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Abstract—Spiking neural networks enable efficient information
processing in real-time. Excitable lasers can exhibit ultrafast
spiking dynamics, and when preceded by a photodetector in an
O/E/O link, can process optical spikes at different wavelengths
and thus be interconnected in large neural networks. Here, we
experimentally demonstrate and numerically simulate the spiking
dynamics of a laser neuron fabricated in a photonic integrated
circuit. Our spiking laser neuron is shown to perform coincidence
detection with nanosecond time resolution, and we observe
refractory periods in the order of 0.1ns. We propose a method
to implement XOR classification using our laser neurons, and
simulations of the resultant dynamics indicate robust tolerance
to timing jitter.

Index Terms—Neuromorphic photonics, photonic integrated
circuits, photonic neural networks, excitable lasers, spiking neu-
ral networks.

I. INTRODUCTION

Spike processing is a sparse coding scheme using
distributed and asynchronous pulses to process information
both spatially and temporally. Compared to conventional von
Neumann architecture, this spiking paradigm offers dramatic
increases in power efficiency [1] and processing ability in
certain domains such as learning, optimization and pattern
recognition [2]-[4]. In addition to power and computing
efficiency, it has been established that the temporal dynamics
of spiking plays an important role in neuronal information
processing [5]-[7]. Through threshold response to signals and
by using temporal correlation to process information, spiking
dynamics enables a computing paradigm that combines
the noise robustness of digital communication with the
bandwidth efficiency of analog processing. This revolutionary
potential has sparked a bloom in the development of spiking
hardware across various physical platforms [8]-[20]. Due to
low cross-talk in interconnects and ultrafast laser dynamics,
integrated photonics are particularly well-suited to implement
neuromorphic systems that processes signals at very high
speed and bandwidth [21]-[25]. The fundamental unit of a
spike processor is the neuron, whose essential dynamical
properties of temporal integration, threshold response, and
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refractory period must be well-understood.

The refractory period is the time interval following a neu-

ron’s spike wherein the system cannot be excited again. It
is a fundamental component of excitability [26], [27], during
which the neuron returns to its rest state, thus enabling re-
peatable spiking. The existence of a refractory period also sets
the maximal spike firing rate, an necessary property for spike
processing using rate coding [28]. Temporal integration refers
to the capacity of a neuron to integrate different presynaptic
stimuli in time, and threshold response the neuron’s ability
to produce a sharp robust spike once this integrated stimulus
exceeds the excitability threshold. This ability to integrate a
signal and compare against a threshold enables a neuron to
perform coincidence detection: the neuron’s threshold can be
set such that individual input pulses do not produce a response,
but if two (or more) arrive within some temporal window their
integrated sum exceeds the excitability threshold, generating
a spike. Coincidence detection is the fundamental process in
various spatial-temporal recognition tasks [10], [29]-[33].
In this work, we proposed an integrated photonic circuit
spiking processor, and studied its temporal dynamics both
experimentally and theoretically. A method to implement XOR
classification is also proposed to demonstrate the potential of
this spiking platform to perform computation. The paper is
organized as follows: The device architecture, experimental
setup and methods are described in Section II. In Section III
we experimentally and theoretically study the fundamental
dynamical features of this device: the threshold response to
increasing integrated inputs, the refractory period following
stimulus, and the ability to perform coincidence detection.
Finally, in Section IV we simulate XOR classification using
our laser neurons in the presence of timing jitter.

II. A PHOTONIC SPIKE PROCESSOR

The proposed photonic spike processor is shown in
Fig. 1(b); it consists of a two-section distributed feedback
laser (DFB) and a pair of high-speed balanced photodetectors
(BPDs), the former generates spikes and the latter acts as the
summation unit in a neural network. In this architecture, BPDs
receive optical spikes and drive the adjacent DFB laser, which
performs spiking dynamics and converts the signal back to the
optical domain. This concept of direct analog O/E/O (optical
to electrical to optical) link is first introduced in Ref. [34], and
has been applied to excitable lasers showing the capability of
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integrated laser neurons to process many distinguishable, high
bandwidth input signals simultaneously [23]. This represents
a viable direction towards scalable photonic spiking neural
networks.

