size (¢-statistics and probabilities for
all team sizes plotted in Extended Data Fig. 2¢). For example, d shows that
the percentage of top 5% disruptive papers depends on team size, with
8.6% contributed by single authors and only 1.4% contributed by teams

of ten authors. This posts relative ratios of 8.6/5 = 1.72 and 1.4/5 = 0.28,
respectively. For software, 69% of the codebases have disruption values
that equal 1; we therefore use this maximum value instead of the top 5%.

self-citation links, exclusion of all but high-impact references and other
variations (Extended Data Fig. 5g-i). Across all variations, our conclu-
sions remain the same.

The considerable difference in disruption between large and small
teams raises questions regarding how these teams differ in searching the
past to formulate their next paper, patent or product. When we dissect
search behaviour, we find that large and small teams engage in notably
different practices that may be related to divergent contributions in
disruption and impact. Specifically, we measure search depth as average
relative age of references cited and search popularity as median citations
to the references of a focal work. We examine these search strategies
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Fig. 3 | Small teams disrupt across impact levels and fields. a, The
disruption percentile decreases with team size across impact levels for
research articles (24,174,022 WOS articles published between 1954 and
2014). Curves are coloured by impact percentile (in number of citations).
The disruption percentile decreases faster for higher-impact articles
(darker green curves). The transition from disruption to development

(D = 0) occurs when the disruption percentile equals 70. b, Disruption
decreases with team size across nine fields for research articles. These
fields were manually coded, on the basis of 258 sub-field labels attached to
journals in WOS data. c, Plot of the regression coefficients of disruption
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percentile on team size from linear regressions, controlling for publication
year, topic and author. The regression is based on the 96,386,516 WOS
research articles (articles are counted repeatedly if they appear across

the publication records of different scholars), contributed by 38,000,470
name-disambiguated scholars. To control for topics, we use the field

codes inherited from b. Estimated parameters from the regression models
are presented in Supplementary Table 4. The same regressions using

raw values of disruption rather than disruption percentile are shown in
Extended Data Fig. 3b.



LETTER

a Articles b Patents ¢ Software
__ 95 80 __11.0 44 __1.0 12
[4 [4 4 \
g 2 g 2 g \ 2
>9.01,77 N 70 8 >105 38 8 >08f 10 8
S N b 3 £ = 3 £ X 3
Y N\ - g o Vi g o AN 18
N7 a \ mm= g g
g 85 X 60 o &10.0 - 32 o, 06 D -
® - N o o e /) o o ~ o
280~~~ ~J50 & § 95}/ 26 3§04 N S~46 2
Q Q Q
© T o T o [od
o o o
7.5 40 9.0 20 0.2 4
2 4 6 8 2 4 6 8 2 4 6 8
Team size Team size Team size
d e . f
2.0].- Top 5% reference age | == Top 5% reference age 2.0y Top 5% reference age
== Top 5% reference popularity == Top 5% reference popularity == Jop 25% reference popularity
o 1.5 o 1.5 - o 1.5}
= N - = . = \
© N _-- © - - © \
° RS - ° N ° N -
| g 10~ > 10 o= =
= = - _ . = ~
o ~ © A NS o Se-
e S ° . 2 S
~ -
05 Sl 0.5 0.5 .
0 0 0
2 4 6 8 2 4 6 8 2 4 6 8

Team size

Fig. 4 | Small and large teams behave differently in their search through
past work. a—c, For research articles (24,174,022 WOS articles published
between 1954 and 2014), patents (2,548,038 US patents granted between
2002 and 2014) and software (26,900 GitHub repositories uploaded
between 2011 and 2014), the median popularity of references (in number
of citations, shown as red curves and indexed by the right y axis) increases
with team size, whereas the average age of references (green curves,
indexed by the left y axis) decreases with team size. For all datasets, we
present work with one or more citations. Bootstrapped 95% confidence
intervals are shown as grey zones. Teams of between 1 and 10 authors
account for 98% of articles, 99% of patents and 99% of code repositories.
Extended Data Figure 3a shows that the observed relationships hold for
two orders of magnitude of team size. d—f, As in a—c, but for extreme cases
rather than for average behaviour. Relative ratios compare empirically

across fields, time periods and impact levels in science, technology and
software. We also relate these search strategies to temporal delay in the
impact these works receive using the ‘Sleeping Beauty index’*%, which
captures a delayed burst of attention traced by convexity in the citation
attention that a work receives over time.

We find that solo authors and small teams much more often build
on older, less popular ideas (Fig. 4, Extended Data Fig. 6). Larger
teams more often target recent, high-impact work as their primary
source of inspiration, and this tendency increases monotonically with
team size. It follows that large teams receive more of their citations
rapidly, as their work is immediately relevant to more contemporaries
whose ideas they develop and audiences primed to appreciate them.
Conversely, smaller teams experience a much longer citation delay;
the average Sleeping Beauty index percentile for solo and two-person
research teams is twice that of ten-person teams (Extended Data
Fig. 7). As a result, even though small teams receive less recognition
overall owing to the rapid decay of collective attention?®~%” (as shown
in Fig. 2a), their successful research produces a ripple effect, which
becomes an influential source of later large-team success (Extended
Data Fig. 8).

We also consider the relationship between these distinctive search
mechanisms and recent findings?® that suggest multi- and inter-
disciplinary teams more often link work from divergent fields. We
examined the novelty of journal combinations within article reference
lists and also keyword combinations within articles in relation to
team size. These show consistent diminishing marginal increases to
novelty with team size, such that with each new team member, their
contribution to novel combinations decreases (Extended Data Fig. 9).
Moreover, using a previous measure of atypical combinations, we find
that atypical combinations increase slowly up to teams of approximately
ten and then decrease sharply below the value associated with a solo
investigator. Whereas larger teams facilitate broader search, small teams
search deeper.

Team size

Team size

observed proportions of teamwork that searches for extremely early or
unpopular previous ideas against theoretical baselines of what would
have been expected at random. The grey line (y = 1) indicates a scenario
in which work building upon the earliest and the most unpopular ideas
is distributed equally across team sizes. We find that the probability of
observing papers, patents and products built upon the most influential
previous work increases with team size, whereas the probability of citing
older work decreases with team size. For example, d shows that the
percentage of the 5% of articles that cite the oldest ideas is unequally
distributed, with 7.2% contributed by single authors and only 1.6%
contributed by ten author teams. This provides relative ratios 7.2/5 = 1.44
and 1.6/5 = 0.32, respectively. Software has very few high-citation
codebases; we therefore use the top 25% rather than top 5% reference
popularity for our calculations.

In summary, we report a universal and previously undocumented
pattern that systematically differentiates the contributions of small
and large teams in the creation of scientific papers, technology patents
and software products. Small teams disrupt science and technology by
exploring and amplifying promising ideas from older and less-popular
work. Large teams develop recent successes, by solving acknowledged
problems and refining common designs. Some of this difference results
from the substance of science and technology that small versus large
teams tackle, but the larger part appears to emerge as a consequence
of team size itself. Certain types of research require the resources of
large teams, but large teams demand an ongoing stream of funding
and success to ‘pay the bills’?, which makes them more sensitive to the
loss of reputation and support that comes from failure®. Our findings
are consistent with field research on teams in other domains, which
demonstrate that small groups with more to gain and less to lose are
more likely to undertake new and untested opportunities that have
the potential for high growth and failure!®. Our findings are also in
accordance with experimental and observational research on groups
that demonstrates how individuals in large groups think and act
differently from those in small groups!'®-14,

Both small and large teams are essential to a flourishing ecology of
science and technology. Taken together, the increasing dominance of
large teams, a flurry of scholarship on their perceived benefits>6-%283!1
and our findings call for new investigations into the vital role that indi-
viduals and small groups have in advancing science and technology.
Direct sponsorship of small-group research may not be enough to pre-
serve its benefits. We analysed articles published from 2004 to 2014 that
acknowledged financial support from several top government agencies
around the world, and found that small teams with this funding are
indistinguishable from large teams in their tendency to develop rather
than disrupt their fields (Extended Data Fig. 10). In contrast to Nobel
Prize papers, which have an average disruption among the top 2% of all
contemporary papers, funded papers rank near the bottom 31%. This
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could result from a conservative review process, proposals designed
to anticipate such a process or a planning effect whereby small teams
lock themselves into large-team inertia by remaining accountable to a
funded proposal. When we compare two major policy incentives for
science (funding versus awards), we find that Nobel-prize-winning
articles significantly oversample small disruptive teams, whereas those
that acknowledge US National Science Foundation funding oversample
large developmental teams. Regardless of the dominant driver, these
results paint a unified portrait of underfunded solo investigators and
small teams who disrupt science and technology by generating new
directions on the basis of deeper and wider information search. These
results suggest the need for government, industry and non-profit
funders of science and technology to investigate the critical role that
small teams appear to have in expanding the frontiers of knowledge,
even as large teams rapidly develop them.

Online content

Any methods, additional references, Nature Research reporting summaries, source
data, statements of data availability and associated accession codes are available at
https://doi.org/10.1038/s41586-019-0941-9.
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METHODS

No statistical methods were used to predetermine sample size. Randomization and
blinding were not possible, given the observational nature of the study.

Dataset of research articles. Our WOS dataset contains 43,661,387 journal papers
and 615,697,434 citations that span from 1900 to 2014. These papers are published
across 15,146 journals. Data before the 1950s are sparse, and so results presented
in the main text focus on papers published between 1954 and 2014. Data from this
period contain 42,045,077 papers distributed across 15,070 journals. Among these
articles, 66% (27,728,266) are cited at least once, generating 611,483,153 citations
in total. To calculate disruption and other network measures, we constructed a
directed network with papers as nodes and citations as links. We calculated the
disruption score for 25,988,101 papers published between 1900 and 2014, among
which are 24,174,022 papers published between 1954 and 2014.

Dataset of patents. The US Patent and Trademark Office patent dataset con-
tains 4,910,816 patents and 64,694,807 citations between 1976 and 2014, which
represents the portion of the dataset with curated digital patent application data.
Citation links added by inventors and patent examiners represent different dynam-
ics; examiner citations do not reflect the technology on which a proposed invention
is built but rather the technologies with which it competes®2. As such, we focus
only on applicant citations, which are marked in the dataset after 2001 and repre-
sent 53% of total citations. From 2002 to 2014, we have 2,548,038 patents in total
that are linked by 44,798,680 inventor citations. To calculate disruption and other
measures, we constructed a directed network that contained patents as nodes and
applicant citations as links.

Dataset of software. The GitHub data contain 15,984,275 code bases (or reposi-
tories) contributed by 2,348,085 programmers in GitHub between 2011 and 2014.
In this period, 2,065,729 programmers contributed 9,127,410 forking patterns in
which they copied and saved an existing repository to build upon it. To calculate
disruption and other measures, we construct a citation network of repositories.
For each repository, we identify its core members as those who contributed more
edits, or ‘pushes) than the average value of all contributors to a repository'®. We
then add a citation link from repository A to B if a core member of A forked the
code from B between this user’s first and last edit of A. The constructed network
contains 26,900 nodes (repositories) and 108,640 links.