In Ref. [21], we have shown preliminary spike generation
results for this device. In this work, we focus on the temporal
dynamics of the integrated spiking laser neuron, and its
application to solve an XOR problem.

A. Device

Nine laser neurons on an integrated photonic chip are
shown in Fig. 1(a). The basic composite structures of the
laser neuron are a two-section DFB laser, high-speed BPDs,
and lithographically-defined metal wires connecting detectors
and the lasers together. The proposed two-section DFB laser
is composed of a small section with length 75.0 ym, and
a large section with length 125.0 um. The two sections are
optically coupled but electrically separated by 75.0 um such
that independent electrical sources can be provided to each
section. A current I, flowing into the large section provides
gain to the laser cavity, and the current Ig to a smaller
section adjusts internal cavity absorption level. The interaction
between the two sections allows for the excitable behavior
exhibited by the device. [21] The balanced photodetectors
PD1 and PD2 are connected only to the large section, as
seen in Fig. 1. The photocurrent generated by PD2 will flow
into large section as an excitatory perturbation, while PD1
acts as inhibitory synapse because its photocurrent flows out
of the large section. All the components can be found in
the standard process design kits (PDKs) [35] which allows
scalable laser neural networks. The chip was fabricated by
the Heinrich Hertz Institute through JePPIX consortium in a
standard, indium phosphide PIC platform. The details of the
architecture of the chip and the device parameters can be found
in Ref. [21].

B. Experimental Setup

To investigate temporal dynamics of the spiking laser neu-
ron, we programmed optical pulses and sent them to the
bottom photodetector (PD2 in Fig. 1(b)) to provide excitatory
stimulus to the system. The input optical pulses were generated
by modulating a continuous-wave DFB laser source (ILX
Lightwave 7900B) with a high speed Mach-Zehnder modulator
(JDSU OC-192). The modulation signals were programmed by
a high speed pulse patter generator (PPG, Anritsu MP 1763B),
and a sampling scope (Tektronix DSA8300) were used to
measure both input and output optical signals. To compensate
the loss (= 20 dB) between spot-size converters and v-groove
fiber array, we used high power EDFAs (PriTel FA-30) to
amplify optical input and output pulses, and tunable band-
pass filters (Santec OTF-320) were connected to the output
of EDFAs for noise filtering. For different experiments, the
input pulses were programmed differently and detailed in the
Section. II-C.

For the laser system, the electrical controls of laser are on
the edge of the chip. In Fig.1(b), the left metal pads were
connected to DC probes (GGB MCW-27-3050-A), and the

Figure 1. (a) A set of nine photonic laser neurons on an InP-based integrated
photonic chip. A photonic spiking neuron used in the experiment is highlighted
in red. On the right of the chip are the spot size converters (SSCs), which
are aligned with a V-groove fiber array providing coupling of optical signals
to on-chip waveguides. (b) The micrograph of a photonic laser neuron. A
two-section DFB laser and a pair of balanced photodetectors are highlighted
in black and blue respectively. The metal pads shown on the left are used to
source current to two-section DFB laser and control the bias of photodetectors.
GND: Ground, I: Current to large section of laser, /g: Current to small
section, V},: Voltage bias to PD2, NC': Not Connected to any electrical source
in this work. Adapted with permission from Peng et al., IEEE Journal of
Selected Topics in Quantum Electronics 24 6 (2018) Ref. [21].

current and voltage sources are provided by three source
meters (Keithley 2400). In this work, only the excitatory
photodetector (PD2) was used. The reverse bias Vppo of PD2
was provided by V4. (Vpps = V,,— V1, where V7, is the voltage
of large section.) The input optical signals were sent to PD2
through on-chip waveguide, which generates the photocurrent
I,,;, that forms the excitatory perturbation to the large section
of DFB laser. This setup is shown in Fig. 2.