Dataset of name-disambiguated WOS scholars. We use a hybrid algorithm to
exploit both metadata and citations in disambiguating WOS authors. For each
name (including family name and initials), we construct a network of relevant
papers connected on the basis of a similarity measure that considers shared co-
authors, references and citations®*. Disconnected components of this network are
assumed to correspond to distinct authors. As co-citation is an important feature
in this similarity measure, our algorithm applies only to the 28,607,001 cited papers
in the whole dataset of 43,661,387 papers (1900-2014). Different from a previous
study®>, we also use emails and institutions of authors to improve the algorithm
by connecting name clusters that share this information. Although only 3% of the
cited papers have email information and/or organization information, these papers
connect 72% of the remaining papers. As emails are unique and institutions are
rarely shared by scholars of the same name, adding metadata makes the unsuper-
vised algorithm semi-supervised, reduces the time complexity and increases accu-
racy. Finally, we obtain 10,051,491 scholars who contributed to 22,177,224 papers.
Eighty-five per cent of these scholars contributed to three or more papers, and 44%
contributed to four or more. We use the 2017 Open Researcher and Contributor
ID (ORCID) dataset to validate the name disambiguation results, and find that
precision is 78% and recall is 86% among the 118,094 ORCID scholars with three
or more papers. We also test the results using a dataset of 31,070 Chinese scholars
and 253,786 papers retrieved from the project outcome reports of research funded
by National Natural Science Foundation of China; precision found in this test is
79%, and recall is 65%.

Removing self-citations from WOS papers. Using the above-mentioned data
of name-disambiguated scholars in WOS, we are able to test the robustness of
the negative association between team size and disruption against the removal of
self-citations (Extended Data Fig. 5). If a paper cites another that shares at least
one common name-disambiguated author, we define it as a self-citation. Among
the 615,697,434 citations created between 43,661,387 papers between 1900 and
2014, 10.2% (62,626,733) are self-citations. For the 28,607,001 papers with at least
one citation, 36.3% of them benefit from one or more self-citations. The averaged
percentage of self-citation increases monotonically with team size from 2.9% for
single-author papers and 8.7% for two authors to 12.3% for three authors, and sta-
bilizes at approximately 30% for 50 or more authors. This percentage also increases
rapidly with the number of citations but peaks at 15% for ten-citation papers and
then slowly deceases, returning to below 9% (which is the same percentage as in
two-citation papers) for 100 or more citations.

Dataset of Nobel-prize-winning WOS papers. We collect 877 WOS papers,
each of which earned their author(s) a Nobel Prize. These papers are published
across 178 journals during the time period 1902 to 2009, including 316 papers in
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Physiology or Medicine, 284 papers in Physics and 277 papers in Chemistry. The
average disruption of the Nobel-prize-winning papers is 0.10, ranking in the top
2% of all WOS papers from the same time period.

Dataset of government-funded WOS papers. For the 43,661,387 WOS papers
published between 1900 and 2014, WOS recorded acknowledged financial support
for 10.9% (4,754,769). The percentage of financially supported papers began in
2008, following a commitment by the WOS to record this information, and accel-
erated from that time; 15.2% in 2008, 38.9% in 2009 and 55.8% in 2014*. To ana-
lyse the disruption of government-funded papers, we select 477,702 WOS papers
that acknowledged funding from five major government agencies, published
between 2004 and 2014. The acknowledged agencies include the National Science
Foundation (NSF; 191,717 papers), National European Research Council and
European Commission (ERC and EC; 81,296 papers), Natural Science Foundation
of China (NSFC; 80,448 papers), German Research Foundation (DFG; 75,881
papers), and Japan Society for the Promotion of Science (JSPS; 58,275 papers).
These papers are published across 7,325 journals. A paper may be funded by
multiple agencies. The average disruption of these papers is —0.0024, ranking in
the tail 31% of all WOS papers from the same period. For NSF-funded papers, we
calculate the average grant size (over multiple NSF grants acknowledged by the
same paper). We find 140,972 papers that were supported by grants smaller than
1 million US dollars, 24,370 papers that were supported by grants 1-5 million
US dollars and 26,375 papers that were supported by grants of greater than 5
million US dollars.

Fields, subfields and journals of WOS papers. The articles that we analysed
are published across 15,146 journals that belong to 258 subfields, according to
the subject category labels for journals in the WOS dataset. We code these sub-
fields into ten major fields that comprise the physical sciences, biology, medicine,
environmental sciences, chemistry, agriculture, social sciences, engineering, com-
puter science and other. In Fig. 3b, we show the average disruption percentile
against team size across nine fields, except ‘other’ In Extended Data Fig. 4, we
selectively display the average disruption percentile against team size at the journal
level for three or four subfields from each of the nine fields, except for computer
science. We use ordinary least squares regression to fit the relation between team
size and disruption percentile for 10,907 journals across 218 subfields. We find
that among all studied journals, 86% post negative regression coefficients. If we
only consider journals that publish a substantial number of articles or those for
which the regression coefficient is significant, this fraction is higher: 91% of jour-
nals with more than 3,000 articles show a negative relationship between team size
and disruption percentile, and 88% of journals post significant negative regression
coefficients.

Modelling topics of WOS papers using Doc2vec. We randomly selected
100,000 papers from 15,146 journals, weighted by the frequency of articles pub-
lished by those journals, to ensure that these papers cover a variety of topics.
We then selected titles and abstracts from these papers and used them as the
corpus on which to train a neural network that converts documents into vectors
(Doc2vec)®. We used the Gensim Python library to train the vector space with
model parameters as follows: size = 100 (vector length), min_count = 2 (minimum
frequency of words used in the training), iter = 20 (number of iterations over the
training corpus). After training, we measured the similarity between documents in
the training set by calculating the cosine similarity between their estimated
vectors. We find that greater than 96% of the inferred documents register as
most similar to themselves, which suggests the trained Doc2vec model is work-
ing in a usefully consistent manner. To provide face validity for our model, we
randomly select a document and provide documents that register most and
least similar (Supplementary Table 5). Using the trained model, we infer
100-dimensional vectors for each of the 45,553 articles contributed by 10,000
scholars randomly selected from name-disambiguated data. These vectors are
used as an alternative measure for topics in the linear regression model introduced
in the next section.

Predicting disruption percentile using multivariate linear regressions. From
the WOS name-disambiguated data, we select all scholars with at least one cited
paper published between 1954 and 2014. In this way, we obtain 38,000,470 scholars
and 96,386,516 articles (articles are counted repeatedly if they appear across the
publication records of different scholars). For each article, we construct five groups
of variables for each article: (1) disruption percentile, (2) team size, or number of
authors (this group includes 15 dummy variables for teams of size 2 to 15, with
articles having 15 or more authors aggregated into a single 15+ variable and
solo-authored papers as the reference category); (3) publication year; (4) topic ID,
which is a categorical variable with ten values, covering gross topic areas ranging
from the physical sciences to the social sciences (see Fig. 3b); and (5) author ID,
a numeric index for the scholar with whom each paper is affiliated. We run two
regression models, with and without author fixed effects. In both, we cluster stand-
ard errors using author ID. We use the reghdfe package®® in STATA13 to run the
regressions, which automatically identifies singleton groups and removes them
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iteratively; the number of observations in the author fixed-effect model is therefore
lower than that in the random effects model*®.

We also test an alternative measure of topics using a smaller sample of 10,000
randomly selected scholars. We construct 100 continuous variables varying from
—3.2 to 3.2 that characterize topics for which we trained a Doc2vec model using
titles and abstracts of 100,000 articles, as described above. We use this model to
fit each of the 45,553 articles in the regression data and find that they provide
results very similar to those using topic ID in predicting disruption percentile,
which verifies the observed association between team size and disruption. Note
that our linear regression models have some limitations. The name disambigua-
tion algorithm used in this paper favours authors in large teams as similar sets of
co-authors are used to help to disambiguate authors. Our approach also favours
articles published in recent years, and those with active scholars that have more
data and are therefore more easily identified.

Validating disruption. The disruption measure that we studied is calculated
from citation networks. We conduct five independent analyses to validate and
more richly characterize this structural definition of disruption. The first two
investigations involve the alignment of disruption with expert notions of dis-
ruption and development; the second two tests link disruption to the process of
self-consciously disrupting or developing the landscape of previous work; and
the last inquiry characterizes the full range of expressed behaviours associated
with disrupting or developing in science. Specifically, these include: (1) linking
articles with Nobel prizes and showing that, across fields, Nobel-prize-winning
papers registered among the most disruptive, which validates the notion that that
expert assessment of path-breaking research systematically breaks the path of
acknowledgement to former work upon which it builds; (2) fielding and analysis
of an independent survey of scholars from a range of fields; this survey invited
these scholars to propose disruptive and developing articles that confirmed our
measure; (3) association of article type and disruptiveness, revealing that review
articles—which explicitly summarize previous original research—are substantially
more developmental than the work they review; (4) identification and analysis of
informal eponymous references in article titles and abstracts that signalled how
researchers in developing articles explicitly expressed their intention to build on
important, prior research; and (5) extraction and analysis of distinguishing words
that descriptively differentiate disruptive from developing articles. We detail each
of these in the sections below.

Nobel Prize disruption. We evaluated the association between Nobel Prize
award-winning articles (in a variety of fields) and disruption. The Nobel Prizes
were established as a consequence of Alfred Nobel’s last will and testament®’
drafted in 1895, which stated that the interest from his remaining fortune
should be used to confer prizes on ‘those who, during the preceding year,
shall have conferred the greatest benefit to mankind ... to the person who
shall have made the most important discovery or invention within the field
of physics ... the most important chemical discovery or improvement ... the
most important discovery within the domain of physiology or medicine ...> In
our sample of 877 papers directly connected with a Nobel prize (covering the
time period from 1902 to 2009), the average disruption is 0.10, which ranks
within the top 2% of all WOS papers from the same time period, selecting as
control group 3,372,570 papers from the same 178 journals and years. This
pattern is strong and substantial for prizes in Physiology or Medicine (316
papers), Physics (284 papers), and Chemistry (277 papers). Incidentally, we
find that the probability of observing small-team, disruptive papers is nearly
three times as high among Nobel-Prize-winning papers than those in the control
group (Extended Data Fig. 10). This suggests that major scientific communities
recognize work as important and path-breaking that has also been cited inde-
pendently from the work upon which it builds, signifying a break in the path of
acknowledgement.

Disruption survey. We fielded an open-ended survey, performed in person, over
the telephone or using Skype, which was approved by the University of Chicago
Institutional Review Board (IRB18-1248). The survey requested that scholars
across different fields propose papers that either disrupt or develop science in
their fields, anchoring those definitions with the following discussion: ‘Developing
papers represent extensions or improvements of previous theory, method or find-
ings (note that many papers will extend some scientific elements, while keeping
others the same). Disrupting papers represent punctuated advances beyond pre-
vious theory, methods or findings (note that almost no papers can successfully
disrupt all scientific elements; if they disrupt some things, they likely develop and
keep others the same)’ We then provided respondents with the BTW-model and
Bose-Einstein condensation papers to demonstrate the kinds of papers that we
would define as disruptive and developmental, and to demonstrate how devel-
oping papers could also be important. Respondents then proposed from three to
ten disrupting and developing papers. Our panel of scientists were solicited from
ten prominent research-intensive institutions across United States, China, Japan,
France and Germany. These scientists had training that ranged across mathematics,

physics, chemistry, biology, medicine, engineering, computer science, psychology
and economics. Among the 20 scholars from whom we received 190 answers,
100% of their proposals agreed with our measure for the most disruptive paper
they mentioned according to our measure (and all but six of their proposals agreed
with our measure for the most developing paper they mentioned). The average
disruption of papers nominated as disruptive is 0.2147, among the top 2% of most
disruptive papers. The average disruption of papers nominated to be developing
is —0.011, among the bottom 13% (Fig. 1c). This analysis resulted in an overall
prediction area under the curve of 0.83, which suggests a predictive accuracy of
83% and a much stronger sensitivity to extremes. We present a selected list of
disruptive papers in Supplementary Table 2.