C. Method

Our goal is to demonstrate ultrafast laser temporal dynam-
ics, thereby emulating a leaky integrate-and-fire (LIF) neuron
model [20], [27]. We designed three sets of experiments to
show the temporal properties of the integrated laser neurons,
investigating pulse width response, refractory dynamics, and
coincidence detection. All the laser neurons are designed to be
identical, and here the refractory dynamics is demonstrated on
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Figure 2. Schematic figure of the experimental setup, with input and output
optical signals highlighted in blue and red. Current sources 1 and 2 are used
for the biases of small section and large section of DFB laser respectively.
The voltage source controls the reverse bias of the excitatory PD (PD2).

1% neuron, and the pulse width and coincidence experiments
are implemented on 4" neuron, as labeled in Fig. 1 (a). The
resultant findings are reinforced via numerical simulation of
the two-section laser dynamics with the Yamada model [36],
[37]. In all experiments, the time-dependent traces of input and
output powers on the chip were first measured by the sampling
scope, and then converted to powers by matching the time
average of each signal to the average optical power. The input
(output) average optical power was calculated by subtracting
(adding) the measured off-chip power with the expected SSC-
fiber interface loss. The input pulses and settings used in each
set of experiments are summarized below:

1) Pulse Response: We used a PPG to generate a pattern
that consisted of two input pulses separated by 50 ns: The sum
of widths of two pulses was set to be 2.4 ns, with the width of
the first pulse ranging from 0.1-1.2ns. This setting is to ensure
the average power is constant for all measurements so that
all the input signals measured by the sampling scope can be
converted to power using the same factor. In this experiment,
we used the 4" laser neuron labeled in Fig. 1(a) and biased
it close to the lasing threshold. The bias conditions are given
as follows: I, = 10.6 mA, I = 0.0mA, Vppy = 3.67V.

2) Refractory Period: To analyze the refractory dynamics
of our system, we generated two identical input pulses, each of
which has energy 10.4 pJ, sufficient to excite a spike output.
The pulses are input to the excitatory photodetector with a
center-to-center temporal separation varying from 0.2-2.2ns.
The 1%¢ laser neuron (labeled in Fig. 1(a)) was used, and it was
again biased close to lasing threshold under the conditions: I,
=6.2 mA, IS =0.0 mA, VPD2 =3.75V.

3) Coincidence Detection: In this experiment, we generated
two input pulses, each of which individually does not have
enough energy to excite a spike, and programmed the temporal
center-to-center distance of two input pulses from 0.4-5.4 ns.
The same neuron and bias condition as for the pulse response
experiment was used.

4) Numerical Simulation: We simulate the dynamics of the
laser neuron in response to injected current pulses using the
well-studied Yamada model [20], [36], [37], which describes

all of which are dimensionless. x and ~ are the photon and
carrier relaxation rates, which we here assumed to be the same
in both sections. A and B are the biases to each section,
and a is the differential absorption relative to the gain. 6
connects the injected current from the photodetectors i;, ()
to the resultant gain, and (3, < k, is the contribution
to the intensity from spontaneous emission and other noise
sources. The parameters in Eq. (1) are calculated in terms of
fundamental device constants via analogy to the rate equations
[20], which we obtain by fitting simulations to data for each
of the experiments described above.

III. RESULTS AND ANALYSIS
A. Theoretical Model

The Yamada model exhibits class I excitability due to the
presence of a saddle-node bifurcation. Such systems are char-
acterized by the onset of self-oscillations (repeated spiking)
at zero frequency under constant stimulus above threshold.
Measurements and simulations indicate that for the present
device, this bifurcation occurs for I < 0 and is thus outside the
physical phase-space, a consequence of the estimated a ~ 1.
As a result, this laser neuron does not undergo a self-oscillation
transition under increased DC bias and instead possesses a
nonlinear ReLLU-like (rectifier) activation function. Although
not a true “class I excitable system”, the physical (I > 0)
phase portrait still exhibits strong signatures of this nearby
bifurcation, such that perturbations in G exceeding a threshold
result in large excursion in phase space before refracting.