Review articles versus original research. Review articles channel attention to
important past work, and thus should systematically tend to be more develop-
mental than disruptive. To test this hypothesis, we separate review articles from
the original research articles they review by culling journals with the words both
‘annual’ and ‘review’ in the title, which resulted in a sample of 22,672 review
articles published in 48 journals between 1954 and 2014. We compare these
with the 1,338,808 articles reviewed (cited) by them. This reveals that reviews,
which explicitly summarize previous original research, are substantially more
developmental than original research. Precisely, the mean disruption for reviews
(—0.0009) corresponds to the 46th percentile of the disruption distribution (based
on all cited papers published between 1900 and 2014), and the non-review mean
(0.0008) corresponds to the 77th percentile of the disruption distribution. This
difference indicates that original research articles are much more likely to be
disruptive than work that reviews them.

Informal reference. To further validate the link between our ex post measure of
disruption with the search strategy in the original work that eventually comes to
be received by the community as disruptive, we identified research that specifically
signalled an intention to extend the important work of earlier authors by extracting
all eponyms or informal references to prior authors’ work in titles and abstracts,
including ‘Bose’ and ‘Einstein’ from Bose-Einstein condensation, ‘Bohr’ from ‘Bohr
radius, ‘Higgs from ‘Higgs boson’ and so on. Specifically, we analyse 27,728,266
WOS articles between 1954 and 2014 with one or more citations, in which for each
paper we construct a list of the family names for scholars who authored any of the
papers cited in the references. We then identify whether these names also appeared
in title or abstract. We found that nearly a million research papers in the Web of
Science—0.61% (148,303) of titles and 3.0% (727,254) of abstracts—contain the
names of previous authors or concepts and phenomena named after them. Articles
that develop previous science, according to our future citation-based measure of
disruption, are 250% more likely to reference former research by author name in
title or abstract, which suggests an explicit intention to extend previous work and
attract the attention of audiences that have appreciated it (Supplementary Table 1).
This validates our measure by revealing its alignment with other rich signals of
linkage to past science. It also confirms another core dimension of the disruption
measure that was not discussed by the original authors of this measure: a creative
work’s future disruptive impact is strongly predicted by its search for the ideas
upon which it will build. Research building on previous work that is either (1)
sufficiently famous, such that it has been canonized, with the original author’s
name attached to the phenomena by the community, or (2) sufficiently recent,
such that the author’s name is familiar to the community, is much more likely to
be received by that same community as an important extension of the prior known
work. Our paper further suggests that this kind of developing activity is much more
commonly performed by large teams.

Distinguishing words. Finally, we examined the titles and abstracts that intro-
duce papers, which are eventually determined by our measure to be disrup-
tive or developing papers. We identified those words that are most and least
predictive of disruption, as measured by the relative ratio of their presence in
disruptive versus developing articles. Specifically, we selected titles and abstracts
from 24,174,022 WOS papers published between 1954 and 2014 with one or
more citations for which D = 0. We assign them into two groups: disrupting
articles (D > 05 6,397,815) and developing articles (D < 0;16,266,398). For words
observed in both groups (1,033,879 words for titles and 3,492,223 words for
abstracts), we calculate the ratio of their frequency in disrupting versus develop-
ing articles. In Supplementary Table 3, we present a sample of the most popular
words with ratios that deviate significantly from 1. These distinguishing words
(grouped by part of speech) characterize the manner in which articles come to
disrupt or develop science. For example, ‘technique’, ‘device, ‘tool, and ‘measure’
are among the nouns that most distinguish titles and abstracts from disruptive
articles. This suggests that new approaches are often used to disrupt science and
technology with new findings and scientific possibilities. By contrast, ‘theory’,
‘model’ and ‘hypothesis’ are all significantly and strongly associated with articles
that develop ideas from previous work. Verbs associated with disruptive article
titles and abstracts include ‘advance) ‘introduce’ and ‘change), which suggests the
introduction of new approaches and new causal forces to a scientific domain.



On the other hand, ‘endorse, ‘confirm’ and ‘demonstrate’ are much more likely
to be found in developing articles. These focus on confirming and incrementally
altering existing scientific components. For example, the contrast between ‘intro-
duce’ and ‘confirm’ is consistent with our definitions of disrupting and developing
papers in terms of whether questions are asked or solved, respectively. Finally,
adverbs and prepositions that distinguish disruptive article titles and abstracts
include questioning words (who, why, what, where and when), which provides
additional support for the increased likelihood of disruptive research to pose new
questions. By contrast, ‘during), ‘after’ and ‘from’ characterize work that devel-
ops—and integrates—insights from previous investigations. These distinguishing
words are highly suggestive regarding strategies that characterize disruptive work.
Moreover, they highlight differences in the search and positioning of ideas that
come to correlate with how those articles are received, which forms the basis of
our disruption measure.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.

Code availability. All code is available at http://lingfeiwu.github.io/smallTeams.
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Visualizing Disruption

Extended Data Fig. 1 | Visualizing disruption. a, Citation tree condensation and BWK-model articles) of the same impact scale
visualization that illustrates the visual influence of focal papers, drawing represented as citation trees, to illustrate how disruption distinguishes

on past work and passing ideas onto future work. ‘Roots’ are references and  different contributions to science and technology. ¢, Citation tree

citations to them, with depth scaled to their publication date; ‘branches’ on  visualization that characterizes the visual influence of eleven focal papers
the tree are citing articles, with height scaled to publication date and from teams of different sizes. Disruption (D), citations (N), published year
length scaled to the number of future citations. Branches curve downward (Y) and team size (m) of papers are shown in the bottom left corner of each
(brown) if citing articles also cite the focal paper’s references, and tree.

upward (green) if they ignore them. b, Two articles (the Bose-Einstein
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Extended Data Fig. 2 | Comparing citation and disruption distributions  distribution of citation changes with team size (d); magnified versions of

across team sizes. We select 27,728,266 WOS papers of at least one the grey area shown in e. All figures clearly demonstrate how small teams
citation published between 1954 and 2014. a, b, The distribution of oversample more disruptive and less impactful work. f, We test differences
disruption changes with team size (a); magnified versions of the grey area in the distribution of citations between team sizes using two-sample
shown in b. ¢, We test differences in the distribution of disruption between ~ Kolmogorov-Smirnov tests, which are reccommended for long-tailed

each pair of team sizes from one to ten using a two-sample ¢-test. distributed data. Numbers in cells show Kolmogorov-Smirnov statistics
The t-statistics are given in green cells and the darkness of green is and the underlying asterisks indicate P values. All pairs of the tested
proportional to the size of each t-statistic. Asterisks under the numbers citation distributions significantly differ from one another. Comparing

indicate P values. *P < 0.05, **P < 0.01, ***P < 0.001. All pairs of tested disruption distributions with the Kolmogorov-Smirnov test reveals the
disruption distributions significantly differ from one another. d, e, The same patterns of difference.
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Extended Data Fig. 3 | Decreasing disruption is robust across years,
topics, authors, time periods and windows of disruption. a, For research
articles (24,174,022 WOS articles published between 1954 and 2014),
patents (2,548,038 US patents assigned between 2002 and 2014) and
software (26,900 GitHub repositories uploaded between 2011 and 2014),
median citations (red curves, indexed by right y axis) increase with team
size from 1 to 100 (rather than 1 to 10 as in Figs. 2a—c, 4a—c), whereas

the average disruption percentile (green curves, indexed by left y axis)
decreases with team size. For all datasets, we present work with one or
more citations. Green dotted lines show the point at which D = 0, the
transition from development to disruption. Bootstrapped 95% confidence
intervals are shown as grey zones. b, Plot of the regression coefficients of
disruption (rather than disruption percentile as in Fig. 3c) on team size,
from linear regressions controlling for publication year, topics and author.
The regression is based on the 96,386,516 WOS research articles (articles

are counted repeatedly if they appear across the publication records

of different scholars) contributed by 38,000,470 name-disambiguated
scholars. ¢, The negative correlation between disruption and team size
holds across time periods. In contrast to the main body of the paper, which
renders disruption in terms of percentile change, here we measure it in
the native metric of disruption to highlight the shift with time. Earlier
cohorts (red curves) are more disruptive than later cohorts. Nevertheless,
with changes in team size, each cohort of papers traverses a majority of the
total variation of disruption for that cohort. d-h, Decreasing disruption
percentile and increasing citations with growing team size are robust to
changes in the width of the time-window of observation from 5 years to
40 years for 166,310 WOS articles published in 1970. i-m, As in d-h, but
using 24,174,022 WOS papers published between 1954-2014; we observe
the same pattern.
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Extended Data Fig. 4 | Decreasing disruption is robust when
controlling for journal. a-c, Weighted moving average technique for
data smoothing. The relationship between team size and disruption
may be noisy owing to lack of data when we analyse WOS articles from
the same journal. As shown in a, less than 1% of articles in ‘Artificial
intelligence’ (a subfield of ‘Computer and Information Technology’)
have more than six authors, but these articles contribute to substantial
variance in the data. We use the moving average technique to limit noise
in the data. More specifically, we define a parameter k, which provides
the threshold value of m for team size m such that P(m > m;) < k. For
any data point with a team size greater than my, its disruption percentile
DP,, is updated to be the average between its current value and the value
of its left neighbour, DP,, _,, weighted by corresponding sample sizes
(the number of articles for a given team size). Panel a shows curves for

Team size

the subfield ‘Artificial Intelligence’ before (blue dashed curve) and after
(red curve) smoothing, in which the size of blue circles is proportional to
sample size. Panels b and ¢ show how smoothing depends on the value of
k across ten randomly selected subfields. In d-1, each curve corresponds
to a journal (only journals with more than three data points are shown)
and each panel corresponds to a subfield. There are 15,146 journals, 258
subfields and 10 major fields represented in our WOS data. Owing to the
limited figure size, only four subfields are shown for each field. Curves are
smoothed by setting the smoothing parameter k = 0.2. The darkness of
curves is equally proportional to sample size and the absolute value of the
regression coefficient examining the impact of disruption percentile on
team size, such that journals with more articles and that display stronger
(both negative and positive) relationships are more distinguishable from
the background.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Decreasing disruption is robust when
controlling for task, institution, platform, project scale and alternative
disruption measures. a, b, Comparison between theoretical and empirical
articles (a) and review and non-review articles (b). a, We separate 4,258
papers from www.arXiv.org published between 1992 and 2003 into two
groups on the basis of the number of figures they contain; this grouping
comprised 1,502 articles without figures and 2,756 articles with figures.
The assumption is that empirical papers tend to contain more figures than
theoretical papers®>. We match these articles to the WOS datasets and
observe that for both theoretical and empirical articles, the disruption
percentile decreases with the growth of team size. b, We select two groups
of WOS articles on the basis of journal name; 22,672 reviewing articles
published across 48 journals that have both ‘annual’ and ‘review’ in the
title, and their 1,338,808 references (reviewed articles). For both reviewing
and reviewed articles, the disruption percentile decreases with team size.
¢, d, Comparison of US patents across classes and owners. We plot the
disruption percentile against team size for the seven most popular classes
of patents (92,175 patents) (c) and the top five companies legally assigned
the most patents (21,261 patents) (d) from 2002 to 2009. We observe that
the decrease in disruption and increase in team size holds broadly across
classes and owners. The moving average technique used in Extended Data
Fig. 4 is used to smooth the curve (smoothing parameter k = 0.1). As
sample size decreases rapidly with team size in the patent data, we assigned
equal weights across team sizes in applying the smoothing technique.

e, f, Comparison of GitHub software projects across programming
languages and code-base sizes. We plot the disruption percentile against
team size for the seven most popular programming languages (18,702)