To be more specific, the laser neuron is operated in a regime
with a single stable fixed point at low I = Iy (populated via
noise f3,). Under small perturbations in G, the system quickly
returns to this steady state. However, as a consequence of this
nearby saddle-node bifurcation, the phase portrait is such that
inputs sufficiently large to displace to G — Q) > 1 result in a
trajectory which rapidly spikes to {I > Iy,G — 0,Q — 0}.
The laser becomes effectively inverted and the intensity grows
exponentially. Since we have k >> +, the spike is short and
sharp; G and @ then recover towards their steady states (A
and B) more slowly. This results in the refractory period seen
in Fig. 4: the gain remains depleted after the initial spike,
which suppresses successive excitation. This response depends
critically on the presence of (3,: for 8, = 0, I = 0 is an
invariant plane and no perturbation in G will produce a spike.
Further, since Iy < 3, this noise significantly influences the
sensitivity to inputs above threshold and the threshold itself.
The laser neuron thus is able to temporally integrate input
currents, spike once this exceeds a threshold, and exhibits a
refractory period. These features, demonstrated in the results
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below, reinforce the inherent excitability of this system and its
utility in spike processing.

B. Pulse Response

To demonstrate the threshold optical-to-optical response in

our photodetector-laser system, we measured the output pulse
in response to pulses of increasing input energy, achieved
by varying the pulse width as described in Sec. II-Cl. As
shown in Fig. 3, the laser neuron has a strongly nonlinear
response to increasing pulse width. The peak power of the
output spike grows exponentially with input pulse width and
then suddenly saturates at 0.7 ns. The peak output spike power
is constant with input pulse width beyond this threshold at
0.7ns. The output waveform profile shows that the system
has short-term memory, such that the perturbation within a
certain temporal range can contribute to build up the output
peak power. Increasing the input pulse length beyond this point
results in a wider spike output with the same peak power. The
output power is about 2 orders of magnitude smaller than the
input, largely due to poor coupling efficiency.
These features and the observed response dynamics are repro-
duced well via simulations of Eq. (1), with parameters a = 1,
v =8GHz, k = 65GHz, A— B = 0.70, § = 0.072mA ™",
B = 2.5 MHz. As described in Sec. III-A, short pulses do
not displace the system sufficiently from the steady state to
generate a spike. As the pulse energy increases towards the
threshold, the peak output pulse power grows exponentially as
the response phase space trajectory gets closer to the spiking
trajectory. Once sufficient energy arrives at the laser neuron (
0.7ns of input pulse), the system is able to complete a spike
and additional input current beyond this has little influence
on the resultant trajectory, yielding the plateau in peak output
power seen.

C. Refractory Period

As suggested in Sec. III-A, the laser neuron processes a
refractory period due to the slower recovery of carriers to
their steady-state density following a pulse. If a second input
pulse arrives within this refractory period, the spike response is
suppressed. To study this feature, we investigated the response
of the spiking laser neuron to a pair of identical input pulses
with varying separation in Fig. 4. One can make a distinction
between absolute and relative refractory period. Within the
absolute refractory period, the laser neuron cannot be excited
and no second spike is seen, as shown in inset (i) of Fig. 4
(input temporal separation 0.3ns). In the relative refractory
period, excitation is possible, although the amplitude of the
second is reduced compared to the initial spike. When the
temporal separation of two input pulses is large enough
(greater than 0.5ns), the neuron will fire two spikes with
identical peak power as the inset (iii) of Fig. 4 shows. Within
the relative refractory period, the difference between first and
second peak power is seen to decrease exponentially as the
temporal separation of input pulses increases. The absence of
a second pulse for input separations up to 0.3ns indicates
that this is the approximate absolute refractory period, while
the relative refractory period is ~0.5 ns, since for separations
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Figure 3. Simulated (green) and measured (red) laser neuron output in

response to input pulses of increasing width. Dynamics are shown for widths
of 0.5ns, 0.7ns, and 1.1ns in (i), (ii), and (iii) respectively, with the input
signal in blue and the simulated and measured output pulses in dashed green
and red.

greater than this the two output spikes are identical. The
observed refractory period results in a maximal firing rate of
2 GHz for the spiking laser neuron. It is worth noting that
our system behaves similarly to and has the same order of
refractory period as the device in [9], despite having a different
photonic neuron architecture and excitation method.