LETTER

(e) and four scales of code-base sizes (24,853 code-bases) (f) from 2011
to 2014. The decrease in disruption with growth of team size holds
broadly across programming languages and code-base sizes. g, Simplified
citation networks comprising focal papers (blue diamonds), references
(grey circles) and subsequent work (rectangles). Subsequent work may
cite: (1) only the focal work (i, green), (2) only its references (k, black) or
(3) both focal work and references (j, brown). A reference identified as
popular is coloured in red, and self-citations are shown by dashed lines
(with corresponding subsequent work coloured in light brown). Five
definitions of disruption are provided for comparison. Dy is the definition
of disruption used in the main text. Dsis defined the same way as Dy, but
with self-citations excluded. D, is defined the same way as Dy, but only
considers popular references. We identified references as popular that
received citations within the top quartile of the total citation distribution
(>24 citations). D5 simplifies Dy by only measuring the fraction of papers
that cite the focal paper and not its references, among all papers citing the
focal paper, which equals n;/(n; + n;). D4 is similar to Ds, but considers the
number of citations and not papers cited in calculating the fraction (for
example, if a single referenced paper is cited five times, then it receives

a count of five rather than one in this measure). h, A citation network
copied from g, with one additional citation edge (brown curve) added. As
a consequence, some—but not all—disruption measure variants change.
i, All disruption measures decrease with team size. Dy and D, are indexed
by the right y axis and other disruption measures are indexed by the left

y axis. One hundred thousand randomly selected WOS papers (97,188
papers remained after excluding missing data) are used to calculate these
disruption values.
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Extended Data Fig. 6 | Small teams cite earlier and less-popular
references. a, We select 1,127,518 WOS articles published in 2010 and
find that the probability of observing reference j of age ¢ decreases
exponentially with ¢, such that P(t) ~ e . For larger teams P(t) decreases
faster with f, suggesting that A is determined by team size m. b, The
relationship between m and A (orange circles) can be fitted as A ~ m
(red curve). ¢, From a and b, we can derive the dependency of E(t), the
expected value of t, on m by integrating P(t) from zero to maximum . This
gives E(t) ~ 1/\ ~ m~ % Empirical data (blue rectangles) are consistent
with this prediction (red curve). d, Probability of observing reference

0.07

Team size m

Team size m

j with k citations decreases with k, supporting the relationship P(k) ~ k=
To control the time window, we include only references published in 2005.
For larger teams P(k) decreases more slowly with k, suggesting that « is
affected by m. e, The empirical relationship between m and « (purple
circles) and the fitting function as a ~ m %% (red curve). f, From d and
e, we can derive the dependency of E(k), the expected value of k, on m by
integrating P(k) from minimum to maximum k. This gives E(k) ~ 1 + 1/
(a —2) ~ 1+ 1/(m %% — 2). The empirical data (green triangles) are
consistent with this prediction (red curve).
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Extended Data Fig. 7 | Citation delay to small and disrupting teams.

a, b, The decay of citations to WOS articles changes with team size and
disruption. We selected 95,474 papers with 200-300 citations from 1954
to 2014, and plot the probability of being cited against article age. Longer
delays in citation are observed in smaller (a) and more disrupting (b)
teams. In b, purple (37,805 papers), blue (4,931 papers) and green (26,698
papers) curves correspond to 0-10, 55-65 and 90-100 percentiles of
disruption, respectively. In both panels, curves are smoothed by a running
average with a time window of five years. The coloured area shows one
standard deviation of these averages. ¢, d, The Sleeping Beauty index**
captures a delayed burst of attention by calculating convexity in the
citation distribution of a particular work over time. The index is highest
when a paper is not cited for some substantial period before receiving its
maximum (which corresponds to belated appreciation), zero if the paper
is cited linearly in the years following publication, and negative if citations
chart a concave function with time (which traces early fame diminishing
thereafter). We observe that the Sleeping Beauty index percentile decreases
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markedly with team size (¢) and increases with disruption (d) across fields.
e, f, The negative correlation between disruption percentile and impact in
the short term (within 10 years) turns positive in the long term (over 30
years) for the 166,310 papers published in 1970 (e). The same pattern is
observed when all 22,174,022 papers from 1954 to 2014 are used (f).

g, h, Achieving substantial citation attention for disruptive work occurs
over the long term, if at all, whereas the risk of failure from disruption
occurs over both the short and long term. Arrows trace the distance
between the mean of future citation success (g) or failure (f) from
developing to disrupting work produced by teams of each specified size.
The probability of becoming one of the top 1% most-cited articles is higher
for developing teamwork (negative disruption, the origin of arrows) within
20 years and higher for disrupting teamwork (positive disruption, the
target of arrows) over 30 years across team sizes (g). The probability of
becoming one of the tail 10% least-cited articles is almost always higher
for disrupting teamwork than developing teamwork across team sizes and
time windows (h).
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Extended Data Fig. 8 | The ripple effect of a shrinking small team
population. a—f, The decline of small teams. a, b, Evolution of team-size
distributions over time for WOS articles (a) and US patents (b). The
distributions skew towards large teams over time. ¢, d, Average team size
of articles increased from 2 to 5.5 between 1954 and 2014, and for patents
team size increased from 1.7 to 2.7 between 1976 and 2014. e, f, Percentage
of small teams (in which the number of team members m < 3) decreased
from 91% to 37% for articles, and from 94% to 74% for patents during the

period of observation. g, The ripple effect. We select 2,640 small teams

(m < 3) from WOS articles that are among the top 1% in number of
citations they received, as well those among the top 1% within the Sleeping
Beauty index distribution®*, We analyse the citations to these articles and
find that the fraction of large teams (m > 3) increases over time. The red
curve shows the average fraction of citations from large teams and the pink
area spans one standard deviation. The selected 2,640 small-team articles
are eventually cited by 657,946 large-team articles.
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Extended Data Fig. 9 | Diseconomies of scale in combinatorial novelty.
a, b, Changes in journal-based combinatorial novelty with team size
from WOS articles. We calculate the pairwise combinational novelty of
journals in the references of an article using a previously published novelty
measure®®, This novelty measure is computed as the tenth percentile
value of z-scores for the likelihood that reference sources combine, so
alower value of this index indicates higher novelty?®. Here we convert
this measure to percentiles and subtract from 100 to improve readability,
such that a higher score indicates greater novelty. It seems natural that a
larger team would provide access to a wider span of literature. We find
that novelty does increase with team size, but with diminishing marginal
increases to novelty with each additional team member. Beyond a team
size of ten, novelty decreases sharply (a). The probability of observing
papers within the top 5% of the novelty distribution increases, and then
decreases, with team size. The dotted line shows the null model that the

probability of high novelty is invariant to team size (b). ¢, d, Calculation
of combinatoral novelty in a different way. We select 241,648 papers
published in American Physical Society Journals, 1990-2010, and analyse
the probability of two-way (pairwise) and three-way combinations of the
‘Physics and Astronomy Classification Scheme’ codes using the Jaccard
index. Similar to the novelty measure used in a and b, in the Jaccard

index a lower value indicates higher novelty; we therefore convert it into
percentiles and subtract from 100 such that a higher score indicates greater
novelty. Again, we observe diminishing marginal increases to novelty with
the growth of team size. e, f, We select 8,232,630 PubMed papers from
between 1990 and 2010 and analyse the probability of two-way and three-
way combinations of medical subject headings using Jaccard indices. The
diminishing marginal increases to novelty effect are also observed in this
context.
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Extended Data Fig. 10 | Small, disruptive teams contribute
disproportionately to Nobel Prizes and are underrepresented with
government funding. a, Underfunded small-team, disruptive research.
Disruption percentile versus team size for WOS papers either not
annotated as funded, or as funded by the largest government agencies
around the world. The 477,702 funded papers cover the time period 2004-
2014, and include 198,103 for NSF, 80,448 for NSFC, 81,296 for ERC and
EC, 75,881 for DFG and 58,275 for JSPS. These papers are published across
7,325 journals, and a paper may be funded by multiple agencies. The
average disruption of these papers is —0.0024, ranking in the tail 31.0%

of all WOS papers in the same period. We select 5,305,534 papers without
any funding annotations from the same 7,325 journals and same time
period (2004-2014) as a control group (dashed curve). The dashed grey
line shows the mean disruption percentile for the control group. b, We
select 191,717 papers published between 2008 and 2014 that acknowledged
NSF with a grant number and retrieved grant size from the NSF website,
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including 140,972 papers for less than or equal to 1 million US dollars,
24,370 papers for 1-5 million US dollars and 26,375 papers for more than
5 million US dollars. The green and red zones mark two regions of interest:
small-team (three or fewer members) disruptive (positive disruption)
papers in green and large-team developing work in red. The probability of
observing small-team disruptive papers in NSF granted papers is almost
half that of observing them in the control group. ¢, We select 877 Nobel-
Prize-winning papers that cover the time period 1902-2009, including 316
papers in Physiology or Medicine, 284 papers in Physics and 277 papers

in Chemistry. We select 3,372,570 papers from the same 178 journals and
same time period (1902-2009) as a control group (dashed curve). The
average disruption of the Nobel-prize-winning papers is 0.10, ranking
among the top 2% of all WOS papers from the same period. d, The
probability of observing small-team disruptive papers is nearly three times
as high in Nobel-Prize-winning papers as in the control group.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XOO X X XK

(X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection We performed most analysis with Python 3, using pandas dataframes and models, as described in the manuscript and Supplement. For
the regression models, we used and Stata/SE 13.0

Data analysis We performed all analysis with standard algorithms and data. We will also (redundantly) make our particular implementation of well-
known code available in a public GitHub repository that indexed in the manuscript and supplement to maximize reproducibility.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Our data involves use of public data including the GitHub public repository collection and the US Patent and Trademark office patent database. While we cannot
redistribute these, we can and will publicly share how to access these resources and code regarding how to do it most effectively. We will also share all of the Web
of Science data required to reproduce our analyses and figures.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences [X] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Data on teams size were collected for tens of millions of productive teams, attributes of their productive output and its influence on
future science and technology. This data was largely quantitative in nature, including author/inventor/developer number for each team,
and network data regarding both how these objects searched through the space of past science and technology, and how their work was
received by future generations.
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Research sample Our sample involved more than 65 million teams producing science publications, technology patents, and software. This ranged from the
end of the 19th Century for articles, from 1976 until the present for patents and over the 21st Century for software products. All of these
details are specified clearly in the manuscript and supplement. We also included all data available in scientific papers, technology
patents, and software relevant prior to the works in question to evaluate search, and posterior to them to evaluate impact, disruption
and its delay. These works represent a population of relevant artifacts and should not be viewed as a sample of some different
populations. We do find, however, that all subsamples of the data confirm the pattern we see in the populations as a whole. Moreover,
because the patterns we evaluate are consistent across these massive populations, we suggest that they have likely relevance to other
contexts of science, technology and cultural production as well

Sampling strategy We used all available data for our analysis of teams' search strategies, impact and disruption. We also subset the data and analyze it
separately for subsamples, presenting results in the Supplement.

Data collection Our data was collected through administrative procedures that archive journal articles, publicly serve patents, and facilitate the sharing
of code.
Timing The timing of our data collection involved collecting data through 2015, but only analyzing team work from years before this time, to

allow time for the accumulation of citations, critical for our measurements.

Data exclusions No data were excluded from the analysis, other than by administrative convention. For example, the US patent system did not collect its
data digitally until 1976. Despite image data from US patents being available through the end of the 18th Century, we used the digitally
native patent data, from 1976 until the present.

Non-participation N/A

Randomization N/A

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology |Z| |:| MRI-based neuroimaging

Animals and other organisms

Human research participants

XOXNXNXX &
OXOOOO

Clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics Most data from human participants was passively collected and curated through publicly available data. We also performed a
small survey of scholars to solicit their nominations for most disruptive and developmental articles.




Recruitment For the disruption validation survey, we assembled a panel of young scientists from ten prominent research-intensive institutions
across U.S., China, Japan, France, and Germany who responded to an online solicitation request. Relevant fields of these
scientists covered math, physics, chemistry, biology, medicine, engineering, computer science, psychology, and economics.
Among the 20 scholars, we received 190 answers

Ethics oversight University of Chicago Institutional Review Board (#IRB181248)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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