Simulation of the Yamada model again emulates these experi-
mental observations well, with A—B = 0.66, 6 = 0.10mA ™!,
Brn, = 44MHz, and other parameters unchanged. Recall
that a different laser neuron, with different bias conditions,
is used in this experiment. As noted earlier, the refractory
period originates from the slow relative recovery of carrier
inversion densities G' and (), which are forced to 0 during a
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Figure 4. Response to successive input pulses as a function of their separation,
demonstrating the laser neuron’s refractory period. The peak amplitude of the
response to each input pulse as observed experimentally and simulated are
shown in red and green respectively. The triangles represent the peak power
of the first output spike, and the squares represent the peak power of the second
output. In addition, input and output signal traces are shown for separations
0.3ns and 2.1ns in insets (i) and (ii), using the same labeling scheme as
Fig. 3. Here, the separation is defined as the center-to-center distance of two
input pulses.

spike. Another excitation becomes possible once the system
is approaching the steady state again, although while G and
@ are depleted, more input energy is required to displace to
G ~ @ + 1. As a consequence, during this relative refractory
period an input which would typically generate a spike now
results in a sub-threshold response.

D. Coincidence Detection

Taking advantages of the temporal integration and threshold
response properties demonstrated in Sec. III-B, we stimulate
the laser neuron with a pair of input pulses, which individually
are below the excitation threshold, with a width of 0.4 —0.5 ns.
If they are well-separated, then there is no output pulse
response, but if two input pulses are close enough a single
spike is generated. This phenomenon can be exploited to
perform coincidence detection, as demonstrated in Fig. 5. In
inset (i), the two input pulses (blue curve) have a center-to-
center separation of 0.4ns. This is sufficiently close to be
coincident, and thus a single distinguishable output spike (red
curve) is produced after the arrival of the second input pulse.
This single response pulse is seen for separations of up to
0.6 ns, beyond which each input pulse yields a subthreshold
oscillation. An example of this null response is shown in the
inset (ii) of Fig. 5, where the temporal separation of two input
pulses is 0.8ns. Our system can thus perform coincidence
detection with sub-1ns precision. Furthermore, due to the
wide optical bandwidth of a photodetector, we can perform
coincidence measurements on signals of different wavelengths
or from different channels.

Simulations of Eq. (1) also demonstrate coincidence de-
tection. The same parameters as in Sec. III-B are used in
Fig. 5, except for /3,, = 12 MHz.Note that the single response
spikes following a positive coincidence detection are strongly

2 3 4
Input Pulse Temporal Separation (ns)

Figure 5. Response of a spiking laser neuron designed to perform coincidence
detection: two pulses of varying center-to-center separation are input and
the output peak power is plotted. Insets (i) and (ii) show signal traces
corresponding to input pulses separated by 0.4 ns and 0.8 ns, using the same
labeling scheme as Fig. 3.

in agreement with experimental results. For large pulse sepa-
rations, the model predicts a significantly higher subthreshold
oscillation amplitude than what was observed experimentally.
This is likely a result of additional loss processes and input fil-
tering not included in our simple Yamada model. Importantly,
this model captures the dynamics of positive coincidence
detection well, and for separations beyond 0.6 ns, still predicts
a small subthreshold oscillation.

IV. XOR CLASSIFICATION WITH PHOTONIC SPIKING
NEURAL NETWORKS

In this section, we propose a method that is compatible to
our current hardware architecture to solve the XOR classifica-
tion problem using spiking dynamics.

A. Method and Procedure

XOR classification can be performed by a spiking neural
network with the structure shown in Fig. 6. This network
consists of an input layer, a hidden layer and a readout
layer. In the input layer, the input bit string is encoded into
optical pulses, with different optical channels used to represent
different bits. For example, if the ith bit is “17, then a pulse
will be generated in i*" channel and sent to the hidden layer.
Otherwise, no pulse will be generated. Connections between
input pulses (I1, 12) and the two spiking neurons (H1, H2) in
the hidden layer are weighted by W;;, where i represents the
index of input bit, and j represents the index of hidden layer
neuron. The weight configuration W;; is designed with Wy,
and Wy larger than W35 and Wss, such that H1 will fire a
spike if it receives one of the input pulses, but H2 does not fire
unless two coincident pulses are received. Finally, the synaptic
weight between H1 and the readout neuron (R1) is chosen to
be positive, and the weight between H2 and R1 negative. With
these settings, if both H1 and H2 fire, the latter is inhibitory
and prevents R1 from spiking. Thus R1 only fires a spike if
it receives the excitatory pulse from just H1. In summary, the

1077-260X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOTI 10.1109/JSTQE.2019.2927582, IEEE Journal

of Selected Topics in Quantum Electronics

6 JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. XX, NO. X, APRIL 2019

procedure of implementing an XOR operation in a photonic
spiking neural network is the following:

1) Encode input bit information into optical spikes.

2) Weight input pulses in a way that W11 = Wy > Wio =
Was > 0, and send them to neurons in the hidden layer
simultaneously.

3) Weight outputs of H1 and H2 and send to RI, where
Woutputl >0> Woutput2~

4) The final result is “1” if R1 spikes, and “0” if otherwise.

In this spiking neural network, three neurons are identical and
the simulation parameters of them are the same as shown
in III-B except for different bias condition A — B = 0.43,
and better input coupling coefficient § = 0.8. All the synaptic
weights are chosen by optimizing the outcome of simulation.
The logic circuit analogy of this spiking neural network is
shown in Fig. 6(b). In the hidden layer, HI functions as OR
gate, and H2 has the function as AND gate. This “AND”
functionality is H2 performing coincidence detection. In the
readout layer, the NOT operation results from the inhibitory
synapse between H2 and R1.

B. Hardware Architecture

The proposed hardware architecture for the XOR operation
with integrated laser neurons is shown in Fig. 6 (c). The
input bit information is initially given by RF signal, and then
transferred to optical pulses by modulating CW lasers with
Mach-Zehnder modulator (MZM). The input optical pulse is
then sent to the spiking neural network on a photonic chip.
The neurons are the two-section DFB lasers presented in
Section. II, and each weight connection is implemented by
a semiconductor optical amplifier (SOA) and a Mach-Zehnder
interferometer (MZI). SOAs provide the gain to the signal and
MZIs determine the portion of light going to excitatory and
inhibitory channels. The final output of R1 will be connected
to a sampling scope for the readout.

C. Classification Result and Discussion

The dynamics of spiking neurons in hidden layer and
readout layer are shown in Fig. 7. Here, we only show results
for “01” and “11” since “10” is the same case as “01” and
“00” is a trivial case where no pulse processes in the network.
For the input="“01”, H1 and H2 receive a input from the
second channel. However, since Ws; > Was, the input to H1
is stronger than H2. As a result H1 fires but H2 stays below
threshold, as seen in Fig. 7(c-d). Moving on to the readout
layer in Fig. 7(g), R1 receives an excitatory perturbation from
HI1, which results in a spike fired by R1 and the successful
XOR operation on “01”. In the case with input=*11", HI and
H2 receive input pulses from both channels. The coincident
input pulses to H2 provides a strong enough perturbation to
generate a spike, and as shown in Figs. 7 (e-f), both HI and
H2 fire. Due to the inhibitory weight of H2’s output, the total
input to R1 is now below threshold. As shown in Fig. 7 (h),
this prevents R2 from firing, yielding the desired final XOR
readout=0.

We attribute the success of XOR classification to the

(a)

Input Layer

Hidden Layer Readout

JL _A_Neuron

XOR result=1:
Wou>0
o
W,y0<0 XOR result=0:
(b)
X, XiV X,
OR X, V Xy
X © X,
AND (X A Xo)
Xa X, A X,
(©
RF Input 1
cw
Laser 1 MZM
Ccw
Laser 2 _A_ w
RF Input 2 Excitable Laser Output
Off-chip input Spiking Neural Networks on Photonic Chip

signal generation

Figure 6. (a) Schematic figure of a photonic neural network that implements
XOR operation. Input from 15t and 27¢ channels are in blue and red
respectively. Since the weights W11, Wi are higher, the pulse sent to H1
has larger amplitude as shown in the figure. The outputs of H1 and H2 are
in green, and the output of R1 is in purple. (b) A circuit analogy to Fig. 6.
H1 acts as OR operation, H2 acts as AND operation, and R1 functions as an
AND but performs a NOT operation to the input from R2 first. (c) Hardware
implementation of XOR operation in a photonic spiking neural network. The
input bit information is coded in RF domain and transferred to optical domain
by modulation. The laser 1 in blue represents the first bit and the laser 2 in
red represents the second bit. The input is then split and sent to chip. SOA,
MZI, lasers, and balanced PDs are on the same III-V photonic chip. In this
figure, the green excitable lasers represent neuron H1 and H2, and the purple
one represents readout neuron R1.

dynamics of spiking neurons, which includes the threshold
response, temporal integration, and inhibitatory dynamics.
The threshold of a spiking neuron differentiates different
strengths of inputs. It contributes to the desired outcomes
for H1 and H2 (only H1 fires) when the input is “10” or
“01”, and the success of final readout in R1. When input
is “11”, we require H2 to fire and temporal integration
plays a role here. Within a temporal integration window,
the sum of two sub-threshold inputs can cause H2 to fire.
Because of this temporal integration window, this network
shows the tolerance of the temporal position of two input
pulses. In Fig. 8, when timing jitter in the input signals
is less than an input pulse width, we show that the XOR
classification still performs perfectly. When the timing jitter
is greater than an input pulse width, the accuracy reduces
to ~ 0.75 is because “l11” case fails and leads to a truth
table of OR gate. The inhibitory synapse contributes to the
cancellation of H1 and H2’s output, which is necessary for
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Figure 7. The two input cases “10” (equivalent to “01”) and “11” are shown
in (a) and (b), where blue dashed line represents the first bit and the red
dashed line represents the second bit. The simulated dynamics of H1 and H2
in response are shown in (c)-(f). The black dashed line is the total input and
the laser neuron output is in green. The dynamics of readout neuron R1 is
shown in (g) and (h) in purple. R1 generates a spike in the “10” case, but
not “11°, as desired. The negative input power shown in (h) represents the
photocurrent flow out of the gain section.
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Figure 8. Simulations of the robustness of the XOR classification network to
timing jitter. The accuracy is measured by inputting 1000 randomly generated
two-bit binary samples under different timing jitter conditions and comparing
the result to the XOR truth table. Timing jitter is the center-to-center input
pulse separation, normalized to the input pulse width of 0.2355 ns.

the successful XOR operation on “11”. Experimentally, the
function of inhibitatory PD of this device has been tested and
demonstrated in Ref. [23].

V. CONCLUSION

We constructed a photonic spiking neuron in integrated
photonic circuits and experimentally studied its temporal char-
acteristics, in particular the threshold response to integrated
inputs and refractory period. The refractory period experi-
ment indicates that the spiking laser neuron is capable of
a GHz spike processing rate, and coincidence detection was
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performed with ns precision. These results affirm the ability
to perform high speed and precision signal processing with
such devices. We simulated the laser neuron dynamics using
the Yamada model, and demonstrated agreement with our
experimental results. Lastly, a network of integrated laser neu-
rons to perform XOR operation was proposed. The numerical
simulation of the device shows that, when proper synaptic
weights are chosen, XOR classification can be performed with
three laser neurons with 100% accuracy even in the presence
of timing jitter. This resilience to timing jitter in input pulses is
thanks to the neuron’s ability to perform temporal integration.
The chip demonstrates the basic functionality of a pho-
tonic neuron, including robust excitability. Additionally, the
photodetector-driving mechanism allows for the simple im-
plementation of inhibitory synaptic weights, and more impor-
tantly is capable of processing information on different wave-
lengths or channels, dramatically increasing the computing
efficiency of this system [23]. Although the scalability of this
system needs to be further studied, this architecture with an
O/E/O link in integrated photonic circuits offers the potential
for high speed spiking neural networks. In conclusion, this
integrated photonic neuron is a promising foundation for
a scalable spike processor with dramatic improvements in
information processing speed.
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